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Abstract

Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias,

sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the elec-

trocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner.

The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed

information on atrial activation using the standard 12-lead ECG alone. Compared to con-

ventional 12-lead ECG, more detailed ECG lead configurations may provide further informa-

tion about spatio-temporal dynamics of the body surface potential (BSP) during atrial

excitation. We apply a recently developed 3D human atrial model to simulate electrical ac-

tivity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly

developed torso model which considers the presence of the lungs, liver and spinal cord. A

boundary element method is used to compute the BSP resulting from atrial excitation. Ele-

ments of the torso mesh corresponding to the locations of the placement of the electrodes

in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The

ectopic focal activity was simulated at various origins across all the different regions of the

atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation)

were compared to those observed experimentally (obtained from the 64-lead ECG system),

showing a strong agreement between the evolution in time of the simulated and experimen-

tal data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain

the location of the stimulus from a 64-lead ECG system was developed. The algorithm pre-

sented had a success rate of 93%, meaning that it correctly identified the origin of atrial

focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG

system. This represents a significant improvement over previously developed algorithms.
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Author Summary

Ectopic activity is associated with multiple cardiac disorders and has been implicated in

the initiation of self-sustaining re-entrant excitation. Identifying the presence and origin

of ectopic activity may be vital in improving diagnosis and treatment of disorders such as

atrial fibrillation, and has been the subject of multiple studies. The electrical activity of the

heart can be non-invasively monitored through the electrocardiogram. However, the stan-

dard 12-lead electrocardiogram may not provide sufficient information to resolve the

focus of ectopic activity satisfactorily and accurately; more detailed multi-lead electrocar-

diograms may provide more information to be able to produce an algorithm to locate the

origin of ectopic activity. Using a 3D computational atria-torso model developed in our

laboratory, we simulated the electrical activity of the atria under normal and different ec-

topic conditions. The model was first validated by comparison to experimental data, and

then used to develop an algorithm to identify the location of atrial ectopic focus using a

64-lead electrocardiogram. The algorithm developed was able to identify the origin of atri-

al ectopic activity in 75/80 simulations, which is a significant improvement compared to

previously developed algorithms. Furthermore, the study suggests that multi-lead electro-

cardiograms provide significant benefits over the standard 12-lead configuration.

Introduction

Rapid atrial arrhythmias such as atrial tachycardia (AT) and atrial fibrillation (AF) can reduce

cardiac output and predispose to ventricular arrhythmias and further complications, such as

stroke and even sudden cardiac death [1–3]. Both AT and AF are associated with ectopic

activity—rapid and irregular spontaneous excitation originating from regions of the atria other

than the cardiac pacemaker, the sinoatrial node [4]. Such activity can interrupt normal sinus

rhythm and mediate the development of the self-perpetuating re-entrant excitation associated

with AT/AF [5], therefore implicating an important role for ectopic activity in the initiation

and recurrence of both arrhythmias.

The pulmonary vein (PV) sleeves in the left atrium (LA) are usually identified as a major

source of rapid ectopic activity [6–8], and catheter ablation therapy targeting the PV sleeves is

commonly used as a treatment of AF [4, 7]. However, success rates for catheter ablation thera-

py are not entirely satisfactory (about 50% in single-procedure ablation [9]). Consequently, re-

peated operations may be required, resulting in significant scar tissue in the LA. Such scarring

may induce further complications, such as contributing towards a reduction in cardiac output

as well as providing conduction barriers which may promote the development of re-entry [10].

Furthermore, ectopic activity is not associated with the PVs alone; focal beats have been ob-

served to originate from multiple regions of both the left and right atria [11, 12]. Hence, identi-

fying the presence and location of ectopic activity is important for guiding ablation therapy,

which may increase success rates and reduce the need for repeated operations. Moreover, iden-

tifying atrial ectopic activity and its origins may help in the diagnosis of early onset AF [13]

and lead to timely treatment, inhibiting the development of persistent or chronic AF before the

occurrence of permanent electrical and structural remodelling [13].

