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Abstract We consider high-dimensional data which contains a linear
low-dimensional non-Gaussian structure contaminated with Gaussian noise,
and discuss a method to identify this non-Gaussian subspace. For this problem,
we provided in our previous work a very general semi-parametric framework
called non-Gaussian component analysis (NGCA). NGCA has a uniform prob-
abilistic bound on the error of finding the non-Gaussian components and within
this framework, we presented an efficient NGCA algorithm called Multi-index
Projection Pursuit. The algorithm is justified as an extension of the ordinary
projection pursuit (PP) methods and is shown to outperform PP particularly
when the data has complicated non-Gaussian structure. However, it turns out
that multi-index PP is not optimal in the context of NGCA. In this article,
we therefore develop an alternative algorithm called iterative metric adapta-
tion for radial kernel functions (IMAK), which is theoretically better justifiable
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within the NGCA framework. We demonstrate that the new algorithm tends to
outperform existing methods through numerical examples.

Keywords Linear dimension reduction · Non-Gaussian subspace · Projection
pursuit · Semiparametric model · Stein’s identity

1 Introduction

Suppose that we are given a set of i.i.d. observations Xi ∈ R
d, (i = 1, . . . , n)

obtained as a sum of a signal S ∈ R
m (m ≤ d) with an unknown non-Gaussian

distribution and a Gaussian noise component N ∈ R
d:

X = AS + N, (1)

where A is a d×m matrix of rank m, N ∼ N(0,�) and S and N are assumed to be
independent. The rationale behind this model is that in most real-world appli-
cations the ‘signal’ or ‘information’ contained in the high-dimensional data is
essentially non-Gaussian while the ‘rest’ can be interpreted as high-dimensional
Gaussian noise. Under this modeling assumption, therefore, the tasks are to esti-
mate the relevant non-Gaussian subspace and to recover the low-dimensional
non-Gaussian structures by linear dimension reduction. Although our goal is
dimension reduction, we want to emphasize that we do not assume the Gaussian
components to be of smaller order of magnitude than the signal components.
This setting therefore excludes the use of common (nonlinear) dimensionality
reduction methods such as PCA, Isomap (Tenenbaum, et al. 2000) and LLE
(Roweis and Saul, 2000) that are based on the assumption that the data lies,
say, on a lower dimensional manifold, up to some small noise distortion.

If the non-Gaussian components Sj (j = 1, . . . , m) are mutually indepen-
dent, the model turns out to be the under-complete noisy ICA, and there exist
algorithms to extract the independent components in the presence of Gauss-
ian noise (Hyvärinen, et al. 2001). However, independence is often a too strict
assumption on practical data.

In contrast, projection pursuit (PP) (Friedman and Tukey, 1974; Huber, 1985)
or FastICA in the deflation mode (Hyvärinen, 1999; Hyvärinen, et al. 2001) can
also extract dependent non-Gaussian structures. PP iteratively finds directions
that maximize a prefixed single non-Gaussianity index. However, it is known
that some indices are suitable for finding super-Gaussian components and oth-
ers are suited for identifying sub-Gaussian components (Hyvärinen, et al. 2001).
Therefore, PP with a single prefixed non-Gaussianity index tends to give unde-
sired results if the data contains both super- and sub-Gaussian components.

To cope with this problem, two different approaches have been suggested.
One is PP with an adaptive single index which learns an efficient index simulta-
neously from a family of functions. Because it is known that the optimal index
in the sense of asymptotic variance depends on the density of each non-Gauss-
ian component (Hyvärinen, et al. 2001, Theorem 14.2), even non-parametric
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density estimators have been integrated in PP. However, due to high computa-
tional costs of such algorithms, PP with a fixed index often remains a compet-
itive method. On the other hand, we proposed a very general semiparametric
framework called non-Gaussian component analysis (NGCA) in our previous
research (Blanchard, et al. 2006), where the density of the sources is not specified
at all. The NGCA framework provides a unified view for combining the results
of PPs with different indices. Within this framework, we developed an NGCA
algorithm called multi-index PP. Through numerical examples, we showed that
the multi-index PP outperforms the ordinary single index PP methods in par-
ticular when data has complicated non-Gaussian structures.

Although the multi-index extension of PP works better than the original PP,
it does not make use of the full potential of the NGCA framework: the NGCA
framework does not only provide a unified view for combining the PP results
with different indices, but also it naturally defines the optimality criterion for
identifying the non-Gaussian components. It turns out that multi-index PP is
actually not optimal in the above sense, so there is still room for improvement.
In this paper, we thus propose a theoretically more sound NGCA procedure
called iterative metric adaptation for radial kernel functions (IMAK), which can
directly optimize the above defined optimality criterion.

The rest of this paper is organized as follows. In the next section we will sum-
marize the NGCA framework and briefly review the multi-index PP algorithm
developed in Blanchard, et al. (2006). Then in Sect. 3, the new NGCA algorithm
will be proposed. Simulation results will be presented in Sect. 4, where the new
algorithm is compared with existing methods. Researches on adaptive PP/ICA
will be summarized in Sect. 5, showing the relation to our approach. Finally,
conclusions and open problems will be discussed in Sect. 6.

