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A NEW ANALYSIS OF BLOCK PRECONDITIONERS
FOR SADDLE POINT PROBLEMS∗

YVAN NOTAY†

Abstract. We consider symmetric saddle point matrices. We analyze block preconditioners
based on the knowledge of a good approximation for both the top left block and the Schur com-
plement resulting from its elimination. We obtain bounds on the eigenvalues of the preconditioned
matrix that depend only of the quality of these approximations, as measured by the related condition
numbers. Our analysis applies to indefinite block diagonal preconditioners, block triangular precon-
ditioners, inexact Uzawa preconditioners, block approximate factorization preconditioners, and a
further enhancement of these preconditioners based on symmetric block Gauss–Seidel-type itera-
tions. The analysis is unified and allows the comparison of these different approaches. In particular,
it reveals that block triangular and inexact Uzawa preconditioners lead to identical eigenvalue dis-
tributions. These theoretical results are illustrated on the discrete Stokes problem. It turns out that
the provided bounds allow one to localize accurately both real and nonreal eigenvalues. The relative
quality of the different types of preconditioners is also as expected from the theory.
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1. Introduction. We consider linear systems K u = b for which the system
matrix K has the following saddle point structure:

(1.1) K =

(
A BT

B −C

)
,

where A is an n×n symmetric and positive definite matrix (SPD) and where C is an
m×m nonnegative definite matrix. We also assume that m ≤ n and that B has full
rank, or that C is positive definite on the null space of BT (the case of rank deficient
B with C = 0 is treated in the appendix).

These assumptions entail that the system is nonsingular; see, e.g., [4]. We also
refer to this work for an overview of the many applications in which such linear systems
arise, as well as a general introduction to the different solution methods.

Our focus in this paper is on an important class of preconditioning techniques that
exploit the knowledge of a good preconditionerMA forA , and of a good preconditioner
MS for the (negative) Schur complement

(1.2) S = C +BA−1BT .

Since both A and S are SPD, we assume thatMA andMS are SPD as well. Techniques
for obtaining such preconditioners are often application dependent; see, again, [4]
for examples and pointers to the literature. Here we disregard “internal” details of
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these preconditioners and develop an analysis of preconditioning schemes for K that
depends only on the extremal eigenvalues

μ = λmin

(
M−1

A A
)
, μ = λmax

(
M−1

A A
)
,(1.3)

ν = λmin

(
M−1

S S
)
, ν = λmax

(
M−1

S S
)
,(1.4)

where λmin(·) (resp., λmax(·)) stands for the smallest (largest) eigenvalue. Hence our
results apply regardless of the application context as soon as estimates are available
for these four parameters; see [15] and [33] for examples of derivation of such estimates
in the contexts of Stokes and PDE-constrained optimization problems, respectively.

Our analysis applies to most “indefinite” preconditioners in 2 × 2 block form,
whose indefiniteness is tailored to compensate for the indefiniteness of the system
matrix, in the sense that the preconditioned matrix has only eigenvalues with positive
real part. This includes indefinite block diagonal preconditioners

(1.5) Md =

(
MA

−MS

)
,

block triangular preconditioners

(1.6) Mt =

(
MA BT

−MS

)
,

inexact or preconditioned Uzawa preconditioners

(1.7) Mu =

(
MA

B −MS

)
,

block approximate factorization preconditioners

(1.8) Mf =

(
MA

B −MS

) (
I M−1

A BT

I

)
,

and further enhancements of these preconditioners based on symmetric block Gauss–
Seidel-type iterations; see section 2. Note that the SIMPLE preconditioner (e.g.,
[30, 43]) is a particular case of the block approximate factorization preconditioner
as defined above; see also [14] for further related variants. These preconditioners
are sometimes seen as symmetrized variants of block triangular or inexact Uzawa
preconditioners. This framework also describes some multigrid smoothers based on
“distributive relaxation”; see [4, section 11.1] for a discussion and further references.

When MA = A and MS = S , it is known that all these preconditioners but
Md are such that the preconditioned matrix has all eigenvalues equal to 1 and min-
imal polynomial of degree at most 2 [4, 20]. On the other hand, with Md , there
are only three distinct eigenvalues when C = 0 [17]. However, using these “ideal”
preconditioners requires exact solves with A and S , which is often impractical; just
the computation of S can be prohibitive. Here we investigate the effect of using
instead approximations MA and MS . We analyze how the eigenvalue distributions
are affected by providing bounds, where “bounds,” for nonreal eigenvalues, have to
be understood as combinations of inequalities proving their clustering in a confined
region of the complex plane.

There are very many works developing eigenvalue analyses for these types of
preconditioners; see [5, 11] for block diagonal preconditioners, [39] for block triangular
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preconditioners, [7, 8, 16, 44] for inexact Uzawa preconditioners, and [2, 3, 44] for block
approximate factorization preconditioners—to mention just a few. We refer the reader
to [4] for many more references and historical remarks.

Nevertheless, as far as we know, our bounds are more accurate than previous
ones, with the exception of some inequalities in [39] for nonreal eigenvalues, which,
combined with ours, allow us to further restrict the area where the eigenvalues are
confined. Moreover, our analysis is truly unified, and we show, seemingly for the
first time, that block triangular and inexact Uzawa preconditioners lead to identical
eigenvalue distributions. We also establish a clear connection between these inexact
Uzawa and block triangular preconditioners and symmetrized preconditioners as in
(1.8), allowing us to discriminate cases where this symmetrization can be useful and
cases where it is likely not cost effective.

Some previous analyses focus on the conditions needed to have the preconditioned
matrix positive definite in a nonstandard inner product, and develop related conju-
gate gradient–like methods; see, e.g., [7, 12, 32, 44]. Here we offer a complementary
viewpoint, giving estimates that vary continuously in function of the main parameters
(1.3), (1.4), without any restriction on these parameters. Moreover, whereas we repro-
duce the condition μ ≥ 1 to have only real (and positive) eigenvalues with Uzawa [44]
or block triangular [39] preconditioners, our analysis also reveals that scaling MA to
satisfy this condition often has an adverse effect on the clustering of the eigenvalues.

Note that there are several preconditioning techniques also based on approxi-
mations MA and MS that nevertheless do not fit with our analysis; this includes
symmetric positive definite block diagonal preconditioners [2, 15, 38], which are pop-
ular because they can be combined with MINRES [29], thus avoiding the restarting
associated with GMRES [35] or GCR [13, 42]. Leaving aside restarting effects, definite
and indefinite block diagonal preconditioners are found in [17] to be essentially equiv-
alent, which we further confirm independently by showing a general relation between
the eigenvalues associated with both preconditioners.

Another approach that has connections with those investigated here is constraint
preconditioning [19]:(

MA BT

B −C

)
=

(
MA

B −C −BM−1
A BT

) (
I M−1

A BT

I

)
.

In fact, this corresponds to block approximate preconditioning (1.8) with

MS = C +BM−1
A BT .

Hence results in this paper can be applied to this preconditioner as well,1 but specific
analyses that exploit the particular form of MS are likely more powerful; see, e.g., [4,
section 10.2], [36], and the references therein. Our analysis may, however, be useful
when C+BM−1

A BT is replaced with something easier to invert (e.g., [6, 31]), the line
between these inexact constraint preconditioners and block approximate factorization
preconditioners being blurred.

The remainder of this paper is organized as follows. In section 2, we introduce
some further variants of the preconditioners defined above. In section 3, we examine
the relations that exist between the spectra associated with these different precondi-
tioners, whereas, in section 4, we analyze the localization of the eigenvalues. These
results are illustrated in section 5 on a typical example, namely the discrete Stokes

1For such MS , there hold ν ≥ μ−1 and ν ≤ μ−1.
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problem. Concluding remarks are given in section 6. Peculiarities associated with
singular K are discussed in the appendix.

2. Further variants of block preconditioners. We first introduce a variant of
the block approximate factorization preconditioners, which we call block SGS because
of its close connection with block symmetric Gauss–Seidel iterations. Let

(2.1) M̃A = MA (2MA −A)
−1

MA ;

M̃A is in fact the preconditioner for A corresponding to the combination of two sta-
tionary iterations with MA , as seen from the relation

(2.2) I − M̃−1
A A =

(
I −M−1

A A
)2

.

The block SGS preconditioner is then algebraically defined by

(2.3) Mg =

(
I

BM−1
A I

) (
M̃A

−MS

) (
I M−1

A BT

I

)
.

The motivation is twofold. On the one hand, our analysis in the next section suggests
that Mg can compare favorably with the block approximate factorization precondi-
tioner (1.8). On the other hand, solving a system Mgu = r requires only a slight
modification of the algorithm that solves a system with Mf , and the extra cost is

limited to one additional multiplication with A . Indeed, letting u = (uA , uC)
T
and

r = (rA , rC)
T
, both solves are implemented with2

1. vA = M−1
A rA ,

2. uC = M−1
S (−rC +B vA) ,

3. uA =

{
vA +M−1

A

(−BTuC

)
for Mf ,

2vA +M−1
A

(−AvA −BTuC

)
for Mg .

On the other hand, the other preconditioners can also be enhanced by using M̃A

instead of MA , and, as will be seen, it is enlightening to explicitly include in our study
the corresponding versions of block triangular and inexact Uzawa preconditioners, that
is,

(2.4) Mt2 =

(
M̃A BT

−MS

)
and Mu2 =

(
M̃A

B −MS

)
.

In view of (2.1), these preconditioners represent at the algebraic level the operator
used when either Mt or Mu is combined with an approximation of A−1 based on two
stationary inner iterations with MA . The computational cost associated with Mt2 and
Mu2 is in fact the same as that associated with Mg , except that one multiplication
by either B (case Mt2) or B

T (case Mu2) is saved.