The electrocardiogram (ECG) is the most common non-invasive method of monitoring car-

diac activity. The P-wave of the ECG is associated with atrial activation; irregular ectopic atrial

activity may therefore be reflected as an alteration to the P-wave morphology (PWM). Multi-

electrode ECG systems, such a 64-lead ECG vest [14], provide spatially detailed mapping of the

body-surface potential (BSP). However, it is unclear if such further detail provides significant
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benefits over the standard 12-lead ECG in terms of resolving the location of ectopic atrial activ-

ity. In this study, we have used a biophysically detailed computational model of the human

atria and torso to investigate the correlation between PWM of 64-lead ECGs and the location

of atrial ectopic activity, in order to develop a focus-location algorithm.

Methods

3D atria-torso model and simulation of BSP and multi-lead ECG

Previously we have developed a biophysically detailed computational model of the three-di-

mensional (3D) human atria and torso [15–17]. The model accounts for atrial anatomy [18] in-

cluding segmented regions for the major anatomical structures [16] (Fig. 1Ai) and detailed

atrial electrophysiology including regional differences in electrical properties [16]. The model

reproduces sinus rhythm depolarisation and repolarisation patterns (Fig. 1Aii) and has been

used to study the mechanisms underlying AF genesis [16, 17]. Implementation of the torso

model proved useful in correlating PWMwith the origin of atrial ectopic activity in a previous

study [15]. However, detailed correlation between the two has not yet been established, and the

torso geometry used in the previous study was idealised [15]. For a more comprehensive analy-

sis of the relation between PWM and ectopic activity, a more realistic torso model must be

used. In this study, we use our 3D model of the human atria and update the torso model in

order to develop an algorithm to identify the location of focal ectopic activity in the atria

(Fig. 1). Details of atrial model development and simulation protocols can be found in Colman

et al.[16], and in S1 Text.

Two torso reconstructions are used in the present study (Fig. 2), based on segmentation of

magnetic resonance imaging (MRI) images taken from the female and male visible human

Figure 1. Models and procedure used to develop the algorithm. (A(i)) 3D Atrial model with the different regions of the atria included in this simulation:
right atrium (RA, transparent purple), right atrial appendage (RAA, beige), pectinate muscles (PM, green), cristalterminalis (CT, solid purple), sinoatrial node
(SAN, red), superior vena cava (SVC), atrio-ventricular ring (AVR, grey), right pulmonary vein (RPV, blue), Bachmann’s bundle (BB, orange), left atrium (LA,
light blue), left atrial appendage (LAA, yellow), inferior vena cava (IVC) and left pulmonary veins (LPV, blue). A(ii) is a snapshot of the activation of the atria at
30ms after initiation. B(i) Torso model with all the considerations used in the simulation, we can observe the position of the atria as well. B(ii) BSP produced in
our simulation, corresponding to the atrial snapshot in Aii. C(i) and (ii) indicate the different stimulated points across the surface of the atria, used for focal
ectopic pacing. D Positions of the electrodes placement in the torso mesh from the front (i) and from the back (ii), for the 64-lead ECG system.

doi:10.1371/journal.pcbi.1004026.g001
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dataset [19], by using the software ITK-SNAP [20]. Note that the atrial model does not account

for gender differences in either anatomy or electrophysiology [16] and investigation of gender

differences is not the aim of this study; rather, use of multiple torso geometries ensures general-

ity of the developed algorithm. The models account for the structure and different electrical

conductivities in the lungs, liver, spinal cord and blood masses [21]. The female torso model

was discretised at a spatial resolution of 0.33mm × 0.33mm × 0.33 mm[19], corresponding to

that of the female atrial model [16]. Meanwhile the male torso model was discretised at a spa-

tial resolution of 0.33mm × 0.33mm × 1 mm[19]. The 3D atrial model (Fig. 1A) [16] was then

integrated into the two torso geometries and the BSP distribution was calculated through the

use of a boundary element method (Fig. 1B) [22]. Two different positions of the atria inside the

torso were used to account for variability between patients; one is based on Ho and Sanchez-

Quintana [23] (Fig. 2 Ai, Bi), and the second one is the position of the atria obtained directly

from the segmentation of the visible human female dataset (from which the atrial anatomical

model was extracted) (Fig. 2 Aii, Bii). From the BSP, ECG signals can be derived by selecting el-

ements of the torso mesh which correspond to the location of electrodes used in ECG systems.