2 Non-Gaussian component analysis

2.1 Semiparametric model of NGCA

The probability density function p(x) of the observations defined by the mixing
model (1) can be framed in the following semi-parametric form:

p(x) = g(Tx)φ�(x), (2)

where T is an unknown linear mapping from R
d to another subspace R

m, g is
an unknown function on R

m related to the distribution of the source S and φ�
is a centered Gaussian density with unknown covariance matrix �. Note that
g(·) is not necessarily a probability density function: in other terms, it does not
necessarily integrate to unity, although it is of course necessarily nonnegative.
In the appendix, we show more precisely how to formulate the model (1) under
the form (2). For now, we comment on the interpretation of this model and
define our goals.
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In this paper, we assume that the dimension m of the non-Gaussian subspace
is known. Equation (2) takes the form of a semiparametric statistical model, but
we would like to avoid direct inference of the Gaussian covariance � and the
function g which accounts for the non-Gaussian components. We remark that
the model (2) includes as particular cases both the pure parametric (m = 0)
and pure non-parametric (m = d) models. In practice, we are interested in an
intermediate case where d is large and m is rather small.

Note that the decomposition (2) is non-unique, and in particular neither g
nor � are actually identifiable in this formulation. However, it can be shown
that the following m-dimensional linear subspace I of R

d is identifiable (Theis
and Kawanabe, 2006):

I = Ker(T)⊥ = Range(T�) .

We call I the non-Gaussian index space; the goal we set here is the estimation
of the space I. Its geometrical meaning is the following: in the model (1), the
noise term can be decomposed into two components, N = N1 + N2, where
N1 = Aη ∈ Range(A) and N2 is restricted in the (d − m)-dimensional comple-
mentary subspace s.t. Cov(N1, N2) = 0 (i.e. N1 and N2 are independent). Thus,
we have the representation

X = A˜S + N2,

where˜S := S + η and the distribution of the noise term N2 is a (d − m)-dimen-
sional degenerated Gaussian independent of ˜S. The subspace I is then the
orthogonal complement of the (d − m)-dimensional subspace containing the
independent Gaussian component N2 (see Fig. 1). Once we have an estimate
of the index space I, we can project out the noise N2 by projecting the data X
onto that space. We remark that the projection does not have to be orthogonal,
e.g., an oblique projection gives the best linear unbiased estimator (Sugiyama,
et al., 2006). In the representation (2) we can assume that TA = Im and TX =˜S
without loss of generality, in which case T corresponds to the demixing matrix in
under-complete ICA, but here we are not interested in the individual directions
of the components˜Sj (which are not assumed to be independent).

Fig. 1 Geometrical
interpretation of the
non-Gaussian index space I
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2.2 Key property and outline of the NGCA procedure

The main idea underlying NGCA is summed up in the following Proposition
(proof in Appendix).

Proposition 1 Let X be a random variable whose density function p(x) satisfies
Eq. (2) and suppose that h(x) is a smooth real function on R

d. Then under mild
regularity conditions the following vector belongs to the target space I:

β(h) = �−1
EX
[

Xh(X)
]− EX

[∇h(X)
]

, (3)

where � = EX
[

XX�].

The vector β defined by Eq. (3) plays the central role in NGCA. This is very
close in spirit to Stein’s identity (Stein, 1981) which claims that β(h) = 0 for
any function h, if and only if X is a Gaussian random vector. On the other hand,
when the data X contains a non-Gaussian subspace as assumed, then the vector
β(h) provides information about this subspace.

Since the definition of β contains expectations with respect to the unknown
density p(x), it must be estimated, for instance by replacing expectations with
their empirical counterparts

̂β(h) = ̂�−1 1
n

n
∑

i=1

xih(xi)− 1
n

n
∑

i=1

∇h(xi) ,

where ̂� := 1
n

∑n
i=1 xix�

i . When the sample size n is large, the estimator ̂β(h)
is a good approximation of the true vector β(h) for any smooth non-linear
function h. If we take a sufficiently large number of different functions {hk}, we
can expect that their corresponding vectors {β(hk)} span the entire subspace
I to be estimated. We can then obtain a good approximation ̂I of I from the
family of estimated vectors {̂β(hk)}, for example by applying PCA to this family
(see Fig. 2). Note that the approximation error of ̂β(h) is bounded uniformly
for exponentially many ̂β(h) and the error tends to zero asymptotically (see
Theorem 1 in Sect. 2.5 for detail).
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Fig. 2 The principle underlying NGCA: from a family of real functions h, a family of vectors ̂β
belonging to the target space up to small estimation error is computed
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The outline of the general NGCA procedure is summarized as follows. We
first perform a “whitening” transformation as preprocessing, because it is pref-
erable both in the theoretical and practical senses (see Blanchard, et al. 2006).

