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the  premature  termination, By the  assumption  in  Section I, 
f ( z )  should  be  the  common  factor of F1 ( z )  and F z ( z ) ,  or  we 
have D ( z )  = f ( z ) c ( z )  where c ( z )  is a  polynomial  function. 
Then we can continue  to  test all zeros of f ( z )  by  applying 
Property 3. Therefore,  witb  Property  2,  the  sufficient  and 
necessary  conditions  for  all  zeros of f ( z ) c ( z )  being  inside or 
on  the  unit circle are  that  it is always  possible to  obtain all 
the real  and  positive Ki’s, for 0 < i < n - 1. 

Q.E.D.  
Property 5 191: If no  premature  termination  occurs,  then 

D(z )  has r zeros  outside  the  unit circle and n - r zeros  inside 
the  unit circle, where r is the  number of Ki’s in (5), which  are 
negative. 

111. A SIMPLE TRANSFORMATION ON  A  DISCRETE SYSTEM 

Now  let  us  apply  a  transformation 

z - f  __I 

w + w-l 
2 

or 

D ( z )  -P D(w) = wnD (“ ~ +;-’). 
Then  a  real  root zl, with  -1 < z1 < 1 ,  maps  into  a  pair  of  com- 
plex roots  on  the  unit circle in  the W-plane and  a  pair  of  com- 
plex  roots ( z 2 ,   z z )  inside the  unit circle  will map  into  a  set  of 
four  roots (w;, w y ,  w;,  w;*) of symmetry  about  the  unit 
circle  in  the W-plane, two of them  are  inside  the  unit  circle, 
and  the  others  are  outside  the  unit circle. For  a  stable  system 
w_e perform  the  continued  fraction  expansion  in’  @kn(w) = 
D(w)/Dd(w),  since  F2(w) = 0 for D ( w )  polynomial.  Two  posi- 
tive  entries  in [Ki}  will  be  created  by  a  real root z1 in D(z) ;  
two positive  and  two  negative  entries  in [ K i ]  will  be  created 
by  a  pair of complex  roots ( 2 2 ,  z g ) .  

I v .  AN ALGORITHM TO TEST AND  AN EXAMPLE 
Step 1: Apply  the  continued  fraction  expansion  on @,(z). 

If i t  ends  prematurely,  apply  Property 3, and  continue  the  ex- 
pansion.  The  resulting K:s will  be  all  positive.  Then  all  zeros 
of the  polynomial f ( z ) ,  which  causes the  first  premature  termi- 
nation of &(z), appear  on  the  unit circle. It is  easy to  deter- 
mine  the  number of roots  on z = 1 (or -1) and  the  pairs  of 
complex  roots  on  the  unit circle by  testing f ( z ) .  Of course, 
no  premature  termination  occurs  for a stable  system  and we 
set f ( z )  = 1 .  

Step  2: Obtain E ( z )  = D ( z ) / f ( z ) ,  which  has  all  its  zeros  in- 
side  the  unit circle, and  ap@y  another  continued  fraction  ex- 
pansion on  @&(w) = E(w)/Ed  (w),  until  all  new 21 entries  can 
eventually  be  obtained,  where 1 denotes  the  degree of E@). 
If 2n1 negative  and  2(n1 + n 2 )  positive  entries  appear  after  the 
kth  premature  termination,  which  should  also  appear  k  times 
before  the  kth  premature  termination,  there  exist nl  pairs of 
complex  and n 2  real  roots  of  multiplicity (k  + 1 )  in E ( z ) .  If 
no  termination  occurs, it  implies that all roots of E ( z )  are 
distinct  inside  the  unit circle. Then  the  number 211 in { K l } ,  
which is negative,  corresponds  to  the  number lI of pairs of 
complex  roots of E ( z )  and  the  number 1 - 211 corresponds to  
the  number of real  roots  in E ( z ) .  

Example /8]: Let D ( z )  = 2z3 + 2 z 2  + z. 
Step I: Then 

All positive  entries  are  obtained in [8],  i.e., ( K O ,   K 1 ,   K 2 )  = 

(3, E, 9). No premature  termination  occurs;  therefore, all 
zeros of D ( z )  are  inside  the  unit  circle  and  set f ( z )  = 1. 