2The equivalence between the algebraic definitions (1.8), (2.3) and this algorithm can be checked

by observing that vA , uC , and uA as defined in this algorithm satisfy (MA
B −MS

)( vA
uC

) = ( rA
rC )

and (F I ) ( I M
−1
A

BT

I
)( uA

uC
) = ( vA

uC
) , with F = I when Mf is used and, otherwise, with F =

(2 I −M−1
A A)−1 = M−1

A M̃A .



BLOCK PRECONDITIONERS FOR SADDLE POINT PROBLEMS 147

Of course, using eitherMg orMt2 , Mu2 makes sense only if M̃A is positive definite.
This holds if and only if μ < 2 , where μ = λmax

(
M−1

A A
)
has already been defined in

(1.3). This is also the necessary and sufficient condition for having ρA < 1 , where

(2.5) ρA = ρ
(
I −M−1

A A
)
= max

(
μ− 1 , 1− μ

)
is the spectral radius of the iteration matrix associated with MA .

3. Relations between the preconditioners. The following theorem high-
lights the connections that exist between the spectra associated with the different
preconditioners. The proof of statement (3) uses an approach similar to that followed
in the proof of Theorem 6 in [39], which analyzes the eigenvalues associated with block
triangular preconditioners. This approach, based on a sequence of similarity trans-
formations, is extended here to all preconditioners introduced in sections 1 and 2 and
will further be used in the proof of Theorem 4.3.3

Theorem 3.1. Let

K =

(
A BT

B −C

)
be a matrix such that A is an n × n SPD matrix and C is an m × m symmetric
nonnegative definite matrix with m ≤ n . Assume that B has rank m or that C is
positive definite on the null space of BT . Let the preconditioners Md , Mt , Mu , Mf ,
Mg , Mt2 , and Mu2 be defined as in, respectively, (1.5), (1.6), (1.7), (1.8), (2.3), and
(2.4), where MA and MS are SPD. Let ρA be defined by (2.5), and assume that ρA < 1
when one of Mf , Mg, Mt2 , or Mu2 is considered.

(1) Letting

(3.1) M+ =

(
MA

MS

)
,

the eigenvalues of M−1
d K and those of M−1

+ K satisfy

max
λ∈σ(M−1

d K)
|λ| ≤ max

λ∈σ(M−1
+ K)

|λ| ,(3.2)

min
λ∈σ(M−1

d K)
|λ| ≥ min

λ∈σ(M−1
+ K)

|λ| .(3.3)

(2) The matrices M−1
t K and M−1

u K have the same spectrum.
(3) The matrices M−1

g K , M−1
t2 K , and M−1

u2
K have the same spectrum.

Proof. The matrix M−1
d K has the same eigenvalues as K̂ = M

1/2
+ M−1

d KM
−1/2
+ .

The largest of these eigenvalues in modulus is bounded above by the matrix norm
‖K̂‖2 , which is also equal to the largest singular value of K̂ [40, Theorem 5.3], and thus

is further equal to the square root of the largest eigenvalue of K̂T K̂ [40, Theorem 5.4].

Let K̃ = M
−1/2
+ KM

−1/2
+ and

J =

(
I

−I

)
.

3In a preliminary draft of this paper, this approach was also used to prove statement (2); the
much simpler argument given in the proof of Theorem 3.1 has been suggested independently by
Artem Napov and two anonymous referees.
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Because K̂ = JK̃ , one has K̂T K̂ = K̃TJTJK̃ = K̃T K̃ = K̃2 , and the square root of
the largest eigenvalue of K̂T K̂ is also the largest eigenvalue in modulus of K̃ . This
proves (3.2) since M−1

+ K has the same eigenvalues as K̃ . The inequality (3.3) can
be proved by applying the same reasoning to K−1Md , whose largest eigenvalue in
modulus is the inverse of the smallest eigenvalue in modulus of M−1

d K : K−1Md has

the same eigenvalues as K̂−1 , whose norm is bounded above by the square root of
the largest eigenvalue in modulus of K̂−1K̂−T = K̃−2 , i.e., the inverse of the smallest
eigenvalue in modulus of M−1

+ K .
To prove statement (2), observe that M−1

u K has the same spectrum as KM−1
u ,

which itself has the same spectrum as its transpose (KM−1
u )T = M−T

u K = M−1
t K .

A similar argument shows that M−1
t2 K and M−1

u2
K also have the same spectrum.

However, more involved developments are needed to prove that this common spec-
trum further coincides with the spectrum of M−1

g K . These developments are also
needed to prove Theorem 4.3 below. For this reason, we formulate them for all the
preconditioners considered in this work, although only M−1

g K , M−1
t2 K, and M−1

u2
K

are addressed by the remainder of this proof.
These developments require the assumption that there is no eigenvalue of M−1

A A
that is exactly equal to 1. This is, however, no loss of generality because if there is
such an eigenvalue, we can make the proof for a slightly perturbed matrix

(3.4) Kε =

(
(1− ε)A BT

B −C

)
with 0 < ε < 1 . Then, since the eigenvalues continuously depend on ε , the needed
results for the original matrix are obtained by considering the limit for ε → 0 .

Consider now the matrix

M =

(
In

B YA Im

) (
M̂A

−MS

) (
In ZAB

T

Im

)
.

Setting

(3.5) YA =

⎧⎪⎨⎪⎩
0 for Md , Mt , Mt2 ,

M−1
A for Mu , Mf ,Mg ,

M̃−1
A for Mu2 ,

ZA =

⎧⎪⎨⎪⎩
0 for Md , Mu , Mu2 ,

M−1
A for Mt , Mf ,Mg ,

M̃−1
A for Mt2 ,

and

(3.6) M̂A =

{
MA for Md , Mt , Mu , Mf ,

M̃A for Mg ,Mt2 , Mu2

(where M̃A is defined in (2.1)), one sees that M can represent each of the precondi-
tioners considered in this work.

Now let X and Λ be such that XTA1/2M−1
A A1/2X = Λ , with Λ diagonal and

XTX = I . Observe that

ΛY = XTA1/2YAA
1/2X ,

ΛZ = XTA1/2ZAA
1/2X ,

Λ̂ = XTA1/2M̂−1
A A1/2X
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are also diagonal and related to Λ via (3.5), (3.6). In particular, we have

Γ = ΛY + ΛZ − ΛY ΛZ =

⎧⎪⎨⎪⎩
0 for Md ,

Λ for Mt , Mu ,

2Λ− Λ2 for Mf ,Mg , Mt2 , Mu2 ,

(3.7)

Λ̂ =

{
Λ for Md , Mt , Mu , Mf ,

2Λ− Λ2 for Mg ,Mt2 , Mu2 .
(3.8)

We then consider the preconditioned matrix M−1K . It has the same eigenvalues
as (

M̂−1
A

−M−1
S

) (
In

−B YA Im

) (
A BT

B −C

) (
In −ZABT

Im

)
=

(
M̂−1

A

M−1
S

)(
A (I −AZA)B

T

−B (I − YA A) C +B (YA + ZA − YA AZA)B
T

)
.(3.9)

The last matrix in (3.9) is similar to(
XTA1/2

M
1/2
S

) (
M̂−1

A

M−1
S

) (
A1/2X

M
1/2
S

) (
XTA−1/2

M
−1/2
S

)
(

A (I −AZA)B
T

−B (I − YA A) C +B (YA + ZA − YA AZA)B
T

) (
A−1/2X

M
−1/2
S

)
=

(
Λ̂

I

) (
I (I − ΛZ)G

T

−G (I − ΛY ) C̃ +G (ΛY + ΛZ − ΛY ΛZ)G
T

)
,

where we have set

(3.10) C̃ = M
−1/2
S CM

−1/2
S and G = M

−1/2
S BA−1/2X .

Now let Δ+ , Δ− be nonnegative diagonal matrices such that, for all 1 ≤ i ≤ n ,(
Δ2

+

)
ii
= max ((I − Γ)ii , 0) ,

(
Δ2

−
)
ii
= max ((Γ− I)ii , 0) ,

where Γ is defined in (3.7). Note that this implies

Δ2
+ −Δ2

− = I − Γ = (I − ΛY ) (I − ΛZ) .

On the other hand, our assumption that M−1
A A has no eigenvalue equal to 1 implies

that I−ΛY and I−ΛZ are nonsingular. Further, Λ̂−1/2 exists because all entries in Λ̂
are positive; see (3.8), remembering that Λ is the diagonal matrix with the eigenvalues
of M−1

A A on its diagonal, which are less than 2 by assumption if Mf , Mg , Mt2 , or
Mu2 is considered. Hence the preconditioned matrix M−1K is also similar to(
(Δ+ +Δ−) Λ̂−1/2 (I − ΛZ)

−1

I

) (
Λ̂

I

)
(

I (I − ΛZ)G
T

−G (I − ΛY ) C̃ +GΓGT

) (
(I − ΛY )

−1
Λ̂1/2 (Δ+ −Δ−)

I

)
=

(
Λ̂ Λ̂1/2 (Δ+ +Δ−)GT

−G (Δ+ −Δ−) Λ̂1/2 C̃ +GΓGT

)
.(3.11)
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Interestingly, the matrix (3.11) resulting from the similarity transformations is the

same for all preconditioners that share the same Λ̂ and Γ (hence also the same Δ+

and Δ−). In view of (3.7), (3.8), this concludes the proof of statement (3).
Item (1) proves that the eigenvalue distribution associated with the positive def-

inite block diagonal preconditioner M+ cannot be qualitatively better than that as-
sociated with Md . A tighter connection between both preconditioners is highlighted
in [17], under the restrictive assumption that M−1

A A is a multiple of the identity. See
also section 5 for a further comparison of both preconditioners.

