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Abstract. We improve our proposal of a new variant of the McEliece
cryptosystem based on QC-LDPC codes. The original McEliece cryp-
tosystem, based on Goppa codes, is still unbroken up to now, but has
two major drawbacks: long key and low transmission rate. Our variant is
based on QC-LDPC codes and is able to overcome such drawbacks, while
avoiding the known attacks. Recently, however, a new attack has been
discovered that can recover the private key with limited complexity. We
show that such attack can be avoided by changing the form of some con-
stituent matrices, without altering the remaining system parameters. We
also propose another variant that exhibits an overall increased security
level. We analyze the complexity of the encryption and decryption stages
by adopting efficient algorithms for processing large circulant matrices.
The Toom-Cook algorithm and the short Winograd convolution are con-
sidered, that give a significant speed-up in the cryptosystem operations.

Key words: McEliece cryptosystem, QC-LDPC codes, Cryptanalysis,
Toom-Cook, Winograd.

1 Introduction

The McEliece cryptosystem is a public-key cryptosystem based on algebraic
coding theory [1] that revealed to have a very high security level. It adopts a
generator matrix as the private key and one transformation of it as the public
key, while its security lies in the difficulty of decoding a large linear code with
no visible structure, that is known to be an NP complete problem [2].

The original McEliece cryptosystem is still unbroken, in the sense that a to-
tal break attack has never been found, and even local deduction attacks remain
quite intractable in practice [3,4]. Moreover, the system is two or three orders of
magnitude faster than competing solutions, like RSA, that is among the most
popular public key algorithms currently in use. Despite this, the McEliece cryp-
tosystem has been rarely considered in practical applications; this is due to the
fact it exhibits two major drawbacks: i) large size of the public key and ii) low
transmission rate (that is about 0.5).
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In his original formulation, McEliece used Goppa codes of length n = 1024,
dimension k = 524, and minimum distance dmin of at least 101, that are able to
correct t = 50 errors. Several attempts have been made, later on, for overcoming
the drawbacks of the original system and/or further reducing the complexity,
but the adoption of alternative families of codes has not been possible without
compromising the system security. Generalized Reed-Solomon (GRS) codes, in
particular, were initially considered for an important variant of the McEliece
cryptosystem, proposed by Niederreiter [5], but they revealed to be unsecure.
On the other hand, when employing Goppa codes, the Niederreiter cryptosys-
tem shows some advantages: it has equivalent security to that of the McEliece
system, for codes with the same parameters [6], but it requires a key size more
than halved (when considering the values reported above), a transmission rate
slightly increased, and the possibility to use a public key in systematic form. For
these reasons, though renouncing to use GRS codes, the Niederreiter system is
considered a good alternative to the McEliece system.

A clever technique for increasing the transmission rate has been proposed by
Riek [7], and consists in mapping additional information bits onto the intentional
error vector. This approach could increase significantly the transmission rate,
but requires the introduction of an additional encoding and decoding stage to
implement a positional code on error vectors.

Low-Density Parity-Check (LDPC) codes represent the state of the art in for-
ward error correction techniques, and permit to approach the theoretical Shan-
non limit [8], while ensuring limited complexity. Quasi-cyclic (QC) LDPC codes
are a particular class of LDPC codes, able to join low complexity encoding of
QC codes with high-performing and low-complexity decoding techniques based
on the belief propagation principle. Several classes of QC-LDPC codes have been
proposed up to now, all having in common the parity-check matrix structure,
that is formed by sparse circulant blocks.

In a recent work, we have proposed to adopt a particular family of QC-
LDPC codes in the McEliece cryptosystem to reduce the key size and increase
the transmission rate [9]. We have shown such variant is able to counter all
the general attacks, and even new attacks that can compromise the security of
previous LDPC-based versions of the cryptosystem, like that proposed in [10].

Very recently, however, Otmani, Tillich and Dallot developed a new attack
that, exploiting a flaw in the transformation from the private key to the public
key, is able to recover the secret key with very high probability [11]. They pre-
sented three attack strategies, that will be denoted as OTD1, OTD2 and OTD3
in the following. In the same work, the authors also proved that a previous pro-
posal for the adoption of quasi-cyclic (but not LDPC) codes for shortening the
public key of the McEliece cryptosystem [12] is not secure.

In this paper, we shortly describe the three OTD attacks, and analyze the
flaw in the private-public key map that originates them. We propose a first
variant of the cryptosystem that is able to counter such attacks by adopting a
different form for its constituent matrices, without altering other parameters.
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Furthermore, we present a second variant of the cryptosystem that provides
overall increased security.