Step  2: 

@k(w> = 
w 6 + 2 w s + 5 w 4 + 4 w 3 + 5 w 2 + 2 w + l  
8w6 + 12w5 + I2w4 - 12w2 - 12w - 8 ’  

No premature  termination  occurs  and  there  are  two  negative 

-7%); therefore,  it  has  one  pair of complex  and  one  pair of 
real  roots  in D ( z ) .  

n u m b e r s i n ( K o , K 1 , K 2 , K 3 , K 4 , K s ) = ( i ~ , - - ; r , ~ . , ~ , - ~ ,  1 180 49  32 567 
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A New Algorithm to Compute  the  Discrete 
Cosine Transform 

BYEONG  GI LEE 

Abstract-A new  algorithm is introduced for the 2m-point discrete 
cosine  transform.  This  algorithm  reduces  the  number of multiplications 
to about half of those  required by the existing efficient algorithms,  and 
it makes  the  system  simpler. 

INTRODUCTION 
During the  past  decade,  the  discrete  cosine  transform  (DCT) 

[ 11 has found  applications  in  speech  and  image  processing. 
Various  fast  algorithms  have  been  introduced  for  reducing  the 
number of multiplications  involved  in  the  transform [ 21 -[ 61. 
In  this  correspondence we propose  an  additional  algorithm 
which not  only  reduces  the  number  of  multiplications  but  also 
has  a  simpler  structure. We refer  to  this  algorithm  as  the  FCT 
(fast  cosine  transform),  since  it is similar to  the  FFT (fast 
Fourier  transform).  The  number of  real  multiplications  it  re- 
quires is about half that  required  by  the  existing  efficient 
algorithms. 

ALGORITHM DERIVATION 
We denote  the DCT of  the  data  sequence  x(k), k = 0 ,  1 , .  * * , 

N -  I , b y X ( n ) , n = O , l ; . . , N -  1.  Thenwehave [11  
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k = O , l ; * - , N -  1 

and 

,l N - 1  

n = O  

because 
(2k+ 1)2 ( N / 2 )  = (2k + 1) = 0. 

' 2  N C2 

n = O , l ; . * , N -  1 (2)  Thus (1 2)  can  be  rewritten  as 

where [ ;;fi, if n = o ,  
e ( n )  = 

otherwise. 

n = O  

N/2-1 A Therefore,  we have decomposed  the  N-point  IDCT  in (5) into 
(8b)  the  sum  of  two  N/2-point IDCT's in  (1 8). By repeating  this 

= o, 1,  . . . , N/2 - 1, forms an ~ / 2 - ~ ~ i ~ ~  IDCT, We can  also  decompose  the DCT in a  similar  manner.  Alter- 
natively, the DCT  can  be  obtained  by  "transposing"  the  IDCT- 
i.e.,  reversing the  direction of the  arrows  in the flow  graph of 

n = O  process, we can  decompose  the  IDCT  further. 

Clearly, g(k ) ,  
since 

c2 N 
(2k+1)2n = (2k+l)n = C(2k+ 1)n 

CN 2 (NI2) (9)  IDCT,  since  the DCT is an  orthogonal  transform. 
We rewrite h ' ( k )  in  the  form EXAMPLE 

N/2-1 A 
With N = 8, ( 17)-( 19)  yield 

h ' ( k )  = X'(2n + 1) CZ(N/2) (2k + 1)n 
( lo)  G ( n )  = X(2n), 

A 

n = O  A A 

H ( n )  = X(2n + 1) + X(2n - l), n = 0, 1 ,   2 ,3   (20b)  
which is another  N/2-point  IDCT.  Since 

(2k+1) C(2k+1)(2n+l)  =C(2k+1)2n  (2k+1)2(n+l)(l l)  and 
2c2N 2N 2N + '2, 3 

we  have g(k)  = G ( n )  C $ 2 k +  l ) n ,   ( 2 1 4  
n= n 

2cy;+l) h ' ( k ) =  X(2n + 1) Cp;+l)an 
N/2-1 A 

n = O  

+ X(2n + 1) Cpi+1)2(n+1) .   (12)  x(k) = g ( k )  + (1/(2C,26+'))h(k), 
NI2-1 A 

(22a) 
n = O  x ( 7 - k ) = g ( k ) - ( l / ( 2 C 1 2 6 + + 1 ) ) h ( k ) ,  k = 0 , 1 , 2 , 3 .  

(' 3, Equations  (20)  and  (22) respectively form the first  and the last 
stages  of the  flow  graph  in  Fig.  1. By repeating  the  above  steps 
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Fig. 1. 