Ectopic focal activity was simulated by applying stimuli to various locations across all regions

of the atria (Fig. 1C). In this study, we replicated a 64-lead ECG system which measures the

BSP on the front and back of the torso (Fig. 1D) as well as the standard 12-lead ECG. All leads

in the 64-lead system are unipolar: the potential at the electrode is the positive terminal and

Wilson’s Central Terminal[24] is the negative terminal.

Characterisation of the P-wave

For each lead, the P-wave was characterised by its morphology and polarity. It was indexed as

positive if the amplitude of the positive peak was greater than double that of the negative peak

(if there was one), and vice-versa for a negative P-wave. A biphasic P-wave is defined as one in

which the second peak (positive or negative) was at least half of the amplitude of the largest

peak (negative or positive). Such a definition resulted in the best performance of our focus loca-

tion algorithm (described in the next section), and is not intended as a general definition for

other purposes.

Figure 2. Positions of the atria inside the two different torso reconstructions used in this study. A, Female torso taken from the visible human dataset
[19]. B, Male torso taken from the visible human dataset [19]. The labels (i) correspond to the position based on Ho and Sanchez-Quintana [23]. The labels (ii)
correspond to the position of the atria obtained from the segmentation. The different tissues accounted for in the model are illustrated in (i) and (ii); Green-
Lungs, Brown-Liver, Yellow-Spinal cord, red-Ventricles, Blue-Atria, Pink-Torso.

doi:10.1371/journal.pcbi.1004026.g002
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Quantification of the atrial dipole evolution

The P-wave dipole pattern was constructed based on the maximum positive potentials (positive

pole) and the minimum negative potentials (negative pole) in the body surface at every time

step [14]. As the atrial activation evolves, the amplitude and spatial distribution of the poles

across the surface of the body change dynamically. Furthermore, we constructed spatial polari-

ty maps based on the polarity (positive/negative/biphasic) of the P-wave at each

electrode location.

Simulation of atrial focal activity

To simulate ectopic focal activity the model was stimulated by a sequence of external supra-

threshold electrical pulses applied to various locations across all different regions of the atria

(Fig. 1C), representing the range of ectopic foci observed experimentally [11, 12]. Stimuli were

applied to each location at both slow (cycle length = 700ms) and fast (cycle length = 300ms)

rates to ensure that rate dependent changes in PWM are accounted for. In each case, the P-

wave resulting from the final of three stimuli was analysed.

Focus location algorithm

Simulated BSP maps and ECG P-waves varied significantly with the location of the ectopic

focus (Fig. 3). The P-wave polarity map offered the most effective method of quantifying such

differences, offering more information than the temporal evolution of the dipole peaks while

being less affected by noise than the raw P-waves. P-wave polarity maps therefore form the

basis of the development of an algorithm to determine the location of an atrial focus from

64-lead ECG measurements.

To relate polarity patterns to atrial anatomical sites, both the atria and the torso were divid-

ed into two sets of quadrants, four in the anterior part and four in the posterior part of each

Figure 3. Correlation between two focal origin and the division of quadrants. Correlation between atrial focal origin (A) and the body surface polarity (B),
corresponding to ectopic pacing at the inferior vena cava (Ai) right atrial appendage (Aii). In B, both the front (left panels) and back (right panels) of the torso
are shown. The quadrants on the torso and the atria are illustrated in B (i),(ii) and C. Qti indexes the quadrants of the torso B(i) and (ii), and the Qai indexes
quadrants of the atria C(i) and (ii).

doi:10.1371/journal.pcbi.1004026.g003
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anatomical model (Fig. 3B,C). For the torso model, Qt1 to Qt8 were used to label the quadrants

(Fig. 3Bi,ii). In the atria Qa1 to Qa8 were used (Fig. 3C) where each quadrant contains corre-

sponding anatomical regions (Table 1). Note that the position of the atria within the torso had

a significant effect on PWM and the P-wave polarity map (S1 Fig.), and that the atrial anatomi-

cal locations associated with each atrial quadrant differ for both orientations considered. As

such, patient variability in the orientation of the heart within the torso must be considered, and

can be accounted for in this table rather than the algorithm itself, which operates by relating

atrial and torso quadrants.