1. Apply “whitening” to the data {xi}, resulting in the whitened data {̂yi} having
identity (empirical) covariance. Formally, ŷi = ̂�−1/2xi is the preprocessed
data, where ̂� := 1

n

∑n
i=1 xix�

i .
2. Consider a family of smooth functions {hk}. Compute the family of vectors

{̂βk} given by

̂βk := ̂β(hk) = 1
n

n
∑

i=1

{̂yihk(̂yi)− ∇hk(̂yi)}. (4)

3. Apply PCA to the family {̂βk} to obtain m principal directions.
4. Pull back the obtained m-dimensional subspace into the original (non-whit-

ened) data space.

2.3 Implementation issues

Although the principle of NGCA is very simple, there are two implementation
issues. At first, since the mapping h �→ β(h) is linear, we need an appropriate
renormalization of h or β(h), otherwise it would be meaningless to apply PCA
to the family {βk} computed using various functions {hk}. In our previous paper
(Blanchard, et al. 2006), we proposed renormalizing ̂β(h) by the trace of the
variance Var{̂β(h)}. Under this condition the norm of each vector is propor-
tional to its signal-to-noise ratio, so that longer vectors are more informative,
while vectors with a too small norm are uninformative and can be discarded
(Blanchard, et al. 2006).

As we will explain in Sect. 2.5, the theoretical results guarantee that con-
vergence occurs (as the number of sample points n grows to infinity) for any
family of smooth functions {hk}L

k=1 with mild regularity conditions. However,
in practice, it is important to find out those functions which provide most infor-
mation on the index space I. This will make the estimator ̂I more accurate,
and this point is crucial because there exist many uninformative functions. As
stated above, the amount of information brought forth by a fixed function hk is
measured through the norm of the (renormalized) associated vector βk.

To sum up, we need to combine extra steps with the plain NGCA algorithm:
(i) normalization, (ii) thresholding and (iii) iterative search for informative
functions.

2.4 The previous NGCA algorithm: multi-index projection pursuit

Previously, we restricted our attention to functions of the form (Blanchard,
et al. 2006)

hf ,ω(y) = f (〈ω, y〉), (5)
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Table 1

where ω ∈ R
d, ‖ω‖ = 1, and f belongs to a finite family F of smooth real func-

tions of a real variable. That is, each function h depends only on a single direction
of the multi-dimensional data determined by ω. To find good candidates ωf , for
a fixed f , we employed a well-known PP algorithm, FastICA (Hyvärinen, 1999),
as a heuristic. In the FastICA update the vector̂β after normalization becomes
the next candidate for the directional parameter ω. The algorithmic detail can
be found in the pseudocode in Table 1. We remark that FastICA, as a stand-
alone procedure, requires to fix the “index function” f beforehand. On the other
hand, the NGCA algorithm in Blanchard, et al. (2006) employs a possibly large
spectrum of arbitrary index functions f and combines the results of all single PP
methods in the end. This is why we call the algorithm Multi-index PP in order
to distinguish the new algorithm proposed in Sect. 3. The following functions
are used as the indices f in the implementation:

f (1)σ (z) = z3 exp(−z2/2σ 2), σ 2 ∈ [0.5, 5] (Gauss-Pow3),

f (2)b (z) = tanh(bz), b ∈ [0, 5] (Hyperbolic Tangent),

f (3)a (z) = sin (az) , cos (az) , a ∈ [0, 4] (Fourier).
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Each of the ranges of the extra parameters was divided into 1,000 equispaced
values, thus yielding a family (fk) of size 4,000 (Fourier functions count twice
because of the sine and cosine parts). In the thresholding step, we remove
uninformative vectors ̂βk with norm smaller than a threshold ε after normali-
zation by their estimated variances ̂Var(̂βk) (for details, see the pseudocode in
Table 1). Some preliminary calibration on purely Gaussian data suggested to
take ε = 1.5 as the threshold. Finally we fixed the number of FastICA iterations
Tmax = 10.

2.5 Probabilistic error bounds

A theoretical validity of the NGCA method is guaranteed by the following the-
orem, which basically tells that the estimation error, i.e. the distance between
the true non-Gaussian index space and the estimated vector converges to 0 with
high probability as the sample size n goes to infinity. Together with the assump-
tion that the set of betas spans the index space I, we come to the conclusion that
the estimator ̂I converges to I. The details and the proof of the probabilistic
error bounds can be found in Blanchard, et al. (2006).

Theorem 1 Assume:

(i) There exist λ0 > 0, a0 > 0 such that EX
[

exp
(

λ0‖X‖2)] ≤ a0 < ∞;
(ii) The matrix � = EX

[

XX�] is such that ‖�−1‖op < K2;
(iii) supk,y max(‖∇hk(y)‖, ‖yhk(y)‖) < B;
(iv) The function˜hk(y) := yhk(y)− ∇hk(y) is Lipschitz with constant M.

Then, there exists an integer n0 such that for any n > n0, with probability 1− 4
n −4δ

the following bounds hold true simultaneously for all k ∈ {1, . . . , L}

dist(̂�−1/2
̂β(hk), I) ≤ C1

√

d log n
n

+ 2K

√

σ̂ 2(hk)
log Lδ−1 + log d

n

+ C2
log(nLδ−1) log(Lδ−1)

n
3
4

,

where ̂� = 1
n

∑n
i=1 xix�

i ,̂β(hk) = 1
n

∑n
i=1
˜hk(̂yi),

σ̂ 2(hk) = 1
n

∑n
i=1 ‖˜hk(̂yi)−̂β(hk)‖2, C1 is a constant depending on parameters

(λ0, a0, B, K, M) only and C2 on (d, λ0, a0, B, K, M).