On the other hand, block triangular and inexact Uzawa preconditioners are both
well-established techniques that until now have been analyzed independently of each
other. In item (2), we prove that they lead to identical eigenvalue distributions; hence
eigenvalue bounds proved for the former are valid for the latter and vice versa.

Finally, the relation between the block SGS preconditioner and Mt2 , Mu2 seems
less important. However, recall that Mt2 and Mu2 are just Mt and Mu in which one
uses a closer approximation for A , based on two stationary iterations with MA . Item
(3) of Theorem 3.1 shows that using the symmetrized preconditioner Mg produces
exactly the same effect, at least where the eigenvalue distribution is concerned. When
it could be more interesting to use Mg instead of Mt or Mu is discussed at the end of
section 4 and in section 5.

4. Eigenvalue analysis. The matrix (3.11) obtained at the end of the proof of
Theorem 3.1 suggests that, at least in some cases (Δ− = 0), the eigenvalue analysis
can be reduced to that of a matrix of the form

(4.1) K̂ =

(
Â B̂T

−B̂ Ĉ

)
,

where Â is SPD and Ĉ is symmetric nonnegative definite. In fact, we shall see that
this is true in all cases.

Such matrices are nonnegative definite in R
n . Hence (see [5]), their eigenvalues

have positive real part. Thus, if the preconditioned matrix is similar to a matrix of
the form (4.1), one has gotten rid of the indefiniteness of the original matrix (1.1).
Note, however, that this is at the expense of the loss of the symmetry, meaning that
a portion of the eigenvalues will be in general complex.

Of course, one does not need the preconditioners introduced in sections 1 and 2
to obtain a nonsymmetric but definite linear system. As noted in, e.g., [5], it suffices
to rewrite the original system K u = b multiplying both sides to the left by

(4.2) J =

(
I

−I

)
,

which can also be seen as a very basic form of the block diagonal preconditioner
(1.5), with MA = I and MS = I . However, doing so will in general not change the
magnitude of the eigenvalues by much; see item (1) of Theorem 3.1. Hence, small
eigenvalues remain, entailing slow convergence of the iterative methods.

The role of the preconditioners investigated here then appears more clearly: com-
bine the basic transformation (4.2) that makes the preconditioned matrix similar to a
definite one, with further effects that improve the clustering of the eigenvalues while
moving them away from the origin of the complex plane.

Now, to assess these effects, we need to be able to localize accurately the eigen-
values of matrices of the form (4.1). Our main tool in this respect is Proposition 2.12
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in [5], whose main results are recalled in Theorem 4.1 below; see (4.4), (4.5), and
the upper bound in (4.3). However, on their own, these inequalities (and those in
[5] not reproduced here) do not provide an accurate picture of the situation. In
particular, they do not allow us to show that preconditioning can be successful in
moving all eigenvalues away from the origin: the lower bound for real eigenvalues is
min(λmin(Â ) , λmin(Ĉ )) , which vanishes when Ĉ = 0 . But the inverses of matrices
of the form (4.1) have similar saddle point structure. Hence further inequalities can
be obtained by applying the same Proposition 2.12 of [5] to the inverse of the ma-
trix at hand. This approach is exploited in Theorem 4.1, and leads to (4.6) and the
lower bound in (4.3). Thus, Theorem 4.1 combines these “new” inequalities with the
“original” ones, and it turns out that nothing more is needed to obtain a satisfactory
localization of all the eigenvalues.

Theorem 4.1. Let K̂ be a matrix of the form (4.1), where Â is an n × n SPD

matrix and Ĉ is an m × m symmetric nonnegative definite matrix with m ≤ n .
Assume that B̂ has rank m or that Ĉ is positive definite on the null space of B̂T . Let

S
̂C = Ĉ + B̂ Â−1B̂T

and, if Ĉ is positive definite,

S
̂A = Â+ B̂T Ĉ−1B̂ .

The real eigenvalues λ of K̂ satisfy

(4.3) min
(
λmin

(
Â
)
, λmin

(
S

̂C

)) ≤ λ ≤ max
(
λmax

(
Â
)
, λmax

(
Ĉ
))

,

and the eigenvalues λ with nonzero imaginary part are such that

(4.4) 1
2

(
λmin

(
Â
)
+ λmin

(
Ĉ
))

≤ �e(λ) ≤ 1
2

(
λmax

(
Â
)
+ λmax

(
Ĉ
))

,

(4.5) |�m(λ)| ≤
(
λmax

(
B̂ B̂T

))1/2
,

and

(4.6) |λ− ζ| ≤ ζ ,

where

(4.7) ζ =

⎧⎪⎨⎪⎩
λmax(SÂ)λmax(SĈ)
λmax(SÂ)+λmax(SĈ)

if Ĉ is positive definite,

λmax

(
S

̂C

)
otherwise .

Proof. Inequalities (4.4) and (4.5) and the upper bound in (4.3) just translate
results from [5, Proposition 2.12] in our notation. To prove the remaining inequalities,

we first consider the case where Ĉ is positive definite. Let K̃ = JK̂ , where J is defined
by (4.2). Because K̃ is symmetric, its inverse is symmetric. Hence, since principal

submatrices in K̃−1 are equal to the inverse of the Schur complements in K̃ [1, p. 93],
one has

K̃−1 =

(
S−1

̂A
WT

W −S−1
̂C

)
,
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where W need not be known explicitly to conduct the proof. Indeed, what matters is
that

K̂−1 = K̃−1J =

(
S−1

̂A
−WT

W S−1
̂C

)

has a structure that allows us to apply again Proposition 2.12 in [5]. For the real
eigenvalues, this yields straightforwardly the lower bound in (4.3), using λmin

(
S

̂A

) ≥
λmin(Â) . For the eigenvalues λ with nonzero imaginary part, this proves

�e
(
λ−1

) ≥ 1

2

(
λmin

(
S−1

̂A

)
+ λmin

(
S−1

̂C

))
.

The inequality (4.6) then follows because, for any complex number λ and real positive

number ζ , |λ− ζ| ≤ ζ holds if and only if �e
(
λ−1

) ≥ (2 ζ)
−1

.
If C is only semidefinite, we use a continuity argument: we apply the results just

proved to (
Â B̂T

−B̂ Ĉ + ε I

)

with ε > 0 . We then let ε → 0 . Using λmax

(
S

̂C

)
as upper bound on ζ , all quanti-

ties involved in the inequalities vary continuously with ε , as well as the eigenvalues
themselves, proving the required results.

We are now ready to state Theorem 4.3, which contains our main results in this
section. For some cases (Mt and Mu when μ > 1), we need to introduce additional
parameters η and ν̃ that depend on the following function:

(4.8) f (μ , ν) = 1
2 (ν + 1)

⎛⎝1 +

(
1− 4 ν

μ (ν + 1)
2

)1/2
⎞⎠ (μ ≥ 1 , ν > 0) .

It is a good idea to know how this function behaves before reading Theorem 4.3. The
following lemma is helpful in this respect.

Lemma 4.2. Let f (μ , ν) be defined by (4.8). For any μ ≥ 1 and ν > 0 , there
holds

(4.9)

max(1 , ν) ≤ f (μ , ν) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

( (
1 + μ−1/2

)
max(1 , ν) +

(
1− μ−1/2

)
min(1 , ν)

+
(
1− μ−1

)1/2
(ν + 1)

)
,

ν + 1− ν
μ (ν+1) .

Proof. For μ ≥ 1 , one has

|1− ν| = (1 + ν)
(
1− 4 ν

(ν+1)2

)1/2
≤ (1 + ν)

(
1− 4 ν

μ(ν+1)2

)1/2
= 2 f (μ , ν)− (ν + 1) ≤ (1 + ν)

(
1− 2 ν

μ(ν+1)2

)
,
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Table 1

Definitions of ξ , ξ , χ , χ , δ , and ζ for the different preconditioners.

ξ ξ χ χ

Md min (μ , ν) max (μ , ν) 1
2
μ 1

2
(μ+ ν)[

µ
2

if C = 0
]

Mu , Mt

(μ ≤ 1)

}
min (μ , ν) max (1 , ν) 1

2
(μ+ ν μ) 1

2
(1 + ν)

Mu , Mt

(μ > 1)

}
min

(
μ , η−1 ν

)
max (1 , ν̃) 1

2

(
μ+ ν min(η−1 , μ)

)
1
2
(1 + ν̃)

Mf min (μ , ν) max (μ , ν) 1
2

(
μ+ ν(1− ρ2A)

)
1
2
(μ+ ν)

Mg

Mu2 , Mt2

}
min

(
1− ρ2A , ν

)
max (1 , ν) 1

2
(1 + ν)

(
1− ρ2A

)
1
2
(1 + ν)

δ2 ζ

Md ν μ ν

Mu , Mt

(μ ≤ 1)

} {
ν μ(1− μ) if μ > 1

2
,

1
4
ν otherwise

ν

1 + ν

Mu , Mt

(μ < 1 < μ)

} {
ν μ(1− μ) if μ > 1

2
,

1
4
ν otherwise

ν̃

1 + ν̃

Mu , Mt

(1 ≤ μ)

}
0 (not applicable)

Mf

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν max

(
4
27

, μ (1− μ)2
)

if μ < 1
3
< μ,

ν max
(
μ (1− μ)2 ,

μ (1− μ)2
)

otherwise

ν

1 + ν (2− μ)

Mg

Mu2 , Mt2

} {
ν ρ2A(1 − ρ2A) if ρ2A < 1

2
,

1
4
ν otherwise

ν

1 + ν

from which the lower bound and the bottom upper bound (4.9) are straightforwardly
deduced. On the other hand, the top upper bound follows from

(1 + ν)
(
1− 4 ν

μ(ν+1)2

)1/2
= μ−1/2

(
(ν − 1)2 + (μ− 1) (ν + 1)2

)1/2
≤ μ−1/2

(
|ν − 1|+

√
μ− 1 (ν + 1)

)
.