In addition, we study the application, in this new version of the cryptosystem,
of efficient algorithms for computation on large circulant matrices, that permit
to reduce its encryption and decryption complexity. The main question concerns
encoding, that, in the case of QC codes, can be implemented through a barrel
shift-register with hardware complexity that increases linearly with the code
length. However, the total number of operations can still be high, thus reflecting
in latency issues. A common solution to this problem consists in searching for
sparse generator matrices [13,14]. Though this is possible for suitably designed
codes, such approach is unsuitable for codes randomly designed for the use in
cryptographic systems. In this case, however, efficient computation algorithms
can limit the number of operations. In this paper, we consider two possible
choices of efficient multiplication algorithms, namely, the Toom-Cook algorithm
and the short Winograd convolution, that actually yield reduced complexity.

2 Notation

Let F = GF (m) be the Galois field of order m, with m a prime power.
A p× p Toeplitz matrix A over F is defined as follows:

A =















a0 a1 a2 · · · ap−1

a−1 a0 a1 · · · ap−2

a−2 a−1 a0 · · · ap−3

...
...

...
. . .

...
a1−p a2−p a3−p · · · a0















. (1)

It is called circulant if ∀i, ai = ai−p. In this work we restrict our analysis to
binary circulant matrices, that is, we consider m = 2.

There is a natural isomorphism between the algebra of p×p circulant matrices
with entries in the field F and the ring of polynomials F[x]/(xp +1). If we denote
by X the matrix with entries:

Xi,j =

{

1 if j − i ≡ 1 (mod p)
0 if j − i 6≡ 1 (mod p)

, (2)

the isomorphism maps the matrix X to the monomial x and the generic circulant
matrix

∑p−1
i=0 αiX

i to the polynomial
∑p−1

i=0 αix
i ∈ F[x]/(xp + 1). This isomor-

phism can be extended to matrices with circulant blocks, as will be shown in the
next section.

3 Improved McEliece Cryptosystem Based on QC-LDPC
Codes

In order to hide the secret code’s structure, we have recently proposed a variant of
the McEliece cryptosystem working as follows. Bob, in order to receive encrypted
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messages, randomly chooses a code in a family of (n0, dv, p) QC-LDPC codes
based on Random Difference Families [9], by selecting its parity-check matrix
H, and produces a generator matrix G in reduced echelon form. Matrix H is
formed by a row {H0, . . . ,Hn0−1} of n0 binary circulant blocks with size p and
row/column weight dv, and it is part of Bob’s private key. Matrix G, instead, is
formed by a k × k identity matrix I (with k = k0 · p and k0 = n0 − 1), followed
by a column of k0 binary circulant blocks with size p. If we suppose Hn0−1 to
be non-singular, G can be obtained as follows:

G =













I

(

H−1
n0−1 ·H0

)T

(

H−1
n0−1 ·H1

)T

...
(

H−1
n0−1 ·Hn0−2

)T













. (3)

The remaining part of Bob’s private key is formed by two other matrices: a
k × k non-singular matrix S and a sparse n × n non-singular matrix Q. S and
Q are regular matrices, formed by k0 × k0 and n0 × n0 blocks of p × p binary
circulants, respectively. Q has row/column weight m.

By exploiting the isomorphism introduced in Section 2, the generator matrix
G can be seen as a k0 × n0 matrix with entries in the ring of polynomials
R = GF (2)[x]/(xp + 1); S and Q are invertible matrices on the same ring with
size k0 × k0 and n0 × n0, respectively.

Then, Bob computes the public key as follows:

G′ = S−1 ·G ·Q−1 . (4)

It should be noted that G′ preserves the quasi-cyclic structure of G, due to the
block circulant form of S and Q.

G′ is made available in a public directory. Alice, who wants to send an
encrypted message to Bob, extracts G′ from the public directory and divides
her message into k-bit blocks. If u is one of these blocks, Alice obtains the
encrypted version as follows:

x = u ·G′ + e = c + e .

In this expression, e is a vector of intentional errors randomly generated,
with length n and weight t′.

When Bob receives the encrypted message x, he first computes:

x′ = x ·Q = u · S−1 ·G + e ·Q . (5)

Vector x′ is a codeword of the LDPC code chosen by Bob (corresponding to
the information vector u′ = u · S−1), affected by the error vector e ·Q, whose
maximum weight is t = t′ ·m. If t′ and m are suitably chosen, Bob is able to
correct all the errors with very high probability, by means of LDPC decoding,
thus recovering u′, and then u through a post-multiplication by S.

In the version of QC-LDPC based McEliece cryptosystem proposed in [9], we
fixed n0 = 4, dv = 13, p = 4032, m = 7 and t′ = 27. Both S and Q were chosen
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sparse, and their non-null circulant blocks had row/column weight equal to m.
In particular, the following block-diagonal form for Q was adopted:

Q =











Q0 0 0 0

0 Q1 0 0

0 0
. . . 0

0 0 0 Qn0−1











(6)

that, jointly with its low density, gives raise to the flaw exploited by the OTD
attack, shortly described in the following subsection. In addition, as pointed out
in [11], matrix S should contain some null blocks in order to be non-singular.