Schematic illustration of the algorithm is shown in Fig. 4, and details of the algorithm are

described below:

1. Construct the spatial polarity map.

2. Assign a numerical value to each electrode position based on the polarity of the P-wave at

that position; 2 for a negative P-wave, 1 for a bi-phasic P-wave and 0 for a positive P-wave.

3. Take the mean average of all the values in each torso quadrant, denoted Sp.

4. Determine the largest value of Sp across all quadrants, denoted Sp_max. If there is a single

quadrant which contains this value (Qtx, x = 1–8), then the location of the atrial focus is in

the corresponding atrial quadrant (Qax).

5. If there are multiple quadrants which contain Sp_max, then further analysis is required:

a If the value of Sp in two quadrants is equal to Sp_max, then two adjacent quadrants must

be compared. Then, the quadrant Sp_max, adjacent to the larger Sp from the second com-

parison, will be identified as the origin.

Note: for example, if both superior-right and superior-left anterior quadrants have the

Table 1. Regions of the atria included in each quadrant for the two positions inside the torso.

Quadrant Position 1 Regions included Position 2 Regions included

Qa1 Superior-anterior part of RA, right part of RAA,
superior part of the PM, superior part CT,
superior part of the SAN, anterior part of the
SVC

Superior-anterior part of RA, right part of
RAA, SAN, PM, Superior part of CT.

Qa2 Left part of RAA Left part of RAA

Qa3 Inferior-anterior part of the RA, inferior part of
the PM, inferior anterior part of the CT, inferior
part of the SAN

Inferior-anterior part of the RA, inferior
anterior part of the CT, AVR, inferior-
anterior part of IVC.

Qa4 inferior-anterior-left part of the RA, anterior part
of the AVR

Anterior part of AVR.

Qa5 RPV, superior-right part of LA, superior part of
the AS, BB, posterior part of the SVC

RSPV, superior-right part of LA, BB, SVC,
superior part of AS

Qa6 LPV, superior-left part of the LA, LAA, posterior
part of the AVR

LSPV, superior-left part of LA, LAA,
posterior part of AVR.

Qa7 inferior part of the AS, inferior-right part of the
LA, inferior-posterior part of the CT, IVC

RIPV, inferior part of AS, inferior-right part of
LA, inferior-posterior part of IVC.

Qa8 inferior-left part of the LA LIPV, inferior-left part of LA

The regions of the atria are: Right atrium (RA), right atrial appendage (RAA), pectinate muscles (PM),

cristal terminalis (CT), sinoatrial node (SAN), superior vena cava (SVC), atrio-ventricular ring (AVR), right

pulmonary vein (RPV), bundle branch (BB), left atrium (LA), left atrial appendage (LAA), inferior vena cava

(IVC) and left pulmonary veins (LPV). Position 1 is taken from [23]. Position 2 is taken from the actual

position of the atria inside its torso.

doi:10.1371/journal.pcbi.1004026.t001
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same Sp_max value, then the Sp in the inferior-left and inferior-right anterior quadrants

are compared, as long as they are different. If the inferior left has a greater Sp, then the

atrial focal is in the superior-left region.

b If there are 3 quadrants with the same Sp_max value, then the corner quadrant will be

identified as the atrial focal origin.

Note: for example, if the anterior superior-right, the anterior superior-left and the anterior

inferior-left quadrants have the same maximal value, then the anterior superior-left quad-

rant will be the origin.

c If 4 or more quadrants have the same Sp_max, the adjacent quadrants with different Sp

will be compared, and the quadrant with a larger Sp will be identified as the origin.

Note: for example, if the four anterior quadrants have the Sp_max, a subsequent maximal

Sp in the posterior quadrants will be searched. If there is one, say the superior-right poste-

rior one, then the superior-right anterior quadrant will be identified as the origin.

Results

Validation of the simulated 64-lead ECG system

Validation of the atrial activation sequence during control conditions has been discussed in

[16, 17]. In order to validate the 3D atria-torso model, we first compared the simulated BSP

pattern and 12- and 64- lead ECG P-waves for the control case to experimental data obtained

Figure 4. Schematic illustration of the algorithm to identify the quadrant of atrial focal origin based on 64-lead ECG P-wave values.

doi:10.1371/journal.pcbi.1004026.g004
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from eight healthy subjects. It was demonstrated that the simulated data of the 64-lead ECG

(Fig. 5) as well as the 12-lead ECG and BSP pattern are in fair agreement to the experimental

data. Then, we further compared the simulated P-wave polarity to the experimental data. In

both simulations and experimental data, the polarity of P-waves was mainly positive in the left-

superior part of the body, negative in the right, inferior part of the body, and biphasic or flat in

the intermediary locations (Fig. 6A, B).