The above bound leads to a uniform convergence over the whole set of func-
tions with a rate of order O(√d log n/n + √log L/n). Therefore, taking, e.g.,
L = O(nd) we have insurance that global convergence holds.
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Roughly speaking, the second term of the bound in Theorem 1 comes from
the main procedure of NGCA (cf. Theorem 3 of Blanchard, et al. 2006), while the
first term is caused by the whitening preprocessing. Our normalization scheme
aims at keeping the second term of the bound below a constant, because the
coefficient C1 in the first term is uncomputable.

3 New NGCA algorithm with radial kernel functions

In the iterative function selection of Multi-index PP, we do not directly opti-
mize our criterion of informativeness, given by the length of the renormalized
vector̂β:

‖̂β(hf ,ω)‖
√

N(hf ,ω)
(6)

over the directional parameter ω, where

N(hf ,ω) := 1
n

n
∑

i=1

∥

∥ŷifk(〈ω, ŷi〉)− f ′
k(〈ω, ŷi〉)ω

∥

∥

2 − ∥∥̂β(hf ,ω)
∥

∥

2
(7)

is n times the trace of the estimated variance ̂Var[̂β(hf ,ω)]. Instead, the FastICA
loop is used as a heuristic, which makes the algorithm much simpler. This moti-
vated us to have a more direct approach: finding a function h that maximizes
the above informativeness measure Eq. (6).

3.1 Radial kernel functions

In the following, we focus on the class of functions spanned by radial kernel
functions

kσ 2,M(y, y′) = κ

(

1
2σ 2 (y − y′)�M(y − y′)

)

, (8)

where κ is a non-negative smooth function and M is a non-negative definite
matrix which determines the shape of ellipsoid. This is a generalization of
radial basis functions which have been applied in the field of neural network and
machine learning (see e.g. Moody and Darken, 1989; Bishop, 1995; Schölkopf
and Smola, 2001). The reason why the metric M is contained will be explained
later. In the following, we mainly use Gaussian kernels

kσ 2,M(y, y′) = exp

{

− 1
2σ 2 (y − y′)�M(y − y′)

}

,

but other basis function families are also allowed. To sum up, we will consider
functions which are represented as a linear combination of radial kernel func-
tions centered at each sample. This bears a similarity with kernel methods in
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machine learning or statistics (cf. Schölkopf and Smola, 2001; Müller, et al.,
2001).

hσ 2,M,a(y) =
n
∑

i=1

aikσ 2,M(y, ŷi) (9)

This family of functions has three parameters: the scale parameter σ 2, the metric
M and the weight a = (ai). The scale parameter σ 2 can be included in M, but we
separate them for convenience; more specifically, we use several different scale
values for the same metric M at the same time. In the following implementation,
we take 10 different values between 0.01 and 60 which are equally spaced in
log scale. Similarly to the role of extra parameters in the case of multi-index
projection pursuit (e.g., the frequency parameters for trigonometric functions),
this enables us to combine information coming from various resolutions.

In the following, we explain how a and M are determined.

3.2 Optimization of weight vector

The weight vector a is obtained from the maximization of the informativeness
criterion

‖̂β(hσ 2,M,a)‖2

N(hσ 2,M,a)
, (10)

where N(hσ 2,M,a) = n tr
(

̂Var[̂β(hσ 2,M,a)]
)

is the normalization factor. Due to
the fact that the functions hσ 2,M,a are linear in the parameter a, both the numer-
ator and denominator of Eq. (10) are expressed as quadratic forms of the vector
a. Therefore, the optimization of Eq. (10) can be solved by a generalized eigen-
value problem as we will show in the following. We underline that this charac-
terization of the optimal coefficient a of the linear combination h defined by
Eq. (9) is more generally true in the case where h is expressed as a linear com-
bination of some given basis functions; i.e. it is not specific to the radial kernels
kσ 2,M. Below, we derive the explicit analytic formulation for this particular case.

Let K = (kσ 2,M (̂yi, ŷj) )be the Gram matrix of the kernel and̂Y = (̂y1, . . . , ŷn)

be the matrix representation of all whitened data. From Eq. (9), the rth com-
ponent of the vector-valued function˜hσ 2,M,a(̂yi) := ŷi hσ 2,M,a(̂yi)−∇hσ 2,M,a(̂yi)

can be expressed as

{˜hσ 2,M,a(̂yi)}r = e�
r ŷi (Ka)i − (∂rKa)i,

where er is the rth basis vector of R
d and ∂r denotes the partial derivative

w.r.t. the rth component. Specifically, the (i, j)th component of the matrix ∂rK
becomes

∂rKij = 1
σ 2

{

(Mŷi)r − (Mŷj)r

}

κ ′
(

1
2σ 2 (̂yi − ŷj)

�M(̂yi − ŷj)

)

,
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when we use the radial kernel functions (8). Then the norm of ̂β(hσ 2,M,a) and
n̂E
[‖̂β(hσ 2,M,a)‖2] are expressed by the following quadratic forms.