3.1 The OTD Attack

The adoption of a sparse S and a sparse block-diagonal Q implies that, by
simply selecting the first k columns of the public key G′, obtained through
the transformation (4) with G in the form (3), an eavesdropper can derive the
following matrix:

G′
≤k = S−1 ·











Q−1
0 0 . . . 0

0 Q−1
1 . . . 0

...
...

. . .
...

0 0 . . . Q−1
n0−2











. (7)

By calculating the inverse of G′
≤k and considering its circulant block at

position (i, j), the eavesdropper can easily obtain QiSi,j , being Si,j the circulant
block at position (i, j) in matrix S. Because of the isomorphism, this matrix
corresponds to the polynomial:

gi,j(x) = qi(x) · si,j(x) mod (xp + 1) (8)

where polynomials qi(x) and si,j(x), in turn, correspond to the blocks Qi and
Si,j , respectively.

Due to the fact that both Qi and Si,j are sparse (they have row/column
weight m), the vector of coefficients of gi,j(x) is obtained as the cyclic convolution
of two sparse vectors containing the coefficients of qi(x) and si,j(x). For this
reason, it is highly probable that gi,j(x) has exactly m2 non-null coefficients,
and its support contains at least one shift xla · qi(x), 0 ≤ la ≤ p − 1 [11]. This
is the initial point for three different attack strategies that, starting from the
knowledge of gi,j(x), aim at revealing part of the secret key. They are briefly
described next.

OTD1 Attack Strategy. The first attack strategy consists in enumerating all
the m-tuples that belong to the support of gi,j(x). Each m-tuple is then validated
through inversion of its corresponding polynomial and multiplication by gi,j(x).
If the resulting polynomial has exactly m non-null coefficients, the considered
m-tuple corresponds to a shifted version of qi(x) with very high probability. For
the specified numerical values, this attack requires a work factor of 250.3 binary
operations.

http://bodrato.it/papers/#SCN2008
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OTD2 Attack Strategy. The second attack strategy is based on the periodic
autocorrelation of the coefficients vector of gi,j(x). In fact, it is highly probable
that the Hadamard product of the polynomial gi,j(x) with a d-shifted version of
itself, gd

i,j(x) ∗ gi,j(x), results in a shifted version of qi(x), for a specific value of

d. For this reason, the eavesdropper can calculate all the possible gd
i,j(x)∗gi,j(x)

and check whether the resulting polynomial has support with weight m. This
attack requires a work factor of 236 binary operations, that could be even further
reduced by calculating the periodic autocorrelation of the coefficients of gi,j(x)
(this can be made through efficient algorithms), in order to find the value of d.

OTD3 Attack Strategy. The third attack strategy consists in considering the
i-th row of the inverse of G′

≤k, that is:

Ri = [QiSi,0|QiSi,1| . . . |QiSi,n0−2] (9)

and the linear code generated by

GOTD3 = (QiSi,0)
−1
·Ri =

[

I|S−1
i,0Si,1| . . . |S

−1
i,0Si,n0−2

]

. (10)

Such code admits an alternative generator matrix in the following form:

G′
OTD3 = Si,0GOTD3 = [Si,0|Si,1| . . . |Si,n0−2] (11)

that coincides with a block row of matrix S. Since matrix S has been chosen
sparse, the code contains low weight codewords. Precisely, G′

OTD3 has row weight
equal to m(n0 − 1), that is very small compared to the code length.

Low weight codewords can be effectively searched through Stern’s algorithm
[15] and its variants [4]. Once having found matrix S, a significant part of the
secret key can be revealed by using (7). For the present choice of the system
parameters, searching for low weight codewords in the code generated by GOTD3

would require, on average, 232 binary operations.

3.2 First Variant of the Cryptosystem

The fundamental issue that validates the three OTD attack strategies relies in
the fact that both S and Q are sparse and that matrix Q has block-diagonal
form.

However, the three OTD attacks can be countered by adopting dense S ma-
trices, without altering the remaining system parameters. For example, S could
have row/column weight approximately equal to k0p/2, with odd weight blocks
along the main diagonal, and even weight blocks elsewhere, in order to assure
non-singularity of S, so that no further check is needed.

The adoption of dense S matrices prevents the eavesdropper from obtaining
Qi and Si,j , even knowing QiSi,j . In this case, in fact, the probability that
gi,j(x) has exactly m2 non-null coefficients, and that its support contains that
of at least one shift of qi(x) becomes extremely small. Furthermore, when S

is dense, the code generated by GOTD3 does not contain any more low weight
codewords, so all the three OTD attacks strategies are countered.
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This modification has no effect on the number of errors to be corrected by
the secret code, since the error spreading is only due to matrix Q, that is kept
sparse (with row/column weight m).