Theorem 4.3. Let the assumptions of Theorem 3.1 hold, and let μ , μ , ν , and
ν be defined by (1.3), (1.4). For each of the preconditioners, let ξ , ξ , χ , χ , δ , and
ζ be defined as in Table 1, where, when μ > 1 ,

η = f (μ , ν) ,(4.10)

ν̃ = μ f (μ , ν) ,(4.11)

with f (μ , ν) being defined in (4.8).
Letting ∗ stand for d , t , u , f , g , t2 , or u2 , the real eigenvalues λ of M−1∗ K

satisfy

(4.12) ξ ≤ λ ≤ ξ ,
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whereas eigenvalues with nonzero imaginary part are possible only if δ > 0 , in which
case they satisfy

(4.13) χ ≤ �e(λ) ≤ χ ,

(4.14) |�m(λ)| ≤ δ ,

and

(4.15) |λ− ζ| ≤ ζ .

Proof. The proof is in the continuation of the proof of Theorem 3.1. The main
steps are as follows. We first rewrite the matrix (3.11) obtained at the end of the
earlier proof in a form that has the structure seen in (4.1), i.e., that allows us to apply
Theorem 4.1. The inequalities (4.12), (4.13), (4.14), (4.15) are then deduced from,
respectively, (4.3), (4.4), (4.5), (4.6). The difficulty is in the analysis of the extremal

eigenvalues of the blocks Â , Ĉ and related Schur complements S
̂A , S

̂C , which needs
to be done carefully to obtain bounds as accurate as possible using no other parameter
than μ , μ , ν , ν .

Thus all notation and definitions introduced in the proof of Theorem 3.1 are
valid here, and we also use the same continuity argument on the matrix (3.4) to
handle the cases where one would have an eigenvalue of M−1

A A exactly equal to 1.
Observe in this respect that not only the eigenvalues, but also the bounds to be
proved, vary continuously with ε , at least when ε is small enough to ensure that if
μ = λmax

(
M−1

A A
)
> 1 , then (1 − ε)λ1 > 1, where λ1 is the smallest eigenvalue of

M−1
A A that is strictly larger than 1.
Observing that, for λ ∈ (μ , μ) , one has 1− ρ2A ≤ 2λ− λ2 ≤ 1 , we further define

μ̃min = min
i

Γii =

⎧⎪⎨⎪⎩
0 for Md ,

μ for Mt , Mu ,

1− ρ2A for Mf ,Mg , Mt2 , Mu2 ,

(4.16)

μ̃max = max
i

Γii ≤

⎧⎪⎨⎪⎩
0 for Md ,

μ for Mt , Mu ,

1 for Mf ,Mg , Mt2 , Mu2 ,

(4.17)

whereas we observe that (3.7), (3.8) imply

(4.18) Γ = Λ̂ for Mt , Mu Mg , Mt2 , Mu2 .

We also note for later use that (3.10) implies GGT = M
−1/2
S BA−1BTM

−1/2
S and

hence

(4.19) λmin

(
C̃ +GGT

)
= ν , λmax

(
C̃ +GGT

)
= ν .

In the proof of Theorem 3.1, we have seen that, for each of the considered precon-
ditioners,M−1

∗ K has the same eigenvalue as the matrix (3.11). To proceed we assume,
without loss of generality, that the rows for which (Δ+)ii is positive are ordered first;
i.e.,

Δ+ =

(
Δ1

0

)
, Δ− =

(
0

Δ2

)
.
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We may further partition Λ̂ , Γ , and G accordingly:

Λ̂ =

(
Λ̂1

Λ̂2

)
, Γ =

(
Γ1

Γ2

)
, G =

(
G1 G2

)
, GT =

(
GT

1

GT
2

)
.

One then has Δ2
1 = I − Γ1 and Δ2

2 = Γ2 − I . This allows one to rewrite the matrix
(3.11) as ⎛⎜⎝ Λ̂1 Λ̂

1/2
1 Δ1G

T
1

Λ̂2 Λ̂
1/2
2 Δ2G

T
2

−G1Δ1Λ̂
1/2
1 G2Δ2Λ̂

1/2
2 C̃ +G1 Γ1 G

T
1 +G2 Γ2 G

T
2

⎞⎟⎠ .

Hence we may apply Theorem 4.1 with

Â = Λ̂1 , Ĉ =

(
Λ̂2 Λ̂

1/2
2 Δ2G

T
2

G2Δ2Λ̂
1/2
2 C̃ +G1 Γ1 G

T
1 +G2 Γ2 G

T
2

)
, B̂ =

(
0

G1Δ1Λ̂
1/2
1

)
.

Of course, before applying Theorem 4.1, we need to check that its assumptions are
satisfied. For Md (i.e., Γ = 0 , entailing Γ1 = 0 , Δ1 = I , and that Γ2 , Δ2 , G2 are
trivial empty matrices), this clearly follows from the assumptions on B and C , which

(see (3.10)) imply that either B̂T
(
= Λ̂

1/2
1 GT

1

)
has full rank or Ĉ

(
= C̃

)
is positive

definite on its null space. Regarding all other preconditioners, we prove below (see
either (4.25) (case μ̃max ≤ 1) or (4.29) (case μ̃max > 1)) a positive lower bound on

the eigenvalues of Ĉ ; hence it is positive definite, and we need not discuss further the
rank of B̂ .

Now Theorem 4.1 is actually needed only if μ̃min < 1 . Indeed, when μ̃min ≥ 1 , Δ1

and therefore Λ̂1 and G1 are trivial empty matrices, and the preconditioned matrix
is in fact similar to an SPD matrix. In view of (4.16), this happens only for Mt and
Mu and when μ ≥ 1 , proving that the eigenvalues are real as claimed in this case.
To be complete, this also happens for other preconditioners except Md when ρA = 0
(i.e., MA = A), entailing δ = 0 . In these cases, we have only to prove (4.12). This is

done below without assuming anything specific on Λ̂1 and G1 , i.e., including the case
where these matrices are trivial as well.

If μ̃min < 1 , we have, recalling (4.18) and (4.19),

λmax

(
B̂ B̂T

)
= λmax

(
G1 Λ̂1Δ

2
1 G

T
1

)
≤ λmax

(
GGT

)
max

i

((
Λ̂1

)
ii
(1− (Γ1)ii)

)

≤ ν

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ if M∗ = Md ,

max
λ∈(μ , μ)

λ(1 − λ)2 if M∗ = Mf ,

max
λ∈(μ̃min , 1)

(λ− λ2) otherwise .

(4.20)

The function g(λ) = λ(1 − λ)2 is increasing for λ < 1/3 , decreasing for 1/3 < λ < 1,
and increasing for λ > 1 . Hence, if μ < 1/3 < μ , the maximum in the interval (μ , μ)
is max (g(1/3) , g(μ)) ; otherwise, the maximum is always at one of the boundaries and
thus equal to max (g(μ) , g(μ)) . On the other hand, the function h(λ) = λ−λ2 has a
unique maximum at λ = 1/2 . Hence its maximum over the interval (μ̃min , 1) is equal
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to h(1/2) = 1/4 if 1/2 belongs to this interval, and otherwise (i.e., when μ̃min > 1/2) is
always equal to h (μ̃min) . Using (4.20) and these considerations together with (4.16),
the application of Theorem 4.1 then yields (4.14).

Hence we are left with the proof of (4.12), (4.13), (4.15), which requires us to

bound the eigenvalues of Â , Ĉ and related Schur complements.

For λmax(Â) , we observe that if Λ̂ = Γ , then all diagonal entries in Λ̂1 are less
than or equal to 1, since they correspond to rows for which Γii does not exceed 1.
Hence, with (4.18),

(4.21) λmax

(
Â
)
≤
{
max

i
Λ̂ii = μ if M∗ = Md or M∗ = Mf ,

1 otherwise ,

whereas, straightforwardly,

(4.22) λmin

(
Â
)
≥ min

i
Λ̂ii =

{
μ for Md , Mt , Mu , Mf ,

1− ρ2A for Mg ,Mt2 , Mu2 .

To analyze the Schur complement S
̂A , one first has to obtain it explicitly. One

way is to consider the Schur complement in (3.11),

Λ̂1/2

(
I + (Δ+ +Δ−)GT

(
C̃ +GΓGT

)−1

G (Δ+ −Δ−)
)
Λ̂1/2 = Λ̂1/2 H Λ̂1/2 ,

where the right-hand side defines the matrix H . Its inverse may be obtained by the
Sherman–Morrisson–Woodbury formula:

H−1 = I − (Δ+ +Δ−)GT((
C̃ +GΓGT

)
+ G (Δ+ −Δ−) (Δ+ +Δ−)GT

)−1

G (Δ+ −Δ−)

= I − (Δ+ +Δ−)GT
(
C̃ +GGT

)−1

G (Δ+ −Δ−)

=

(
I

I

)
−
(
Δ1G

T
1

Δ2G
T
2

)(
C̃ +GGT

)−1 (
G1Δ1 −G2Δ2

)
.

The top left block of Λ̂−1/2H Λ̂−1/2 is the inverse of S
̂A ; hence,

S−1
̂A

= Λ̂−1
1 − Λ̂

−1/2
1 Δ1G

T
1

(
C̃ +GGT

)−1

G1Δ1Λ̂
−1/2
1 .

On the other hand, GT
1 (C̃ +GGT )−1G1 and G1 G

T
1 (C̃ +GGT )−1 have the same set

of nonzero eigenvalues [27, Lemma A.1], and they are bounded by

max
v

vT G1 G
T
1 v

vT
(
C̃ +GGT

)
v

≤ max
v

vT G1 G
T
1 v

vT
(
G1 GT

1 +G2 GT
2

)
v

≤ 1 .