Figure 5. P-waves obtained from experimental data (blue line and grey shadow) and simulated (red line) data. The experimental average is the
average data of 8 healthy people (blue line), and the experimental range corresponds to the maximum and minimum values of these signals (grey shadow).
This measurements used the same protocol as described in [14]. Both experimental and simulated P-waves were normalized for comparison.

doi:10.1371/journal.pcbi.1004026.g005
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To assess quantitatively the agreement between the polarity patterns in simulation and ex-

periment, the polarity of the simulated P-wave at every electrode was compared with each ex-

perimental dataset. Inter-patient variability was quantified by also comparing experimental

datasets to each-other. The simulation data showed a range of agreement between 87.1% and

94.5% with experimental data, comparable to the range observed within the experimental data

of 81.5% and 93.7%. Furthermore, the simulated temporal evolution of the dipole location

(Fig. 6Ci) and amplitude (Fig. 6Cii) agreed with experimental data [14]. Hence, the model was

validated for the control condition, and suitable for investigating the correlation between ec-

topic atrial activity and P-wave profiles.

Focus location algorithm results

The algorithm was developed based on results from 30 simulations with different atrial foci. It

was then tested with 50 further simulations to determine its success rate (i.e. the proportion of

Figure 6. Comparison of p-waves and dipole evolution between the simulated and experimental data. A and B Comparison of the simulated 64-lead
ECG P-waves polarity (ii) to experimental data (i). In this figure, the arrangement of the P-waves is set out to match electrode placement (see Fig. 1). We
observed the polarity pattern of the P-waves of the experimental and simulation, in the front (A) and back (B) part of the body. The red positive sign signifies
an upright P-wave, the blue negative sign represents an inverted P-wave, and the purple positive/negative sign represents a biphasic P-wave. C Spatial (i)
and amplitude (ii) temporal evolution of the dipole. The black dots and lines are the experimental data and error bar taken from [14], and the blue lines and
dots are obtained from our simulation during a stimuli applied to the superior part of the sino-atrial node region. In (i) the horizontal axis is a continuous scale
from the first vertical line electrodes (1–6) to the last line of electrodes (33–38), without taking in to account 31, 32, 63 and 64.

doi:10.1371/journal.pcbi.1004026.g006
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cases in which the algorithm correctly identified the origin of atrial focus from the P-wave po-

larity pattern). In such blind tests, the success rate was 93%. Note that pacing rate affected

PWM only to a small degree, and had no effect on the P-wave polarity map (S2 Fig.), hence en-

suring the algorithm is appropriate for both fast and slow pacing rates.

There were five cases for which the origin identified by the algorithm did not match the ac-

tual excitation site. In those cases the mismatch was a result of the definition of a biphasic P-

wave, when the PWM was highly irregular. These irregularities could impact the value of the

average for each quadrant, leading to a mismatch in the location of the ectopic focus, mainly

when the focal origin was close to the boundary between two or more quadrants.

Further refinements to the spatial resolution of the quadrants could be performed with the

aim to improve the specificity of the algorithm for locating the focal origin site, by dividing

each quadrant into sub-quadrants. Accordingly, the algorithm was updated as follows: if a

quadrant adjacent to the quadrant with Sp_max has an Sp value close to that of the maximum

quadrant (i.e. within 0.1 in this case), then the activation focus is determined to be in the sub-

quadrant that is close to the boundary between the two quadrants (i.e. within the quadrant of

maximum Sp value in close proximity to the neighbouring quadrant considered). Conversely,

if the difference in values between the two quadrants is very large (i.e. greater than 0.1) then

the focus of the activation is determined to be within the sub-quadrant that is far from the

boundary of the two quadrants. Though such a spatial refinement improved the detection ac-

curacy in terms of the spatial resolution, the success rate of detection showed a slight decrease,

down to 89%. This could be due to the limitation of the 64-lead ECG to map the BSP.