On the other hand, the choice of a dense S influences complexity of the de-
coding stage, that, however, can be reduced by resorting to efficient computation
algorithms for circulant matrices. Complexity of the cryptosystem with dense S

will be evaluated in Section 7.
As concerns matrix Q, the OTD attacks demonstrate that the choice of the

block-diagonal form is weak from the security viewpoint, so we avoid it in the
revised versions of the cryptosystem. For example, an alternative choice would
consist in obtaining Q from a matrix of n0 × n0 = 4 × 4 circulant blocks with
weight 2, except those along the main diagonal, that have weight 1, and by
permuting randomly its block rows and columns.

In this case, the inclusion of very low weight blocks in matrix Q could seem
a flaw. However, the absence of the block-diagonal structure prevents from at-
tacking each single block, and attacking a whole row or column would be too

involved (it would require p
(

p
2

)3
≈ 281 attempts).

3.3 Second Variant of the Cryptosystem

In this second variant, we adopt the following set of parameters: n0 = 3, dv = 13
and p = 8192. The increased security level is achieved at the cost of a slightly
decreased transmission rate, from 0.75 to 0.67, that, however, remains higher
than in the original version. On the other hand, the reduction in the total number
of circulant blocks permits to double their size without increasing the key length.

Both the private and the public codes, in this system, have dimension k0p =
16384 bit and length n0p = 24576. By means of numerical simulations, we have
verified that such QC-LDPC codes are able to correct up to more than 470 errors
per frame. For such reason, it has been possible to choose t′ = 40 and m = 11
for this variant of the cryptosystem.

Matrix Q is formed by n0 × n0 = 3 × 3 circulant blocks with size p, and
has row/column weight equal to m = 11. In this case, a possible choice consists
in obtaining Q from a matrix of n0 × n0 circulant blocks with weight 4, except
those along the main diagonal, that have weight 3, and by permuting randomly
its block rows and columns. In this case, attacking a whole row or column of Q

would require
(

p
4

)2(p
3

)

≈ 2131 attempts.
Matrix S, instead, is formed by k0 × k0 = 2 × 2 circulant blocks with size

p and it is dense, with row/column weight approximately equal to k0p/2. All
its blocks have even row/column weight, except those along the main diagonal,
that have odd weight, in order to allow non-singularity of the matrix.

3.4 Other Attacks

Having discussed above the OTD attack, in the following we list some of the
other most important attacks with their corresponding work factor for the second
cryptosystem variant, in order to assess its security. For a thorough description
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of all the attack techniques already considered, we refer the interested reader to
[16]. where it is also proved that they are avoided for the parameters chosen in
the previous version of the cryptosystem (and, hence, in the first variant here
proposed).

Brute force attacks. Brute force attacks could be tempted by enumerating all
possible secret matrices H. However, the number of equivalent QC-LDPC codes
with the proposed choice of the system parameters is > 2386. Even considering
a single circulant block in H, the number of possible choices would be > 2122.

Information set decoding attacks. Information set decoding attacks could
be tempted through two different strategies. The first one consists in Lee and
Brickell’s method [3], that, however, would require 294 operations.

Alternatively, the vector of intentional errors e could be searched as the lowest

weight codeword in the extended code generated by G′′ =

[

G′

x

]

. With the new

choice of the parameters, however, this search would be very involved. By using
the Stern algorithm, for example, it would require more than 282 operations. For
the first variant, instead, a similar search would require 271 operations.

At the current stage of cryptanalysis, these attacks achieve the minimum
work factor, that can be hence considered as the security level of each cryptosys-
tem variant.

Attacks to the dual code. When the sparse structure of the private H is
not sufficiently hidden, the eavesdropper could recover it by searching for low
weight codewords in the dual of the public code, that admits G′ has parity-check
matrix. In this version of the cryptosystem, however, the dual of the public code
does not contain low weight codewords, due to the effect of matrix Q on the
rows of the private matrix H.

In the present case, matrix Q has row/column weight 11, so the dual of
the public code has codewords with weight ≤ n0 · dv · m = 429. Due to the
fact that the rows of H are sparse, it is highly probable that the minimum
weight codewords in the dual of the public code have weight close to n0 · dv ·m.
However, even a lower weight would suffice to avoid attacks to the dual code.
For example, if we suppose the existence of p = 8192 codewords with weight
150 in the dual of the public code (that has length n = 24576 and dimension
p = 8192), searching for one of them through the Stern algorithm would require
more than 292 operations.