One then finds

S−1
̂A

≥ Λ̂−1
1

(
I −Δ2

1

)
= Λ̂−1

1 Γ1
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(where, here and in the following, inequalities between matrices are to be understood
in the nonnegative definite sense: Q ≥ R if and only if Q−R is nonnegative definite).

Thus, S
̂A ≤ Λ̂1Γ

−1
1 , and hence (recalling that ρA < 1 ⇐⇒ μ < 2)

(4.23) λmax

(
S

̂A

) ≤ {(2− μ)
−1

if M∗ = Mf ,

1 if Λ̂ = Γ .

We now consider Ĉ and S
̂C . We first consider the case where G2 is trivial, which

happens if and only if μ̃max ≤ 1 . One then obtains

(4.24) λmax

(
Ĉ
)
= λmax

(
C̃ +GΓGT

)
≤ λmax

(
C̃ +GGT

)
= ν

and (μ̃max ≤ 1 implying μ̃min ≤ 1)

(4.25) λmin

(
Ĉ
)
= λmin

(
C̃ +GΓGT

)
≥ μ̃min λmin

(
C̃ +GGT

)
= μ̃min ν .

Since

S
̂C =

(
Λ̂2 Λ̂

1/2
2 Δ2G

T
2

G2Δ2Λ̂
1/2
2 C̃ +G1 G

T
1 +G2 Γ2 G

T
2

)
,

one straightforwardly obtains, when G2 is trivial,

(4.26) λmax

(
S

̂C

)
= λmax

(
C̃ +GGT

)
= ν

and

(4.27) λmin

(
S

̂C

)
= λmin

(
C̃ +GGT

)
= ν .

Note that μ̃max > 1 is not possible for Md , Mf , Mg , Mt2 , Mu2 . Hence the
above estimates are sufficient for these preconditioners, as well as for Mt and Mu

when μ ≤ 1 . One may indeed check that, for each of these cases, (4.12), (4.13), and
(4.15) are proved by combining Theorem 4.1 with the bounds in (4.21), (4.22), (4.23),
(4.24), (4.25), (4.26), and (4.27). Regarding (4.23), we use ζ ≤ λmax(S ̂C) (i.e., the

bound for Ĉ semidefinite) in the case of Md , where we have no valid upper bound on

λmax

(
S

̂A

)
. On the other hand, as noted above, with Md , one has Ĉ = C̃ (because

Γ = 0 , entailing Γ1 = 0 , Δ1 = I , and that Γ2 , Δ2 , G2 are trivial empty matrices)

and therefore Ĉ = 0 when C = 0 , hence the improved bound for χ in this case, which
is obtained by using λmax(Ĉ) = 0 instead of (4.24).

Now it remains to prove (4.12), (4.13), and (4.15) for Mt and Mu in the case

μ > 1 . Observe that we then have Λ̂ = Γ ; hence we may restrict the analysis to this
situation. We first note that the matrix(

Γ2 Γ
1/2
2 Δ2

Δ2Γ
1/2
2 Γ2

)
(where each block is square with the same number of columns as G2) can be permuted
to a block diagonal form with 2× 2 blocks:(

γ δ γ1/2

δ γ1/2 γ

)
,
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where γ = (Γ2)ii , δ = (Δ2)ii , and thus γ = 1 + δ2 . It turns out that(
γ δ γ1/2

δ γ1/2 γ

)
− τ

(
ν

1

)
is nonnegative definite for τ equal to the smallest root of

(4.28) ν x2 − (ν + 1) γ x+ γ = 0 ,

which is nothing but (f (γ , ν))
−1

. Setting ν = ν and recalling the definition (4.10)
of η , the fact that 1 ≤ γ ≤ μ implies f (γ , ν) ≤ f (μ , ν) = η . Hence,(

Γ2 Γ
1/2
2 Δ2

Δ2Γ
1/2
2 I +Δ2

2

)
≥ η−1

(
ν I

I

)
.

Then we find (taking into account that η ≥ 1 ; see (4.9))

Ĉ =

(
0

C̃ +G1 Γ1 G
T
1

)
+

(
I

G2

) (
Γ2 Γ

1/2
2 Δ2

Δ2Γ
1/2
2 Γ2

) (
I

GT
2

)

≥
(
0

C̃ +G1 Γ1 G
T
1

)
+ η−1

(
ν I

G2 G
T
2

)
≥ min

(
η−1 , μ

)(ν I
C̃ +GGT

)
≥ min

(
η−1 , μ

)
ν I ;

that is,

(4.29) λmin

(
Ĉ
)
≥ min

(
η−1 , μ

)
ν .

Similarly, one has

S
̂C =

(
0

C̃ +G1 G
T
1

)
+

(
I

G2

) (
Γ2 Γ

1/2
2 Δ2

Δ2Γ
1/2
2 Γ2

) (
I

GT
2

)

≥
(
0

C̃ +G1 G
T
1

)
+ η−1

(
ν I

G2 G
T
2

)
≥ η−1

(
ν I

C̃ +GGT

)
≥ η−1 ν I ;

that is,

(4.30) λmin

(
S

̂C

) ≥ η−1 ν .

The analysis of the largest eigenvalue of S
̂C is based on the same ideas:

τ

(
ν

1

)
−
(

γ δ γ1/2

δ γ1/2 γ

)
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is nonnegative definite for τ equal to the largest root of (4.28), which is γ
ν f (γ , ν) .

Setting ν = ν and recalling the definition (4.11) of ν̃ , the fact that 1 ≤ γ ≤ μ implies
γ
ν f (γ , ν) ≤ μ

ν f (μ , ν) = ν̃
ν . Hence,(
Γ2 Γ

1/2
2 Δ2

Δ2Γ
1/2
2 I +Δ2

2

)
≤ ν̃ ν−1

(
νI

I

)
.

Then we find (taking into account that ν̃ ≥ ν ; see (4.9))

S
̂C =

(
C̃ +G1 G

T
1

)
+

(
I

G2

) (
Γ2 Γ

1/2
2 Δ2

Δ2Γ
1/2
2 Γ2

) (
I

GT
2

)

≤
(

C̃ +G1 G
T
1

)
+ ν̃ ν−1

(
ν I

G2 G
T
2

)
≤ ν̃ ν−1

(
ν I

C̃ +GGT

)
≤ ν̃ I ;

that is,

(4.31) λmax

(
S

̂C

) ≤ ν̃ .

Since λmax(Ĉ) ≤ λmax(S ̂C) , we may also use λmax(Ĉ) ≤ ν̃ . Then one may check
that (4.12), (4.13), and (4.15) for Mt and Mu in the case μ > 1 indeed follow from
Theorem 4.1 using this estimate and those in (4.21), (4.22), (4.23), (4.29), (4.30), and
(4.31).

How our bounds work is illustrated in Figure 1 for two examples of precondition-
ers, using the values

μ = 0.4 , μ = 1 , ν = 0.2 , ν = 1(4.32)

(which come from the application studied in the next section) and assuming C = 0
so that the more favorable value of χ applies for the block diagonal preconditioner.
The symbols 
 and � correspond to, respectively, ξ and ξ ; hence real eigenvalues
are to be situated in between according to (4.12). Regarding nonreal eigenvalues,
the dashed vertical lines correspond to λ = χ (left line) and λ = χ (right line), the
dashed horizontal lines correspond to λ = ±i δ , and the dotted circle corresponds to
|λ = ζ| = ζ ; hence, according to (4.13) and (4.14), the nonreal eigenvalues must lie
in the box delimited by the four dashed lines but also, according to (4.15), within the
disk delimited by the dotted circle. In summary, they must thus be in the shaded
(yellow) region delimited by solid lines, understanding that horizontal lines close to
the real axis are infinitesimally close to it, with only real eigenvalues actually being
permitted in the area between them.

The values in Tables 1 vary continuously in function of the four main parameters
μ , μ , ν , ν , except possibly for Mt and Mu , where we have to distinguish different
cases; however, if ν ≤ 1 ≤ ν (as one expects if MS is properly scaled), then, since
f (1 , ν) = max(1 , ν) (see Lemma 4.2), one has η → 1 and ν̃ → ν for μ → 1 , showing
that the bounds for Mt and Mu also vary continuously with μ .

Moreover, independent of the condition ν ≤ 1 ≤ ν , when μ , μ , ν , ν → 1 , then,
for all preconditioners but Md , ξ , ξ , χ , χ → 1 and δ → 0 , ζ → 1

2 . This means that
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Block Diagonal (Md) Block Factorization (Mf )

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Fig. 1. Application of Theorem 4.3 with main parameters as in (4.32); 	 : ξ ; 
 : ξ ; dotted
circle: |λ = ζ| = ζ ; dashed vertical lines: λ = χ and λ = χ ; dashed horizontal lines: λ = ±i δ .

both real and nonreal eigenvalues are confined in a region which converges smoothly
towards the single point 1 when MA → A and MS → S . For Md , we then have
ξ , ξ → 1 , whereas δ → 1 , ζ → 1 , χ → 1

2 , and χ → 1 in general, but χ → 1
2 when

C = 0 . Hence all real eigenvalues converge towards 1, but nonreal eigenvalues do
not: their real part lies in general between 1

2 and 1 , converging in particular towards
1
2 when C = 0 ; on the other hand, their imaginary part may remain significant.
This confirms the analysis in [17, Lemma 2.2], where it is shown that if C = 0 ,
only three distinct eigenvalues remain at the limit MA = A and MS = S : 1 and
1
2

(
1± i

√
3
)
; interestingly, these latter numbers are at the intersection of the lines

�e(λ) = 1
2 (our dashed vertical lines, which coincide in this case) and |λ − 1| ≤ 1

(our dotted circle). It is also interesting to observe that the modulus of these three
remaining distinct eigenvalues is equal to 1, whereas, in the same circumstances, only
the two eigenvalues ±1 remain associated with the positive definite block diagonal
preconditioner (3.1) [17, Lemma 2.1]; thus, at the limit of exact preconditioning of A
and S , equality is attained in both relations (3.2), (3.3) from Theorem 3.1.