‖̂β(hσ 2,M,a)‖2 =
d
∑

r=1

[

1
n

n
∑

i=1

{˜hσ 2,M,a(̂yi)}r

]2

=
d
∑

r=1

1
n2

[

e�
r
̂Y Ka − 1�

n ∂rKa
]2

= a�
⎧

⎨

⎩

1
n2

d
∑

r=1

(

e�
r
̂YK − 1�

n ∂rK
)� (

e�
r
̂YK − 1�

n ∂rK
)

⎫

⎬

⎭

a,

n̂E
[

‖̂β(hσ 2,M,a)‖2
]

= 1
n

n
∑

i=1

d
∑

r=1

{˜hσ 2,M,a(̂yi)}2
r

= a�
⎡

⎣

1
n

d
∑

r=1

{

diag(e�
r
̂Y)K − ∂rK

}� {
diag(e�

r
̂Y)K − ∂rK

}

⎤

⎦ a.

Let us define the following matrices

F := 1
n2

d
∑

r=1

(

e�
r
̂YK − 1�

n ∂rK
)� (

e�
r
̂YK − 1�

n ∂rK
)

, (11)

G := 1
n

d
∑

r=1

{

diag(e�
r
̂Y)K − ∂rK

}� {
diag(e�

r
̂Y)K − ∂rK

}

− F. (12)

Then the informativeness criterion (10) can be represented as a Rayleigh
coefficient

‖̂β(hσ 2,M,a)‖2

N(hσ 2,M,a)
= a�Fa

a�Ga
. (13)

Hence, the maximizer of the criterion is given by the generalized eigenvector
associated to the largest generalized eigenvalue of the following generalized
eigenvalue problem

Fa = λGa. (14)

In our implementation, we add a regularization term 0.01In to the matrix G
in order to avoid the undesired situation that the denominator of Eq. (13) is
close to zero. Because functions with the maximizer a1 may correspond only
to one direction in the non-Gaussian index space I for all scales σ 2

1 , . . . , σ 2
L, we

should take at least m eigenvectors a1, . . . , am of Eq. (14). We also remark that
the weight a is usually normalized such that a�Ga = 1 by eigen-solvers; then
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further normalization of β is not necessary. Note that the n-dimensional matrix
F has rank d. If we take this into account, the above eigenvalue problem may
be solved more efficiently. Computational cost could be further reduced, e.g.,
by using a subset of samples.

3.3 Update of metric

Finally, the non-negative definite matrix M in the radial kernel functions kσ 2,M
is iteratively updated several times from the identity matrix M0 = Id. We change
the metric M based on the current estimator̂I of the index space such that the
functions hσ 2,M,a become less sensitive (or in other words the radial kernels
have larger radius) in Gaussian directions. This extra step improves the accu-
racy substantially compared to the algorithm with just spherical bases (M = Id).

Suppose we get the set of vectors
{

β
(t)
k

}

at the t-th step. Then the simplest rule

would be using the covariance matrix of
{

β
(t)
k

}

, that is,

Mt ∝
∑

k

β
(t)
k

(

β
(t)
k

)�
, (15)

where Mt is scaled so that its trace remains equal to d. However, this proce-
dure might miss non-Gaussian components that are relatively weak, if the data
also contains some strongly non-Gaussian directions. To alleviate this issue, we
propose equalizing the weights in the first m eigen directions, that is,

Mt ∝ μ

m
∑

i=1

uiu�
i +

d
∑

i=m+1

μiuiu�
i , (16)

where μi and ui are the ith eigenvalue and vector of the matrix
∑

k β
(t)
k

(

β
(t)
k

)�

in descending order andμ = m−1∑m
i=1 μi. For illustration purposes, we plot the

improvement of the estimation error E by the metric adaptation with the data
set (A) in Fig. 3 (see Sect. 4 for details). Indeed, the error decreases drastically
after a few iterations. At the same time, the metric M converges to an ideal (for
this dataset) matrix which has non-zero elements only in the first 2 × 2 subm-
atrix. This makes the functions (hl) not affected by the Gaussian components
and generates more accurate vectors (β l).

We summarized the main part of the new NGCA algorithm called IMAK
in Table 2. Since the “whitening” preprocessing, the PCA step and the final
operation for pulling back the result in the original space are the same as Multi-
index PP in Table 1, we omit them. Thresholding is not necessary in our new
IMAK procedure. The iteration number Tmax of the metric update is 10 in the
numerical experiments, but when there existed almost no change, we stopped
the iterations earlier for computational efficiency.
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Fig. 3 Effectiveness of iterative metric adaptation. The upper row shows that the estimation error
E defined in Sect. 4 decreases drastically after a few iterations (left coarse scale, right fine scale).
In the lower row, we plot the absolute values of the components of the metrics at first, second and
third iterations (i.e. M0 = Id, M1 and M2, respectively). We used the data set (A), where the first
two coordinates correspond to the non-Gaussian index space and the others are Gaussian noise
(see Sect. 4 for details). Hence, if the metric M has non-zero values only in the first 2 × 2 submatrix,
the function h becomes independent of the Gaussian components. For this data set, we can see that
the metric M converges to the ideal matrix after only three iterations