4 Fast Computations with Circulant Matrices

By exploiting the isomorphism described in Section 2, between the algebra of p×p
binary circulant matrices and the ring of polynomials R = GF (2)[x]/(xp + 1),
computing the determinant of S and Q to check their invertibility, and computing
the k0×n0 public matrix G′ = S−1GQ−1, require only a few tens of operations
in the ring R. Anyway, the key generation process is not the critical one for
efficiency, so we will focus complexity analysis on the vector-matrix products
used for encryption and decryption.
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4.1 Vector-Matrix Product

The isomorphism extends also to vector-matrix product. Let us suppose to have
a vector u = (u0, u1, . . . , up−1), and a circulant p × p matrix A mapped to
the polynomial a(x) ∈ R by the isomorphism. The product w = u · A =
(w0, w1, . . . , wp−1) will then be the vector whose components satisfy the equa-

tion
∑p−1

i=0 wix
i ≡ (

∑p−1
i=0 uix

i) · a(x) (mod xp + 1). This vector-matrix product
computation can be accelerated basically with two possible strategies: using fast
polynomial multiplication algorithms based on evaluation-interpolation strate-
gies, or using optimized vector-matrix product exploiting the Toeplitz structure.

To compare the methods, we will count the total number of bit operations
needed. We will consider, for the näıve implementation, a number of operations
given by the number of non-zero entries in the matrix. For the dense scenario
we will consider that half of the entries are non-null. The starting value is hence
p2/2 operations. The two phases we will focus on are:

– The product u ·G′ used for encryption, where u is the message, seen as a
vector of k0 elements in R, and G′ is the public k0 × n0 matrix with entries
in R. The cost with the näıve estimate is p2k0n0/2 operations.

– The last step of decryption, that is, the product u′ ·S = u, where u′ is again
a k0 vector in R, and S is a k0×k0 invertible matrix. The näıve cost for this
step is p2k2

0/2.

5 Fast Polynomial Product

All the algorithms for fast polynomial multiplication are based on the same
scheme: evaluation, point-wise multiplication, interpolation. The first strategy
of this kind was proposed by Karatsuba [17] and then generalized by Toom and
Cook [18,19]. We will call both of them Toom-s, with s the splitting order [20].

Other asymptotically faster algorithms exist for GF (2); the most interesting
ones are due to Cantor and Schönhage [21,22]. Another approach is the use
of segmentation, also known as Kronecker-Schönhage’s trick, but the threshold
between Toom-Cook and all these methods is far above 100 000 bits [23].

5.1 General Toom-Cook Approach

The Toom-s algorithm for polynomial product requires five steps:

– Splitting: The two operands are represented by two polynomials (f and g)
with s coefficients.

– Evaluation: f and g are evaluated in 2s− 1 points.
– Point-wise multiplication: Computed evaluations are multiplied to obtain

evaluations of the product, for example (f · g)(0) = f(0) · g(0).
– Interpolation: Once the values of the product f · g in 2s − 1 points are

known, the coefficients are obtained via interpolation.
– Recomposition: The coefficients of the result are combined to obtain the

product of the original operands.

http://bodrato.it/papers/#SCN2008
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Starting from [24], where the Toom-2,3,4 algorithms in GF (2) where described
in full details, we can estimate the cost of any one of the steps. Each product
of two polynomials would require the cost for evaluation Ce counted twice, the
cost for point-wise multiplication Cm, plus the cost for interpolation and recom-
position Ci. Since we are dealing with vector-matrix products, where the matrix
is fixed a priori, we can assume that all evaluations for the fixed operand are
pre-computed.

Moreover, when multiplying a k0 vector by a k0 × n0 matrix, we can reduce
the count to the strictly needed operations. We assume a pre-computation for
all the evaluations of the matrix entries, and we need to evaluate the vector
components only once: so we will count only k0 evaluations. After the n0k0

point-wise multiplications, we combine evaluated products figi(α), fjgj(α), . . .
to obtain evaluations for the results like

(figi + fjgj + · · · )(α) ,

then we interpolate only the n0 result polynomials: so we count only n0 inter-
polations and recompositions.

5.2 Toom-2, also Known as Karatsuba

The Toom-2 algorithm splits the operands in two parts. Starting from two p-bits
long polynomials we operate on ⌈p/2⌉-bits long parts.

Evaluation requires an addition of two parts. The 3 point-wise multiplication
operates on parts, and gives doubled parts for results. Interpolation requires
5/2 additions on such doubled parts. Since an addition of two polynomials in
GF (2)[x] with degree d requires d operations, we can conclude that the use of
Karatsuba to multiply a degree p polynomial by a fixed one requires:

– ⌈p/2⌉ operations for the evaluation,
– 3 multiplications of polynomials with degree ⌈p/2⌉,
– 5⌈p/2⌉ operations for the interpolation.

5.3 Cost of Exact Divisions

All the Toom-s with splitting order s > 2 require some exact divisions. We need
to evaluate the cost of this kind of operation.

First of all, we highlight the fact that all the divisions needed for Toom-3
and Toom-4 in GF (2)[x] are divisions by binomials of the form xw + 1, with
w ∈ {1, 2, 3}. Moreover, all the divisions in the Toom-Cook algorithm are exact
divisions [24] and, therefore, can be computed in linear time [25]. When the
divisor is in the very special form xw +1, exact division can be obtained in-place

with the following simple code.
Input: the degree d, the vector (a0, . . . , ad) of coefficients of the polynomial

A =
∑d

i=0 aix
i, the divisor in the form D = xw + 1.