Discussion

In this study, we have developed a new algorithm for detecting the location of atrial focal activi-

ty using a 64-lead ECG system. The algorithm was developed using simulation data, which en-

abled us to correlate BSP patterns to atrial activation sequences more comprehensively than in

an experimental setting.

Computational models

The computational model implemented for this study was an update of our previous model of

the human atria and torso [15–17]. The updated model has the following advantages compared

to the previous model [15, 17]: (i) realistic torso meshes were used for male and female, rather

than an idealised one as used in the previous studies [15, 17]; (ii) a greater level of detail was

considered within the torso, including the spine and liver as well as blood masses and lungs;

(iii) various, experimentally justified orientations of the atria [23] were considered. The devel-

oped atria-torso models were validated by their ability to simulate BSP patterns, 12- and 64-

lead ECG PWM, 64-lead ECG polarity patterns and the spatio-temporal evolution of the dipole

peaks, all of which matched to experimental data from eight healthy patients. Note that experi-

mental P-waves were filtered and averaged over a time period of 1 minute—this has the effect

of smoothing the signals compared to the simulated P-waves, for which averaging would have

no smoothing effect due to the model being deterministic and subsequent P-waves being iden-

tical. Therefore, the presented models provide a useful platform for simulating atrial excitations

and their BSP patterns in variant physiological conditions.

Comparison to other models

Several human atria-torso models have been developed by other groups in previous studies

[25–29], including the one by Krueger et al. [25], in which personalised atrial geometries were

implemented for reproducing accurate patient specific P-waves. The model in that study
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considered fat and muscle tissue, which can affect the P-wave. However, due to the difficulty in

segmenting both tissue types, few models include them [25, 30]. That model also considered

soft tissues of the bowels, kidneys and spleen, which were absent in the present model. Howev-

er, the simulated PWM from the present models were similar to those from Kruger et al. [25],

suggesting that these soft tissues play only a small role in affecting the polarity of the P-waves,

as also suggested in a previous study [30–32]. Furthermore, agreement of PWM between simu-

lation and experiment were similar in both studies, despite Krueger et al. being patient-specific.

Though other atria-torso models have been developed for simulating body surface potential

maps and multi-lead ECGs, the focus of those studies were in finding the ideal number of elec-

trodes to obtain more information of the atria as compared to the standard 12-lead ECG sys-

tem [26, 27], or to create a database for detecting atrial fibrillation [33, 34]. To our knowledge,

the present study is the first attempt to establish a detailed correlation between the polarity

map of body surface potentials and origins of atrial ectopic focus.

Focus location detection algorithm

Comparison to previous algorithms. Focus-location algorithms have been developed previ-

ously based on the standard 12-lead ECG system [35, 36], including the well-established Kistler

et al. algorithm [11]. However, the 12-lead based algorithms have limited effectiveness due to

the smaller number of electrodes that provided incomplete information on atrial excitations. In

their study, Kistler et al. reported 93% focus detection accuracy. However, subsequent studies

have found a lower accuracy [35, 36]. When we applied the Kistler et al. algorithm to simula-

tion data of P-waves, an accuracy of 73% was achieved, which is within the 55–78% range ob-

served in other studies [35, 36].

In this study, we presented an algorithm for identifying atrial focal origins based on simulat-

ed 64-lead ECG system. The developed algorithm showed a higher success rate on the same

data than the Kistler et al. algorithm (93% vs 73% respectively). Our results suggest that the

extra level of detail provided by 64-lead ECG compared to the 12-lead ECG system was useful

in accurately locating atrial focal activity.