Table 2
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4 Numerical experiments

We performed numerical experiments using various synthetic data sets. We
report exemplary results using 4 data sets. Each data set includes 1, 000 sam-
ples xi = [s1,i, s2,i, n3,i, . . . , n10,i]� (i = 1, . . . , 1, 000) in 10 dimensions, which
consists of 8-dimensional independent standard Gaussian [n3,i, . . . , n10,i]� and
2-dimensional non-Gaussian components si = [s1,i, s2,i]� as follows:

(A) Simple Gaussian Mixture: 2-dimensional independent bimodal Gaussian
mixtures;

(B) Dependent super-Gaussian: 2-dimensional density is proportional to
exp(−‖x‖);

(C) Dependent sub-Gaussian: 2-dimensional uniform on the unit circle;
(D) Dependent super- and sub-Gaussian: 1-dimensional Laplacian with den-

sity proportional to exp(−|xLap|) and 1-dimensional dependent uniform
U(c, c + 1), where c = 0 for |xLap| ≤ log 2 and c = −1 otherwise.

This is a simple case of our setting xi = Asi + ni with A = [I2 02×8]� and
ni = [0, 0, n3,i, . . . , n10,i]�. We compare the new NGCA algorithm (denoted
by ‘IMAK’) against Multi-index PP (PPMI) and standalone FastICA with two
different index functions (‘PP(pow3)’ and ‘PP(tanh)’, respectively). Because
the single index PPs tend to get trapped into local optima of the index func-
tion that it optimizes, we restarted it 10 times with random starting points and
took the subspace obtaining the best index value. However, even when it is
restarted 10 times, PP with ‘pow3’ index still gets caught in local optima in a
small percentage of cases. Figure 5 shows boxplots, over 100 samples, of the
error criterion

E(̂I, I) = m−1
m
∑

i=1

‖(Id −�I )̂vi‖2,

where {̂vi}m
i=1 is an orthonormal basis of ̂I, Id is the identity matrix, and �I

denotes the orthogonal projection on I. In datasets (A) and (B), our algorithm
appears to be essentially on par with Multi-index PP and the best FastICA
method, while in dataset (C), IMAK is better than the others. As expected the
best index for FastICA is data-dependent: the ‘tanh’ index is more suited to the
super-Gaussian data (B) while the ‘pow3’ index works best with the sub-Gauss-
ian data (C). We note that we reproduced the simulation in Blanchard, et al.
(2006) on different realizations of the same datasets. Concerning data distribu-
tion (C), although the error distributions for PP(pow3) are basically consistent,
the boxplot in Blanchard, et al. (2006) looked worse than that on Fig. 5. This
is because the proportion of large errors (caused by local optima) was slightly
beyond 25%, which is not the case here. Finally, the advantage of the implicit
index adaptation feature of NGCA can be clearly observed in the data set (D),
which includes both sub- and super-Gaussian components. In this case neither
of the two FastICA index functions taken alone does well. Multi-index PP gives
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Fig. 4 Densities of the non-Gaussian components
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Fig. 5 Boxplots of the error criterion E(̂I, I) over 100 training samples of size 1,000

significantly lower error than either FastICA and the new algorithm IMAK
provides further improvement.

5 Historical remarks and related works

In this section, we discuss other work related to our research.
At the early stage of PP development, Huber (1985) already suggested the

negative Shannon entropy with a non-parametric density estimator as a pro-
jection index. There were also a number of flexible projection indices in the
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1980s and early 1990s (see Nason, 1992, for details). Nason (1992) also pro-
posed a non-parametric projection index based on multimodality of probability
densities.

After the late 1990s projection pursuit attracted researchers working on
blind source separation and has been further developed under the name of
deflational ICA (e.g. Hyvärinen, 1999; Hyvärinen, et al., 2001). Immediately,
people became aware of the problems with non-Gaussianity indices, that some
indices work well for sub-Gaussian sources, while others perform well with
super-Gaussian signals. Lee, et al. (1999) proposed the extended infomax which
switches between the two kinds of non-Gaussian indices based on kurtosis of
each extracted component.

Furthermore, Hyvärinen, et al. (2001) proved that the negative Shannon en-
tropy is the optimal index in the sense of asymptotic variance (Theorem 14.2).
Since then, more flexible and adaptive non-Gaussianity indices (or non-
linearity for symmetric ICA methods such as infomax) have been proposed.
Some assume wider parametric families for source distributions (e.g.Eriksson,
et al. 2000), while others employ various kinds of non-parametric estimators
such as kernel density estimators or Gaussian mixture models (Boscolo, et al.,
2004; Vassis and Motomura, 2001; Attias, 1999), maximum likelihood with a
smoothness penalty (Hastie and Tibshirani, 2003), order statistics spacings (e.g.
RADICAL, Learned-Miller and Fisher, 2003), and characteristic functions (e.g.
Eriksson, et al. 2001).