Output: the overwritten vector (a0, . . . , ad−w) of coefficients of the new poly-

nomial A/D =
∑d−w

i=0 aix
i.

Execution: for i = 0 . . . (d− w), ai+w ← ai+w + ai.
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So, a little bit less than d operations are required for any exact division
needed in Toom-3 and Toom-4 on GF (2). Since the division process cannot be
parallelized as the addition does, we add an extra weight and we double the
cost: we consider 2d bit-operation for each exact division. The given algorithm
overwrites its input, so it should be slightly modified for general use; however,
all the algorithms presented in [24], and proposed here, works with in-place

operations. Other operations used in Toom-Cook are bit-shifts, but they can
be avoided with word-alignment [23] in software implementation, and they have
practically no cost in hardware implementations.

5.4 Toom-3, and Toom-4

From [24], we take the number of basic operations needed for the 3 and 4-way
splitting. As usual we consider p-bits operands.

With Toom-3 we operate on ⌈p/3⌉-bits long parts. Evaluation requires 5
additions and 2 shifts per operand. The 5 point-wise multiplications involve
⌈(p/3)+2⌉-bits long parts, because of evaluations in x and x+1, which increase
the degree. Interpolation operates on doubled parts, and requires 10 additions,
2 shifts and 2 divisions by x + 1, plus 2 other additions for final recomposition;
in total we have a cost of 10 + 2 · 2 + 2 additions.

The Toom-3 product by a fixed operand hence requires:

– ⌈p/3⌉ · 5 bit operations for the evaluation,
– 5 multiplications of polynomials with degree ⌈(p/3) + 2⌉,
– ⌈(p/3) + 2⌉ · 2 · 17 bit operations for the interpolation.

For Toom-4 we have ⌈p/4⌉-bits long parts. Evaluation requires 15 additions and
9 shift per operand. The 7 point-wise multiplications involve ⌈(p/4) + 3⌉-bits
long parts. Interpolation operates on doubled parts, and requires 29 additions,
16 shifts and 4 divisions by x2 + 1 and x3 + 1, plus 3 other additions for final
recomposition; in total we have the cost of 29 + 4 · 2 + 3 additions.

The Toom-4 product by a fixed operand hence requires:

– ⌈p/4⌉ · 15 bit operations for the evaluation,
– 7 multiplications of polynomials with degree ⌈(p/4) + 3⌉,
– ⌈(p/4) + 3⌉ · 2 · 40 bit operations for the interpolation.

All Toom-s methods can be used recursively and have asymptotic complexity
O(plog

s
(2s−1)), but the bigger the splitting order, the heavier the overhead of

evaluation/interpolation.

5.5 Numerical Examples

Let us fix the following choice for the system parameters: p = 8192, k0 = 2, n0 =
3, that are the choices adopted in the second variant of the cryptosystem (see
Section 3.3).

The use of 2 recursions of Toom-4, 1 of Toom-3 and 4 of Toom-2 reduces one
p-bit multiplication to 72 ·5·34 = 19 845 11-bits sized sub-products, each one with
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a cost of 112/2 operations. We have an overhead of 301 655 operations for evalu-
ations and 1 617 574 for interpolation. The total cost of computing u ·G′ is then
301 655·k0+1617 574·n0+72·5·34·112·k0·n0/2+n0·p = 12 684 343 bit-operations,
included the final reduction modulo xp + 1. This count gives a far smaller re-
sult than the näıve technique, that requires k0 · n0 · p

2/2 = 201 326 592 opera-
tions. With the same approach, we can obtain the cost of computing u′ · S = u.
8 657 332 operations using Toom-Cook, versus 134 217 728 with a näıve imple-
mentation.

With parameters p = 4096, k0 = 3, n0 = 4, that are very similar to the
choices adopted for the proposal in [9], we assume 3 recursions of Toom-4 and 3
of Toom-2, that result in a number of bit operations for u ·G′ of 8 074 444 versus
100 663 296 with the näıve approach. While for the decryption step u′ · S = u

we obtain 6 166 127 bit operations versus 75 497 472.

6 Vector-Toeplitz Convolution

Another approach to speed-up polynomial products in cryptography is the Wino-
grad convolution [26]. It is very similar to Karatsuba’s multiplication, but it has
a smaller overhead. We shortly recall it. Given an even sized 2d × 2d Toeplitz
matrix T, we can factorize it as follows:

(

T0 T1

T2 T0

)

=

(

I 0 I

0 I I

)





T1 −T0 0 0

0 T2 −T0 0

0 0 T0









0 I

I 0

I I



 ,

where I is the d×d identity matrix, and T0,T1,T2 are themselves d×d Toeplitz
matrices, as also T1−T0 and T2−T0. It follows that the vector-matrix product
(V0,V1) ·T can be computed with three steps:

– the addition V0 + V1,
– 3 vector-matrix sub-products by d× d Toeplitz matrices,
– 2 more additions to obtain the result.