The developed algorithm has two key strengths compared to previous algorithms: (i) split-

ting the torso into two sets of quadrants means that the algorithm is not specific to an electrode

array set up – any array which covers the front and back of the torso (symmetric or asymmet-

ric) may be used, and the algorithm need not be adjusted. Similarly, relation of atrial anatomy

to torso quadrants via a correlation table intrinsically accounts for patient variability, also with-

out the need to adjust the algorithm itself; (ii) the algorithm is based on polarity patterns of the

P-waves, rather than the detailed PWM. Whereas this does not provide a full level of detail as

with PWM, such an approach has the following advantages: (a) inter-patient variations mani-

fest as alterations in PWM but have a much smaller effect on P-wave polarity; (b) similarly,

noise will not affect the P-wave polarity pattern but may have a significant effect on PWM, es-

pecially regarding bifidity; (c) we did not consider bifidity in our definition of polarity, there-

fore avoiding the limitations of algorithms which use bifidity, such as ambiguity in the

definition of the magnitude of bump necessary to be considered bifid and the effect of noise

on accentuating or reducing bifidity. Note that this was one of the primary limitations of the

Kistler et al. algorithm [11], responsible for the majority of its errors.

Another possible approach for locating atrial ectopic foci is to implement an inverse solu-

tion. However, inverse solutions are computationally intensive and have several limitations as

discussed in other studies [28, 37, 38].

Potential application to the clinic. In the current study, torso quadrants are associated

with atrial anatomical locations by Table 1. For potential use of the algorithm in the clinic, a
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patient specific atria-torso correlation table could be constructed if necessary. Low resolution

MRI image data can provide information of the orientation of the atria in the torso; typical

MRI images would be sufficient to construct such patient specific table, and allow correlation

between torso quadrants and atrial anatomical sites. As the algorithm itself is generic, it could

be applicable to patients without a need for individual adjustment.

Limitations. The torso model lacks considerations of some other tissue types or organs

(such as muscles, fat tissue, bowels, kidneys, spleen and skin) that may affect body surface po-

tentials. However, the absence of those tissues does not have a big effect on the polarity of the

P-waves [30, 31], which is the characteristic used in the present algorithm. For example, test

simulations in which the conductivity of the torso was replaced by an average tissue conductiv-

ity accounting for muscle, fat and skin in various configurations demonstrates significant

changes to P-wave amplitude but not to the polarity patterns (S3 Fig.). The developed algo-

rithm was based on simulation data, lacking consideration of the measurement noise as seen in

real data. However, the use of P-wave polarity in the detecting algorithm can minimise the in-

fluence of noise as this may affect the amplitude of P-wave signals, but have less impact on the

P-wave polarity. Whereas polarity patterns may be affected by large degrees of noise, such sig-

nals would be unsuitable for use in any clinical diagnosis.

In the algorithm, eight quadrants were defined to cover the torso. The spatial resolution of

the quadrant may require further refinement. For example, each quadrant can be split into

eight sub-quadrants. However, finer spatial resolution of the quadrants may not help to im-

prove the detection success rate as it decreases to 89% when eight sub-quadrants were used for

each quadrant. Another potential limitation of the algorithm arises from the definition of a “bi-

phasic” P-wave as it may lead to a miscalculation of the atrial activation site. Although the use

of P-wave polarity overcomes the problems arising from the “bifid” definition as implemented

in the Kistler et al. algorithm [11], the present algorithm requires a well-defined “biphasic

wave” to optimise the performance of the algorithm. This “biphasic” definition leads to a better

performance of the algorithm than the use of the Kistler’s “bifid” wave.

In the present study, we only tested the effectiveness of the algorithm for detecting atrial focal

activity. Its use for detecting the organisation centre of rotor activity has not been performed. For

that purpose, consideration of combined use of the present algorithm with vectorcardiograms

[39], phase relationships [40] and correlation analysis [41] may be necessary, warranting further

investigation. Finally, the algorithm was based on simulation data. Though it provides a theoreti-

cal basis for detecting atrial focus frommulti-lead ECGs, it requires further tests on real ECG

data from patients or animal models with known atrial foci. Nevertheless, a test of 50 simulated

atrial focus activities, different to those used to develop the algorithm, was performed, which

showed a similar success rate in both male and female torso models with varying atrial position.

Conclusion

Using a biophysically detailed computer model of the human atria-torso, we have demonstrated a

correlation between atrial focal origin and polarity pattern of the BSP. Based on such correlation,

a new algorithm has been developed to identify the atrial origin from the BSP reconstructed from

64-lead ECG. This study provides a theoretical basis for non-invasively detecting atrial focal ori-

gins, which is important for designing AF ablation protocol, and demonstrates the advantages of

multi-lead ECG systems over the standard 12-lead ECG in detecting the origin of focal activity.
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