TABLE I 

7 

2817 2690 1024 1668 256 8 

1217 1154 448 708 128 

9 

14337 13826 5120 8708 1024 10 

6401 6146 2304 3844 512 

11 31745 30722 11264 19460 2048 

12 69633 67506  2‘1576 43012 4096 

on  (21), we obtain  the  FCT  flow  graph  for  an  eight-point 
IDCT  as  shown  in Fig. 1. 

CONCLUDING REMARKS 
It  follows  from  Fig. 1 that  the  flow  graphs  of  the  FCT  and 

FFT are  similar.  The  number of real  multiplications  thus  ap- 
pears to  be  (N/2)log2N  for  an  N-point  FCT  withN= 2 m ,  which 
is about half the  number  required  by  existing  efficient  algo- 
rithms.  The  number  of  additions,  however,  is  slightly  higher 
and given by  (3N/2)log2N- N + 1.  See  Table I for a compar- 
ison  with  the  algorithm  in [ 41. , A 

If Fig.  1  we  also  note  that  the  input  sequence X ( n )  is in  bit- 
reversed  order.  The  order of the  output  sequence  x(k) is gen- 
erated  in  the  following  manner:  starting  with  the  set (0 ,  l ) ,  
form a set  by  adding  the  prefix “0” t o  each  element,  and  then 
obtain  the  rest  of  the  elements  by  complementing  the  existing 
ones.  This  process  results  in  the  set (00, 01, 1 1, 1.0), and  by 
repeating  it we obtain (000, 001, 011, 010, 111,  110, 100, 
101).  Thus, we  have the  output  sequence  x(O),  x(l), x ( 3 ) ,  
x(2), ~ ( 7 1 ,  ~ ( 6 1 ,  x(4), x(5) for the case N =  8; see  Fig. 1 .  
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On the Interrelationships  Among  a  Class of Convolutions 

JAE CHON  LEE AND CHONG  KWAN UN 

Abstract-In this  paper  some  interrelationships  among a class of cir- 
cular  operations  are  investigated  based on matrix  formulation. It is 
shown  that a class  of  convolutions  representing  forward/backward  and 
convolution/correlation of two periodic  sequences  may  be  related to 
each other in terms of discrete  transforms  having the circular  convolu- 
tion  property.  The  results  obtained are useful  in  efficient  realization of 
adaptive  digital  filters using fast  transforms. 

I. INTRODUCTION 
The  need  for  computing  convolution of two  functions arises 

in  many diverse  applications.  These  include  digital  filtering, 
spectrum  analysis,  time  delay  estimation,  computation of dis- 
crete  Fourier  transform  (DFT)  using  circular  correlation, mul- 
tiplication  of  large  integers,  polynomial  transforms,  and so 
forth [ 1 1, [ 21. In  computation  of .various  convolutions, the 
fast  convolution  approach  using  efficient  computational  algo- 
rithms of discrete  transforms  has  proven to  be  useful [3]. 

Recently,  discrete  transforms  based  on  number  theoretic 
concepts  have  received  considerable  attention  as a method  for 
efficient  and  error-free  computation  of  digital  convolutions 
121. Unlike the  fast  Fourier  transform  (FFT),  the  number 
theoretic  transform  (NTT)  does  not  cause  roundoff  errors in 
arithmetic  operations.  Particularly,  the  Fermat  number  trans- 
form  that  is  one of the NTT’s requires  only  word  shifts  and 
.additions, but  not  multiplications,  nor  the  storage  of basis 
functions.  Accordingly, the  NTT  has several  desirable  prop- 
erties  in  carrying out various  convolution  operations  in  com- 
parison to the FFT. 

In  this  correspondence, we consider a class  of  convolutions 
that  include  forward  and  backward  convolutions  of  two  peri- 
odic  sequences  and  also  forward  and  backward  correlations. 
Based on matrix  formulation, we study  their  interrelation- 
ships.  Particularly, we show  that  they  may  be  related to each 
other  through a discrete  transform  such as DFT  and  NTT. 

11. INTERRELATIONSHIPS AMONG A C.LASS OF 
CONVOLUTIONS 

Here we  discuss a class  of  circular operations  based on ma- 
trix  formulation.  In  the  following  discussion it is  assumed  that 
various  arithmetic  operations  including  matrix  operations  are 
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