Regarding real eigenvalues, it is worth noting that, when using Md , Mf , Mt with
μ ≤ 1 , or Mu with μ ≤ 1 , the bounds (4.12) then reduce to

(4.33) min (μ , ν) ≤ λ ≤ max (μ , ν) ,

which is simple and appealing. With Mg , Mt2 , Mu2 , the corresponding result is

(4.34) min
(
1− ρ2A , ν

) ≤ λ ≤ max (1 , ν) ,

which requires only ρA < 1 , i.e., μ < 2 .
When using Mt or Mu with μ > 1 , our estimates for real eigenvalues are somehow

less favorable and indicate that scalingMA to have the eigenvalues ofM−1
A A be greater

than 1 may have an adverse effect on the clustering of the real eigenvalues. This is
better seen in an example, so consider again the values (4.32), but now add a scaling
parameter so that μ = 0.4α and μ = α for some α ≥ 1 . In Figure 2,4 we depict the

4The code allowing one to reproduce the results reported in this figure is provided as supplemen-
tary material through the electronic version of the journal.
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Fig. 2. Upper and lower bounds for real eigenvalues with Mt or Mu as a function of α
when μ = 0.4α , μ = α , ν = 0.2 , and ν = 1 (the legend in the left plot also applies to
the right one); for the bounds from [39] we have a “best” and a “worst” case because these
bounds are expressed as functions of the extremal eigenvalues of M−1

S (C + BM−1
A BT ) instead

of ν , ν ; the “best” case is obtained by setting λmin(M
−1
S (C + BM−1

A BT )) = μν (the largest

possible value) and λmax(M
−1
S (C + BM−1

A BT )) = μν (the smallest possible value), whereas the

“worst” case corresponds to λmin(M
−1
S (C + BM−1

A BT )) = μν (the smallest possible value) and

λmax(M
−1
S (C +BM−1

A BT )) = μν (the largest possible value).

evolution of the lower and upper bounds for real eigenvalues; these plots also illustrate
how η and ν̃ vary with μ , since, in this example, ξ = η−1ν and ξ = ν̃ . One sees
that the η factor has only a limited impact on the lower bound, in agreement with
the second upper bound (4.9) on f (μ , ν) , which is never worse than 1 + ν = 1.2 .
However, ν̃ grows with μ , in fact also in agreement with the same upper bound, which
yields ν ≤ μ(ν + 1) − ν/(ν + 1) = 2α − 1/2 . In section 5, we shall see an example
where the real eigenvalues really do spread out when α increases, closely following our
bounds.

In Figure 2, we also compare our bounds with bounds appearing in papers by
Zulehner [44] and Simoncini [39], which analyze, respectively, inexact Uzawa and block
triangular preconditioners, and contain the best previous estimates we are aware of;
one sees that our analysis is significantly sharper than that of Simoncini, and more
general than that of Zulehner, which is effective only if α is large enough.

Now, staying with Mt and Mu , it is well known (see [39, 44]) that scaling MA

to increase μ has on the contrary a welcome effect on the nonreal eigenvalues, which
become forbidden when μ ≥ 1 ; this is also confirmed by our analysis, since δ decreases
as μ increases and vanishes for μ ≥ 1 . Whereas previous works often focused on this
and accordingly suggested selecting the scaling to enforce this condition, our analysis
reveals that there is in fact a tradeoff between the clustering of real and nonreal
eigenvalues. This will be further illustrated in the next section.

We could also compare our bounds for nonreal eigenvalues with previous bounds.
However, as seen in Figure 1, it is in fact more sensible to combine the different bounds
than to discuss which one is the best: the more inequalities we have, the better we
delimit the region that contains the eigenvalues. In particular, the bound obtained in
[39, Theorem 2] for block triangular preconditioners can play a useful complementary
role, and it is also appealing in its simplicity. For the sake of completeness, we recall
this bound in the following theorem, noting that, by item (2) of Theorem 3.1, we
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extend its scope of application to inexact Uzawa preconditioners. Moreover, applying
this bound to Mt2 allows its further extension to block SGS preconditioners, via item
(3) of Theorem 3.1.

Theorem 4.4. Let the assumptions of Theorems 3.1 and 4.3 hold.

(1) Eigenvalues λ of M−1
t K and M−1

u K with nonzero imaginary part are possible
only if μ < 1 , in which case they satisfy

(4.35) |λ− 1| ≤√1− μ .

(2) The eigenvalues λ of M−1
g K , M−1

t2 K , and M−1
u2

K with nonzero imaginary
part satisfy

(4.36) |λ− 1| ≤ ρA .

We may further combine this result with (4.33) for Mt , Mu , and with (4.34) for
Mg , Mt2 , Mu2 . This straightforwardly yields the following corollary.

Corollary 4.5. Let the assumptions of Theorems 3.1 and 4.3 hold, and assume
that ρS < 1 , where

ρS = ρ
(
I −M−1

S S
)
= max (ν − 1 , 1− ν) .

(1) If

(4.37) μ = λmax

(
M−1

A A
) ≤ 1 ,

then

(4.38) ρ
(
I −M−1

t K
)
= ρ

(
I −M−1

u K
) ≤ max (

√
ρA , ρS) .

(2) There holds

(4.39) ρ
(
I −M−1

g K
)
= ρ

(
I −M−1

t2 K
)
= ρ

(
I −M−1

u2
K
) ≤ max (ρA , ρS) .

Let us stress that the assumption (4.37) is made for the sake of simplicity. If
it is not satisfied, a bound on the spectral radius can still be obtained from (4.12)
and (4.35). On the other hand, with this result one sees even more clearly that
“symmetrized” preconditioners like Mg (and, by extension, Mf) can be cost effective
when the preconditioner for S is better than that for A , or of similar quality. On
the contrary, when the preconditioner for A is much better, the clustering of the
spectrum essentially depends on the eigenvalues of M−1

S S , and Mg or Mf can only
bring a mitigated improvement to the block triangular preconditioners, so that the
extra cost involved likely does not pay off.

As the final remark in this section, rescaling MA is of course also possible with
preconditioners other than Mt and Mu . We do not discuss this explicitly because
effects are moderate and easily predicted by inserting into Table 1 rescaled estimates
for μ , μ . In particular, for Mg , Mt2 , Mu2 , it is clear, at least from this theoretical
viewpoint, that the best scaling is the one that minimizes ρA . It is also possible to
rescale the whole operator M̃A . In combination with Mt2 or Mu2 , this will have the
same effect, already discussed above, as rescaling MA when using Mt or Mu ; observe
that the parameters in Table 1 for Mg , Mt2 , and Mu2 in fact coincide with those for
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Mt and Mu when exchanging μ for 1 − ρ2A and μ for 1 . Rescaling M̃A with Mg is
more ambiguous. Letting α be the scaling parameter, one possibility is to consider(

I
BM−1

A I

) (
α M̃A

−MS

) (
I M−1

A BT

I

)
= α

(
I

BM−1
A I

) (
M̃A

−α−1MS

) (
I M−1

A BT

I

)
.

This thus amounts to scaling the whole spectrum obtained with unscaled MA and
M̃A , and inverse scaling applied to MS . Since the convergence of the Krylov sub-
space method is independent of the global scaling of the preconditioner, this option
is therefore equivalent to just applying the inverse scaling to MS .

5. Example of application. In this section, we consider the typical example
provided by the stationary Stokes problem on the unit square Ω in two dimensions.
That is, finding the velocity vector v : Ω → R

2 and the kinematic pressure field
p : Ω → R satisfying

−Δu+∇p = f in Ω ,

∇ · u = 0 in Ω ,(5.1)

where f represents a prescribed force. For the sake of simplicity we choose Dirichlet
boundary conditions for the velocity.

As a general rule, the discretization of this problems yields a linear system K u =
b, whose coefficient matrix K has the form (1.1). Here we consider more particularly
finite difference discretization on a staggered grid, for which C = 0 .

There is a technical difficulty appearing from the lack of boundary conditions for
the pressure, which is determined only up to a constant. At the discrete level, this
is reflected in the fact that BT 1 = 0 , where 1 is the vector of all ones. Hence K
is singular with null space spanned by (0 1T )T . The case of rank deficient B with

C e = 0 for all vectors e in the null space of BT is analyzed in the appendix, in light
of the results in [10, 18]. It turns out that right preconditioned GMRES or GCR
can be used without special treatment as long as the system is compatible, which
is guaranteed in the present case by the fact that the right-hand side is zero for all
pressure unknowns. The convergence is indeed the same as that of GMRES or GCR
applied to a regular matrix whose eigenvalues coincide with the nonzero eigenvalues of
the original preconditioned matrix. Moreover, these eigenvalues satisfy the relations
and bounds proved in Theorems 3.1, 4.3, and 4.4 and Corollary 4.5, reading ν as the
smallest nonzero eigenvalue ofM−1

S S (the rank deficiency of B implying that S is only
semidefinite). Note that right preconditioning corresponds to the versions of GMRES
and GCR that minimize the residual of the original linear system, and, regarding
GCR, is equivalent to the standard preconditioning implementation in [42].