The most elegant algorithm among non-parametric ICA is KernelICA (Bach
and Jordan, 2002; Gretton, et al., 2005) which utilizes kernel mutual informa-
tion or kernel generalized covariance with functions in a reproducing kernel
Hilbert space. Rigorous theoretical analysis of non-parametric ICA was done
in Chen and Bickel (2006). For developing IMAK—the new version of NGCA,
we drew inspiration from these papers.

The differences between our approach and PP/ICA with non-parametric
estimators, especially the kernel density estimator are summarized as follows.

1. We are not optimizing a particular index. Rather, based on Proposition 1,
we combine information from multiple “indices” at the same time, while
other methods use single adaptive indices only. Thus, for example, we do
not need any window width selection.

2. The other approaches are generally based on 1-dimensional indices which
are then optimized via some search procedure. By contrast our non-Gaus-
sianity function starts from the entire space and “shrinks” towards the index
space through the adaptation of the metric.

6 Conclusion

In this paper, we proposed an alternative realization of the NGCA procedure
for constructing a linear projection to separate an uninteresting, multivariate
Gaussian ‘noise’ subspace of possibly large amplitude from the ‘signal-of-inter-
est’ subspace. The new IMAK algorithm uses radial kernel functions and also
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iteratively updates the metric of the kernels. In general, PP methods need to
pre-specify a projection index with which they search non-Gaussian compo-
nents. By contrast, as was explained in Blanchard, et al. (2006), NGCA can
simultaneously deal with several families of nonlinear functions; moreover, also
within a function family we are able to use an entire range of parameters (such as
frequency for Fourier functions). This may be interpreted intuitively by saying
that NGCA automatically chooses the functional indices that are the most rele-
vant for analyzing the data at hand. Thus, NGCA provides higher flexibility with
a priori less restricting assumptions on the data. Moreover, IMAK optimizes the
informativeness criterion directly to obtain useful functions, while multi-index
PP uses the FastICA updates of the directional parameters as heuristics. Thus,
IMAK is theoretically better justified within the NGCA framework. Optimiza-
tion in IMAK is done elegantly by solving a generalized eigenvalue problem.
Numerically, we found comparable or superior performance to, e.g., FastICA
in deflation mode and multi-index PP.

Future research will adapt the theory to simultaneously estimate the dimen-
sion of the non-Gaussian subspace. Experimentally testing the new IMAK algo-
rithm in some application domains such as signal denoising (Sugiyama, et al.,
2006) is being carried out. Extending the proposed framework to non-linear
projection scenarios (Roweis and Saul, 2000; Tenenbaum, et al., 2000; Belkin
and Niyogi, 2003; Harmeling, et al., 2003) and to finding the most discriminative
directions using labels are examples for which the current theory could be taken
as a basis.
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Appendix

A From model (1) to formulation (2)

We rephrase briefly here the argument of Lemma 1 in Blanchard, et al. (2006).
We start from the model (1):

X = AS + N ,

where S and N are independent and N is Gaussian. We first assume that the
covariance matrix of the Gaussian noise component N is identity. Let E =
Range(A), and F = E⊥ its orthogonal complement. Let TE, resp. TF denote
the m × d, resp (d − m)× d orthogonal projection matrices on some orthogonal
basis of E, resp. F. Then, X1 := TEX = TEAS + TEN ∈ R

m and X2 := TFX =
TFN ∈ R

d−m , which are the coordinate vectors of X on the subspaces E and
F, respectively, are mutually independent (since TFN is independent both of
TEAS and of TEN).



74 M. Kawanabe et al.

Obviously, X2 has standard normal density in dimension (d − m), φd−m(x2).
Now, let h(x1) denote the density of X1 ∈ R

m. Then the density of X has the
form

p(x) = h(TEx)φd−m(TFx). (17)

Now, let us define the function g(u) = h(u)(φm(u))−1. Then the above density
can be rewritten

p(x) = g(TEx)φm(TEx)φd−m(TFx) = g(TEx)φd(x), (18)

i.e. can be put under the desired form (2). To deal with a more general covariance
matrix of the noise, one performs a linear change of variables as ˜X = �−1/2X,
which brings us back to the above situation; then, simple calculations for linear
change of variables in the density lead to the form (2).

B Proof of Proposition 1 (Blanchard, et al., 2006)

Put α = EX
[

Xh(X)
]

and ψ(x) = h(x)− α��−1x. Note that ∇ψ = ∇h −�−1α,
hence β(h) = −EX [∇ψ(X)]. Furthermore, it holds by change of variable that

∫

ψ(x + u)p(x)dx =
∫

ψ(x)p(x − u)dx.

Under mild regularity conditions on p(x) and h(x), differentiating the above
equation with respect to u (or in other words, integration by parts) gives

EX [∇ψ(X)] =
∫

∇ψ(x)p(x)dx = −
∫

ψ(x)∇p(x)dx = −EX
[

ψ(X)∇ log p(X)
]

,

where we have used ∇p(x) = ∇ log p(x)p(x). Equation (2) now implies
∇ log p(x) = ∇ log g(Tx)− �−1x, hence

β(h)=EX
[

ψ(X)∇ log g(TX)
]− EX

[

ψ(X)�−1X
]

=T�
EX
[

ψ(X)∇g(TX)/g(TX)
]−�−1

EX

[

Xh(X)−XX��−1
EX
[

Xh(X)
]

]

.