Since circulant matrices are also Toeplitz and the proposed size p is a power
of 2, this optimization can be used for as many recursions as needed for our
computations. Asymptotic complexity is exactly the same for Toom-2 and this
approach, but if we analyze again the pre- and post-computation, we obtain:

– p/2 operations for the “evaluation”,
– 3 multiplications with dimension p/2,
– p/2 operations for the “interpolation”.

6.1 Numerical Examples

This method cannot be mixed with Toom-Cook, and its main advantage is that
it is much easier to implement in software.

If we consider again p = 8192, k0 = 2, n0 = 3, the use of 11 recursions of
Winograd’s method leads to 14 106 224 operations for encryption versus 12 684 343
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obtained with Toom. The decryption step u′ · S = u can be completed in
9 871 080 operations, around 15% more than with the polynomial strategy, but
with a far simpler source code. With smaller parameters, for example p =
4096, k0 = 3, n0 = 4, the difference is smaller: 11 recursions used for encryption
give 8 103 706 operations, only 1% more than the cost computed using Toom-
Cook.

On the other hand, the use of polynomials gives greater flexibility. For exam-
ple, with the odd parameter p = 5555, k0 = 2, n0 = 3, 2 recursions of Toom-4 and
5 of Toom-2 give a cost for encryption of 7 310 809 bit operations, a 12× speed-
up with respect to the näıve approach. For the same parameters, Winograd’s
trick is not applicable at all, because p is odd.

7 Cryptosystem Complexity Assessment

In this section we evaluate the encryption and decryption complexity of the pro-
posed cryptosystem, by considering the usage of efficient computation algorithms
suitable for the particular structure of the matrices involved.

Encryption complexity is due to multiplication of the cleartext by the code
generator matrix and to addition of intentional errors. It can be expressed as
follows:

Cenc = Cmul (u ·G
′) + n (12)

where Cmul (u ·G
′) represents the number of operations needed for calculating

the product u ·G′ and n binary operations are considered for the addition of
vector e.

The decryption complexity, instead, can be divided into three parts:

Cdec = Cmul (x ·Q) + CSPA + Cmul (u
′ · S) (13)

where Cmul (x ·Q) and Cmul (u
′ · S) represent the number of operations needed

for computing x · Q and u′ · S, respectively, while CSPA is the number of op-
erations required for LDPC decoding through the sum-product algorithm. In
expressions (12) and (13), Cmul (u ·G

′) and Cmul (u
′ · S) involve multiplication

by dense matrices, so we can resort to efficient algorithms, like the Toom-Cook
method described in the previous section. Cmul (x ·Q), instead, expresses the
number of operations needed to perform the product of a 1×n vector by a sparse
n×n matrix (Q, with row/column weight equal to m). For this reason, we resort
to the näıve implementation, that has the lowest complexity Cmul (x ·Q) = n·m.

For the decoding complexity, the following expression can be adopted [16]:

CSPA = Iave · n [q (8dv + 12R− 11) + dv] (14)

where Iave is the average number of decoding iterations, q is the number of
quantization bits used inside the decoder and R = k0/n0 is the code rate. Nu-
merical simulations have permitted to verify that, for the codes involved in the
first cryptosystem implementation, assuming q = 6 and t = 190, it is Iave ≃ 5.
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For the codes used in the new variant, instead, assuming q = 6 and t = 470, it
is Iave ≃ 9. These values of Iave are further reduced for smaller t.

As concerns the public key length, the proposed cryptosystem uses, as the
public key, a generator matrix, G′, formed by k0 × n0 circulant blocks with size
p. Therefore, it can be completely described by k0 · n0 · p bits.

McEliece Niederreiter RSA QC-LDPC QC-LDPC
(original) McEliece 1 McEliece 2

Key Size (bytes) 67072 32750 256 6144 6144

Information Bits 524 276 1024 12288 16384

Transmission Rate 0.5117 0.5681 1 0.75 0.6667

Enc Ops per bit 514 50 2402 658 776

Dec Ops per bit 5140 7863 738 112 4678 8901

Table 1. Comparison between the proposed versions of QC-LDPC based
McEliece cryptosystem and other schemes

Table 1 reports the characteristics of the two proposed variants of McEliece
cryptosystem based on QC-LDPC codes, both secure against the known at-
tacks. The first variant (noted as QC-LDPC McEliece 1) adopts the choice of
the system parameters we have already proposed in [9], with the only difference
of p = 4096 instead of 4032. We have considered p coincident with a power of
two also in this version because, for such values, a circulant matrix with odd
row/column weight is always non-singular, as shown in the Appendix A. The
choice of p = 4096 instead of 4032, however, has no effect on the system security.
In the second variant (noted as QC-LDPC McEliece 2), the system parame-
ters have been changed in order to increase the system security level. From the
sake of comparison, also the original McEliece, the Niederreiter and the RSA
cryptosystems are considered. The key length for the Niederreiter cryptosystem
coincides with the number of bits in the non-systematic part of matrix H.