Now, for the stationary Stokes problem, it is known that the Schur complement
S = BA−1BT is spectrally equivalent to the identity when using finite difference
approximations. Hence we may select

MS = ω−1 I ,

and numerical computation indeed shows that

(5.2) ν ≥ 0.2ω and ν = ω ,
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where ν denotes the smallest nonzero eigenvalue of M−1
S S . On the other hand, A

is formed of two diagonal blocks, each of them being the five point finite difference
approximation of the Laplace operator acting on one of the velocity components.
Hence the conditioning of A depends on h , and a more sophisticated preconditioning
approach is welcome, with multigrid methods being good candidates. For convenience,
we selected the aggregation-based algebraic multigrid method (AGMG) from [26, 21,
28]. Indeed, a black box code is available with a MATLAB interface [23]; hence no
further tuning or coding is needed. For relatively small matrix sizes (in the present
example, as long as h > 1/35), the procedure uses only two levels. Then it follows
from the algebraic properties of the preconditioner that

μ = 1

(see, e.g., [25, eq. (39)]), whereas numerical computation reveals that

μ ≥ 0.4 .

For larger matrices, the preconditioner is based on the same two level method, but
“inner” coarse systems are solved iteratively, in fact with the same two level method
again, which is thus used recursively. Because these “inner” solves are accelerated
with the “flexible” conjugate gradient method [24], the so defined preconditioner
varies slightly from one application to the next. Then, the above estimates still hold,
but only approximately, and should be interpreted with care since the preconditioner
is on the whole a nonlinear operator.

Once MA and MS have been chosen, all preconditioners introduced in sections 1
and 2 are properly defined. For h = 1/32 and ω = 1 , we depict in Figure 3 the
associated eigenvalue distribution. We also represent the limits provided by the theory.
One sees that Theorem 4.3 accurately predicts the location of both real and nonreal
eigenvalues, and one may also check the complementary role played by Theorem 2
in [39], as extended to other preconditioners in Theorem 4.4. One also sees the
importance of the parameter ζ from (4.15) in controlling the imaginary extension of
the eigenvalues: there are eigenvalues lying exactly on the line |λ− ζ| = ζ for all
preconditioners but Mf , and the improvement observed going from block diagonal to
block triangular preconditioning is due largely to the decrease of ζ , the bounds on
the real part remaining roughly the same.

As already discussed, the scaling of MA plays an important role for block tri-
angular and Uzawa preconditioners. With μ ≤ 1 , we have the appealing result of
Corollary 4.5, but, on the other hand, if one rescales the preconditioner for A to have
μ ≥ 1 , all eigenvalues are real, which may also be attractive, allowing us to use con-
jugate gradient methods in nonstandard inner products [12, 32, 44]. To investigate
this, we rescaled the algebraic multigrid preconditioner by a factor α , entailing that

μ ≥ 0.4α and μ = α .

The theory predicts that increasing α moves nonreal eigenvalues closer to the real axis
until the point where they are forbidden (for α ≥ 2.5) but at the same time allows
the real eigenvalues to spread over the real axis (see Figure 2). This is illustrated
in Figure 4. In the left column of figures, we proceed as for Figure 3, plotting the
spectrum together with the limits provided by the theory. One sees that the bounds
remain accurate in all considered situations. In the right column of figures, we rescaled
the spectrum to represent the situation that occurs when optimal scaling is applied
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Block Diagonal (Md) Block Triang. (Mt) & Uzawa (Mu)
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Fig. 3. +: eigenvalues of the preconditioned matrix for h = 1/32 and ω = 1; ----: limit of
the region defined by the inequalities in Theorem 4.3 (horizontal lines close to the real axis indicate
regions where in fact only real eigenvalues are permitted); - - -: limit on nonreal eigenvalues provided
by [39, Theorem 2] (see Theorem 4.4).

to the preconditioner Mt or Mu , “optimal” meaning in such a way that the spectral
radius ρ of the associated iteration matrix is minimized. We also graphically illustrate
this spectral radius, plotting (with the symbol ��) the circle of center 1 and radius ρ
that contains all eigenvalues.

In Table 2,5 we report the number of iterations actually needed to reduce the
residual relative error by 10−6 , testing larger problem sizes and also different values
of ω ; results are not reported for Mg , Mt2 , and Mu2 with α = 2.5 because the basic

condition ρA < 1 is then violated, implying that M̃A is in fact not positive definite
and is therefore no longer a sensible preconditioner for A . The block approximate

5The code allowing one to reproduce the results reported in this table and in Table 3 is provided
as supplementary material through the electronic version of the journal.
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α = 1 α = 1 , scaled (ρ = 0.73)

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

α = 1.5 α = 1.5 , scaled (ρ = 0.81)
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Fig. 4. Left: Spectrum of the preconditioned matrix for block triangular and inexact Uzawa
preconditioners (h = 1/32 and ω = 1). Right: Rescaled spectrum.
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Table 2

Number of iterations needed to reduce the relative residual error by 10−6 ; MINRES is used for
the positive definite preconditioner M+ from (3.1), and GCR(15) for all other preconditioners, (15)
meaning that the process is restarted every 15 iterations.

ω = 1 ω = 1.5 ω = 4
α 1 1.5 2.5 1 1.5 2.5 1 1.5 2.5

h−1 = 32

Block diag.(+) (M+) 44 43 42 47 44 43 53 49 47
Block diag. (Md) 59 58 57 60 59 57 66 59 59

Block triang. (Mt) 27 28 35 28 27 34 34 28 33
Inexact Uzawa (Mu) 29 30 33 29 29 31 35 28 34

Block fact. (Mg) 20 21 50 20 20 58 23 22 130
Block SGS (Mf ) 20 19 21 19 21 20

Block triang.(2) (Mt2) 20 19 19 19 21 19

Inexact Uzawa(2) (Mu2) 22 20 22 20 23 21

h−1 = 512

Block diag.(+) (M+) 62 59 57 63 62 59 71 68 64
Block diag. (Md) 127 89 99 152 127 75 126 157 164

Block triang. (Mt) 54 47 56 53 46 52 59 45 46
Inexact Uzawa (Mu) 60 61 53 59 60 57 58 56 55

Block fact. (Mg) 33 29 89 28 28 96 32 40 169
Block SGS (Mf ) 29 23 27 23 28 24

Block triang.(2) (Mt2) 28 23 28 23 32 30

Inexact Uzawa(2) (Mu2) 35 26 30 24 30 24

factorization Mf is still well defined when ρA > 1 , although our analysis does not
apply any longer in this case, which is reflected by the much larger number of iterations
needed than with other values of α .

One sees that the hierarchy of the preconditioners is as expected from the theory,
with slight differences between the variants leading to the same eigenvalue distribu-
tion, to be explained by the many other features that influence the convergence, such
as “nonnormality” effects [41, Chapters 25 and 26]. Further tests show that, accord-
ing to the analysis in [17], the indefinite block diagonal preconditioner Md becomes as
good as the positive definite preconditioner M+ if the restart parameter is increased
sufficiently; i.e., the advantage of M+ , as expected from item (1) of Theorem 3.1,
mainly comes from the global optimality of MINRES.

The scalability of Mg , Mt2 , and Mu2 reflects well that of MA : solving a system
with A alone requires from 10 iterations for h−1 = 32 (two level variant) to 12 for
h−1 = 256 , 512 , 1024 (multilevel “variable” preconditioner). The number of itera-
tions increases in a bigger proportion for the triangular preconditioners Mt and Mu ,
displaying their greater sensitivity to the quality of the used approximation for A .
This sensitivity is also expected from our analysis; compare (4.38) with (4.39) when
μ ≤ 1 , and see how fast η and ν̃ may grow with μ otherwise.

In Table 3, we report the results obtained on finer meshes when fixing α =
1.5 and ω = 1 (which is close to optimal in all cases). This allows us to further
check the near optimality of all preconditioners except Md and perhaps Mf . Timing
results suggest that this near optimality also holds with respect to time: with about
4 times more unknowns, the elapsed time is multiplied by a factor only slightly larger
than 4. We also present some results obtained when defining MA with a classical
algebraic multigrid (AMG) algorithm (along the lines of the seminal works by Brandt,
McCormick, and Ruge [9] and Ruge and Stüben [34]). We selected the implementation
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Table 3

Number of iterations and time needed to reduce the relative residual error by 10−6. MINRES
is used for the positive definite preconditioner M+ from (3.1), and GCR(15) for all other precon-
ditioners. Tsol is the time spent during the solution phase, and Tsetup is the time needed to set up
the preconditioner (essentially the time needed to build MA). All these times are elapsed wall clock
times reported in seconds. ω = 1 is used in all cases, whereas the scaling factor used for MA is
α = 1.5 in the case of AGMG and 1 (i.e., no scaling) in the case of AMG (IFISS).

Preconditioner for A AGMG AMG (IFISS)
h−1 512 1024 512

Tsetup 0.37 1.31 4476.8
#it Tsol #it Tsol #it Tsol

Block diag.(+) (M+) 59 12.3 62 53.6 39 22.2
Block diag. (Md) 89 21.5 150 153.0 54 32.0

Block triang. (Mt) 47 11.7 58 61.4 18 10.8
Inexact Uzawa (Mu) 61 15.6 57 61.2 20 12.1

Block fact. (Mf ) 29 12.1 37 64.0 14 15.8
Block SGS (Mg) 23 9.2 26 43.7 14 15.6

Block triang.(2) (Mt2) 23 8.8 26 42.8 13 14.3

Inexact Uzawa(2) (Mu2) 26 10.2 28 46.6 17 18.7

provided with the Incompressible Flow & Iterative Solver Software (IFISS) software
package [37], both for convenience (as AGMG, it is callable from MATLAB) and
because using it in combination with M+ and MINRES is the default solver for Stokes
problems in IFISS. Here we report the results obtained with α = 1 , which appear
optimal or close to optimal in all cases. The setup time for h−1 = 512 is huge, and
we were not able to achieve the setup for h−1 = 1024 ; this is clearly due to some
implementation issue as, typically, the setup of classical AMG methods, although
significantly more costly than that of AGMG, never requires much more time than
the solution phase [22]. Leaving these implementation issues aside, as expected from
the comparison in [22], the classical AMG method delivers a closer approximation to
A (hence the number of iterations is reduced), but this is hardly cost effective because
the computational cost per iteration step is significantly larger.