The last term above vanishes because EX
[

XX�] = �. The first term belongs to
I by definition. This concludes the proof. �

References

Attias, H. (1999). Independent factor analysis. Neural Computation, 11(4), 803–851.
Bach, F. R., Jordan, M. I. (2002). Kernel independent component analysis. Journal of Machine

Learning Research, 3, 1–48.
Belkin, M., Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data repre-

sentation. Neural Computation, 15(6), 1373–1396.



NGCA algorithm with radial kernel functions 75

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Oxford University Press.
Blanchard, G., Kawanabe, M., Sugiyama, M., Spokoiny, V., Müller, K.-R. (2006). In search of

non-gaussian components of a high-dimensional distribution. Journal of Machine Learning
Research, 7, 247–282.

Boscolo, R., Pan, H., Roychowdhury, V. P. (2004). Independent component analysis based on
nonparametric density estimation. IEEE Transactions on Neural Networks, 15(1), 55–65.

Chen, A., Bickel, P. J. (2006). Efficient independent component analysis. Annals of Statistics, 34(6).
Comon, P. (1994). Independent component analysis—a new concept? Signal Processing, 36,

287–314.
Eriksson, J., Kankainen, A., Koivunen, V. (2001). Novel characteristic function based criteria for

ica. In: Proceedings of Third International Workshop on Independent Component Analysis and
Blind Source Separation (pp 108–113).

Eriksson, J., Karvanen, J., Koivunen, V. (2000). Source distribution adaptive maximum likelihood
estimation of ica model. In: P. Pajunen, J. Karhunen, (Eds.), Proceedings of second international
workshop on independent component analysis and blind source separation (pp. 227–232).

Friedman, J. H., Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis.
IEEE Transactions on Computers, 23(9), 881–890.

Girolami, M., Fyfe, C. (1997). An extended exploratory projection pursuit network with linear
and nonlinear anti-hebbian lateral connections applied to the cocktail party problem. Neural
Networks, 10(9), 1607–1618.

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B. (2005). Kernel methods for
measuring independence. Journal of Machine Learning Research, 6, 2075–2129.

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.-R. (2003). Kernel-based nonlinear blind source
separation. Neural Computation, 15(5), 1089–1124.

Hastie, T., Tibshirani, R. (2003). Independent components analysis through product density esti-
mation. In: S. Becker, S. T., Obermayer, K. (Eds.), Advances in Neural Information Processing
Systems 15 (pp 649–656). Cambridge: MIT

Huber, P. J. (1985). Projection pursuit. The Annals of Statistics, 13, 435–475.
Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis.

IEEE Transactions on Neural Networks, 10(3), 626–634.
Hyvärinen, A., Karhunen, J., Oja, E. (2001). Independent Component Analysis. New York: Wiley
Learned-Miller, E. G., Fisher, J. W. (2003). ICA using spacing estimates of entropy. Journal of

Machine Learning Research, 4, 1271–1295.
Lee, T. W., Girolami, M., Sejnowski, T. J. (1999). Independent component analysis using an extended

informax algorithm for mixed subgaussian and supergaussian sources. Neural Computation,
11(2), 417–441.

Moody, J., Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural
Computation, 1, 281–294.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B. (2001). An introduction to kernel-based
learning algorithms. IEEE Neural Networks, 12(2), 181–201.

Nason, G. (1992). Design and choice of projection indices. PhD thesis, University of Bath.
Roweis, S., Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science,

290(5500), 2323–2326.
Schölkopf, B., Smola, A. (2001). Learning with Kernels. New York: MIT.
Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Annals of Statis-

tics, 9, 1135–1151.
Sugiyama, M., Kawanabe, M., Blanchard, G., Spokoiny, V., Müller, K.-R. (2006). Obtaining

the best linear unbiased estimator of noisy signals by non-Gaussian component analysis. In
Proceedings of 2006 IEEE international conference on acoustics, speech, and signal processing
(pp. 608–611).

Tenenbaum, J. B., de Silva, V., Langford, J. C. (2000). A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500), 2319–2323.

Theis, F. J., Kawanabe, M. (2006). Uniqueness of non-gaussian subspace analysis. In Proceedings of
Sixth International Workshop on Independent Component Analysis and Blind Source Separa-
tion, LNCS vol. 3889 (pp 917–924). Berlin Heidelberg New York: Springer.

Vassis, N., Motomura, Y. (2001). Efficient source adaptivity in independent compoenent analysis.
IEEE Transactions on Neural Networks, 12, 559–566.


	Abstract
	Introduction
	Non-Gaussian component analysis
	Semiparametric model of NGCA
	Key property and outline of the NGCA procedure
	Implementation issues
	The previous NGCA algorithm: multi-index projection pursuit
	Probabilistic error bounds
	New NGCA algorithm with radial kernel functions
	Radial kernel functions
	Optimization of weight vector
	Update of metric
	Numerical experiments
	Historical remarks and related works
	Conclusion
	Acknowledgments
	References