From the security viewpoint, these systems are not equivalent: the first pro-
posal exhibits a security level of 271 binary operations, while the second one
exceeds the threshold of 280 binary operations, that is currently considered as
an up to date technology limit. The first three solutions are instead assumed
with their standard parameters [4]. In such case, the McEliece and Niederreiter
cryptosystems are not able to reach a similar security level; however, more secure
versions would yield increased complexity.

It results from the table that both the proposed variants of McEliece cryp-
tosystem based on QC-LDPC codes represent a trade-off between the original
McEliece cryptosystem (and its Niederreiter version) and other cryptosystems,
like RSA. In fact, they represent an advance in overcoming the drawbacks of the
original McEliece cryptosystem: they have very smaller public keys and increased
transmission rate. With respect to RSA, the proposed cryptosystems have the
advantage of very lower complexity, that is only slightly increased with respect
to the original McEliece version (that, moreover, has a lower security level).
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8 Conclusions

We have elaborated on an implementation of the McEliece cryptosystem based
on QC-LDPC codes we have recently proposed for overcoming the main draw-
backs of its original version, that has been recently discovered to be subject
to dangerous attacks. We have described how these attacks exploit the sparse
character of some constituent matrices, together with their diagonal form, and
we have proposed two new variants of the cryptosystem that do not allow the
application of such attack techniques. As typical in cryptography, this does not
exclude that further attacks might be conceived in the future. So, an effort
should be made for getting a coding based cryptographic construction with a
supporting proof of security, similar to what done in the related area of lattice
based cryptography [27]. For the time being, based on our knowledge, we can
say that possible progress in cryptanalysis of the proposed system will require
the definition of substantially new strategies.

We have also reported complexity estimates based on the Toom-Cook method
for polynomials in GF (2)[x]. They can be partially extended to other cryptosys-
tems, such as NTRU, where polynomials modulo xn ± 1 are used, and ECC
on GF (2n). For both these systems, the use of Karatsuba’s and Winograd’s fast
convolution were proposed [28,29], and the Toom-Cook method could be applied
as well, even if its effect should be not as impressive as in the proposed system.

The promising results obtained with Toom-Cook have their main reason in
the use of matrices. The additional cost of fast multiplication methods is quite
big, that is the reason why they are effective only for big operands. Numeri-
cal examples given in Section 5.5 show that, for deep recursion, more than half
the cost of a single product comes from evaluation and interpolation. This cost,
however, is reduced in the proposed cryptosystem, because only a few evalua-
tions and interpolations are needed for a set of multiplications, so that deepest
recursion and biggest saving are possible.

The application of the Toom-Cook method permits to reduce the encryption
and decryption complexity of the proposed cryptosystems, that, furthermore,
are able to overcome the main drawbacks of the original McEliece cryptosystem
in terms of key size and transmission rate. For these reasons, they can be seen
as a valuable trade-off between the original McEliece cryptosystem and other
widespread solutions, like RSA.
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A Matrix Inversion in GF (2)[x]/(xp + 1)

For whatever choice of p, we work on the polynomial ring R = GF (2)[x]/(xp+1).
In any case xp + 1 is divisible by x + 1, because we are working in characteristic
2, so that the ring is not a field: it has zero divisors and non invertible elements.

If the chosen p is a power of two (p = 2a), then x+1 is the only prime factor
of xp + 1 ≡ (x + 1)p and, in such a case, it is very easy to check if an element in
R is not invertible. In fact, it suffices checking if 1 is a root, or, equivalently, if
the number of non-zero (1) coefficients is even.

If p is not a power of two, the invertibility check becomes more involved.
Obviously general theorems are still valid, so that we can say that a generic
element f ∈ R is invertible if and only if it is coprime with xp + 1, and a matrix
is invertible if and only if its determinant is invertible. But invertible matrices
can exist that only contain non invertible entries.

For example, with p = 3, we have x3 + 1 ≡ (x + 1) · (x2 + x + 1) (mod 2).
Neither x+1 nor x2+x+1 are invertible, but the following matrix is non-singular:

(

x + 1 x2 + x + 1
x2 + x + 1 x + 1

)

·

(

x2 + 1 x2 + x + 1
x2 + x + 1 x2 + 1

)

≡

(

1 0
0 1

)

∈GF (2)[x]/(x3+1).

So one needs a clever algorithm to compute the inverses of the matrices, either
by computing the inverse on any sub-ring GF (2)[x]/dα where dα|xp + 1, then
combining the results with the Chinese Remainder Theorem, or by a modified
version of Gaussian inversion, exploiting Bezout’s identity to obtain a pivot on
columns without invertible elements.
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