The timing results also allow us to assess the effect of the additional costs incurred
when using GCR instead of a short recurrence method like MINRES: comparing the
line for Md and the line for M+ , one may check that the time per iteration is roughly
15% less with MINRES when using AGMG, and roughly 4% less when using AMG.
This difference comes from the cost of the preconditioner: the higher it is, the less
important is the weight of the operations associated with the Krylov subspace solver.

In fact, even with AGMG, the solution time tends to be dominated by the appli-
cation of the preconditioner for A , and it is interesting to observe that, in all three
reported cases (AGMG with h−1 = 512 or h−1 = 1024 , and AMG with h−1 = 512),
the most effective block preconditioner is finally the one that requires the least applica-
tion ofMA (taking into account that Mf , Mg , Mt2 , and Mu2 involve two applications
ofMA per iteration step). On the other hand, the results with AMG confirm a remark
already made in section 4, that when comparing (4.38) with (4.39), additional costs
incurred with Mg and related variants likely do not pay off when the preconditioner
for A is much better than that for S .

6. Conclusions. We have developed the spectral analysis of a class of precon-
ditioners for symmetric saddle point matrices. The eigenvalue bounds depend only
on the extremal eigenvalues (1.3), (1.4) associated with the used approximations for
the top left block A and the (negative) Schur complement S . For all the considered
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preconditioners (i.e., for (1.5), (1.6), (1.7), (1.8), (2.3), (2.4)), these bounds prove that
the eigenvalues are located in a confined region of the right half of the complex plane.
Moreover, except for the block diagonal preconditioner (defined by (1.5)), this region
is clustered around 1, and its area converges smoothly towards zero when the main
parameters in (1.3), (1.4) converge towards 1 (that is, when MA → A and MS → S).

Our analysis also allows a comparison of the different types of preconditioners.
First, we proved that block triangular (1.6) and inexact Uzawa preconditioners (1.7)
lead to identical spectra. Next, a connection can also be made between these tri-
angular preconditioners and the symmetrized block SGS preconditioner (2.3) via the
spectral equivalence of (2.3) with “enhanced” triangular preconditioners (2.4). Fi-
nally, our bounds are accurate enough to allow an insightful discussion of the relative
performances of the preconditioners.

From this viewpoint, block diagonal preconditioners appear less attractive than
triangular ones, as they lead to a less clustered eigenvalue distribution for essentially
the same cost. It is, however, worth noting in this respect that the indefinite variant
(1.5) mainly investigated here is often outperformed by the positive definite variant
(3.1). More precisely, we have shown that the eigenvalue distribution associated with
(3.1) cannot really be better, but it can be used in combination with a short recurrence
and globally optimal Krylov accelerator (MINRES).

On the other hand, compared with triangular preconditioners (1.6), (1.7), sym-
metrized preconditioners like block SGS (2.3) and block approximate factorization
preconditioners (1.8) can be cost effective only when the quality of the approxima-
tion used for the top left block A is not much better than that used for the Schur
complement S .

Finally, our results also give insight into the role of the scaling of the used approx-
imation MA for A . For the triangular preconditioners (1.6), (1.7), a scaling such that
all the eigenvalues of M−1

A A are not less than 1 guarantees that the preconditioned
matrix has only real eigenvalues, but at the expense of an adverse effect on their
clustering around 1, which our bounds may help to evaluate. In contrast with this, if
the scaling is such that all the eigenvalues of M−1

A A are not larger than 1, then the
preconditioned matrix has both real and nonreal eigenvalues, but all lie within a disk
around 1 whose radius satisfies an appealing bound. On the other hand, regarding
symmetrized preconditioners (1.8), (2.3), it is best to choose the scaling in such a way
that the spectral radius of I −M−1

A A is minimized, and it is mandatory to check that
all the eigenvalues of M−1

A A remain significant below 2.

Appendix: Rank deficient B. Here we consider the case of a rank deficiency
in B that is not compensated for by the positive definiteness of C , i.e., the case where
there exist nontrivial vectors e such that BTe = 0 and Ce = 0 . Denoting NB as
the null space of BT , for the sake of clarity we restrict the analysis to the case where
C e = 0 for all e ∈ NB . Then K is singular, and its null space is the subspace of all
vectors of the form (0T eT )T with e ∈ NB . For the model problem of section 5, these
assumptions are satisfied with NB equal to the one-dimensional subspace spanned by
the constant vector 1 of length m .

Now, it is well known that solving a singular linear system with a Krylov subspace
method requires no special treatment as long as the system is compatible; see, e.g.,
[15, section 8.3] for a detailed discussion in the context of the Navier–Stokes equations.

Further, an interesting analysis is developed in [18], which shows that the conver-
gence of GMRES and GCR is actually the same as that of the same method applied
to the problem orthogonally projected onto the range of the linear system. This, in



170 YVAN NOTAY

particular, allows one to recover the convergence condition stated in [10], which is
that the range and null spaces of the system matrix have trivial intersection: this
is indeed the necessary and sufficient condition for the projected matrix to be non-
singular. Moreover, its eigenvalues coincide then with the nonzero eigenvalues of the
original matrix.

Now, observe that, since K is symmetric, its range is equal to the orthogonal
complement of its null space. Then let VC be an m×mr orthonormal matrix whose
columns form a basis of N⊥

B . The system matrix orthogonally projected onto the
range of K is thus

(A.1) Kr =

(
I

V T
C

) (
A BT

B −C

) (
I

VC

)
=

(
A BTVC

V T
C B −V T

C C VC

)
.

However, here we are interested in preconditioning; hence we need to consider the
projected preconditioned matrix. In the proof of Theorem 3.1, we have seen that all
preconditioners considered in this work are particular instances of

M =

(
In

B YA Im

) (
M̂A

−MS

) (
In ZAB

T

Im

)
,

where YA , ZA , M̂A are related to A and MA via (3.5), (3.6), (2.1). On the other
hand, it follows from the definition of VC that VCV

T
C is the orthogonal projector onto

N⊥
B , and therefore that I − VCV

T
C is the orthogonal projector onto NB . Since NB

is included in the null space of both BT and C , this implies BT (I − VCV
T
C ) = 0

and C(I − VCV
T
C ) = 0 , and hence BT = BTVCV

T
C , C = C VCV

T
C . Moreover, using

right preconditioning, the preconditioned matrix has the same range as K and the
projection operator to be considered is thus the same as in (A.1). The projection of
the preconditioned matrix KM−1 can therefore be written as(

I
V T
C

) (
A BT

B −C

) (
In −ZAB

T

Im

)(
M̂−1

A

−M−1
S

) (
In

−B YA Im

) (
I

VC

)
=

(
A BTVCV

T
C

V T
C B −V T

C C VCV
T
C

) (
In −ZAB

TVCV
T
C

Im

)
(
M̂−1

A

−M−1
S VC

) (
In

−V T
C B YA Im

)
=

(
A BTVC

V T
C B −V T

C C VC

) (
In −ZAB

TVC

Im

)
(
M̂−1

A

−V T
C M−1

S VC

) (
In

−V T
C B YA Im

)
.

Hence the projected matrix, i.e., the matrix that governs the convergence of the
iterative process, is still a matrix of the form (1.1) preconditioned with the same
technique as that applied to the original singular system, but, comparing to the lat-

ter, B is exchanged for V T
C B , C for V T

C C VC , and MS for
(
V T
C M−1

S VC

)−1
, whereas

A and MA remain unchanged. Since BT VC has full rank by construction, it fol-
lows that the projected matrix is indeed nonsingular; i.e., the convergence condition
is met. Moreover, its eigenvalues, which coincide with the nonzero eigenvalues of
KM−1 , can still be analyzed in light of Theorems 3.1, 4.3, and 4.4 and Corollary 4.5,
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only exchanging ν and ν for, respectively, the smallest and the largest eigenvalue of(
V T
C M−1

S VC

)
V T
C S VC , the Schur complement in the transformed matrix being

V T
C C VC +

(
V T
C B

)
A−1

(
BTVC

)
= V T

C S VC .

Further, for this smallest eigenvalue, one finds, noting that R (VC) = N⊥
B =

R(S) ,

λmin

( (
V T
C M−1

S VC

)
V T
C S VC

)
= min

v∈Rmr

vT
(
V T
C M−1

S VC

)
V T
C S VC

(
V T
C M−1

S VC

)
v

vT
(
V T
C M−1

S VC

)
v

= min
v∈Rmr

vT
(
V T
C M−1

S SM−1
S VC

)
v

vT
(
V T
C M−1

S VC

)
v

= min
w∈R(S)

wTM−1
S SM−1

S w

wTM−1
S w

= min
z∈R(M

−1/2
S SM

−1/2
S )

zTM
−1/2
S SM

−1/2
S z

zT z

= min
ν∈σ(M−1

S S) , ν �=0
ν .(A.2)

Similarly, one finds

(A.3) λmax

( (
V T
C M−1

S VC

)
V T
C S VC

)
= max

ν∈σ(M−1
S S) , ν �=0

ν = ν .

Hence it suffices to read ν as the smallest nonzero eigenvalue of M−1
S S , and all

inequalities provided in Theorems 4.3 and 4.4 and Corollary 4.5 become valid bounds
for the singular case as well.
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