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Abstract 

 
There has been an increasing interest in using 

unlabeled data in semi-supervised learning for various 
classification problems. Previous work shows that 
unlabeled data can improve or degrade the classification 
performance depending on whether the model assumption 
matches the ground-truth data distribution, and also on 
the complexity of the classifier compared with the size of 
the labeled training set. In this paper, we provide a new 
analysis on the value of unlabeled data by considering 
different distributions of the labeled and unlabeled data 
and showing the migrating effect for semi-supervised 
learning. Extensive experiments have been performed in 
the context of image retrieval application. Our approach 
evaluates the value of unlabeled data from a new aspect 
and is aimed to provide a guideline on how unlabeled 
data should be used.  

 
1. Introduction 
 

Recently, there has been increasing interest in using 
unlabeled data for classification [1-8]. The motivation for 
this comes from the fact that labeled data is typically 
much harder to obtain compared to unlabeled data. This is 
valid in many applications, including web search, text 
classification, genetic research, and machine vision where 
an enormous amount of unlabeled data is available with 
little cost.  

There are two existing approaches of taking advantage 
of unlabeled data. The first one is semi-supervised 
learning [1-4] and the second one is active learning [5-8]. 
In semi-supervised learning, one trains a classifier based 
on the labeled data as well as unlabeled data. Typically, a 
coarse classifier is first trained on the smaller labeled data 
set, and then it is used to give probabilistic labels to the 
unlabeled data. Finally, the enlarged, or hybrid data set 
consisting of both labeled and unlabeled data with 
probabilistic labeling is applied to re-train the classifier. 
In active learning, the coarse classifier is still based on the 
labeled data set, but instead of having all the unlabeled 

data labeled by the coarse classifier, a set of “most-
informative” unlabeled data is selected. This set is then 
labeled by a human, as is the case of the relevance 
feedback approach of content-based image retrieval 
(CBIR) [7, 8]. The added small set of unlabeled data is 
believed to greatly enhance the construction of the new 
classifier. The advantage of the active learning is that as 
little data as possible will be labeled to achieve the 
improved performance.  

There have been many studies on both active learning 
[5-8] and semi-supervised learning [1-4]. Past theoretical 
and experimental work showed that using the maximum-
likelihood (ML) estimation approach (via EM or other 
numerical algorithms when unlabeled data was present) 
improved classification accuracy as more unlabeled data 
was added [2, 4]. Overall, these publications advance an 
optimistic view that unlabeled data can be profitably used 
wherever available.  

However, in [2, 3], there are also reports that 
unlabeled data degrades the performances when it is 
added, e.g., Hughes phenomenon in [3]. Recently, 
Cozman et al. [9] conducted experiments on synthetic 
data aimed at understanding the value of unlabeled data. 
They reported that the classification accuracy could 
degrade more and more as more unlabeled data is added. 
Cozman et al. found that the reason for the degradation is 
the mismatch of the model assumption and the ground 
truth data distribution.  

Considering all these aspects, several questions arise: 
when will unlabeled data help, and more importantly, 
how much do they help in classification and what are the 
underlying characteristics of the model that determines 
the usefulness of the unlabeled data? Conclusion from 
previous work [9, 1-4] on model assumption is that the 
ML estimator is unbiased and both labeled and unlabeled 
data contribute to a reduction in classification error by 
reducing variance as long as modeling assumptions match 
the ground-truth data. If model assumption does not 
match the ground-truth data, unlabeled data can improve 
or degrade the classification performance, depending on 
the complexity of the classifier compared with the size of 
the labeled training set [9, 4]. 



However, there is an underlying assumption that is 
often implicitly ignored or not addressed in the previous 
work [9, 4]: labeled data and unlabeled data are from the 
same distribution. [9, 4] focused on the probabilistic 
structure for the model and the ground-truth data and 
whether they match or not. In this paper, instead of 
looking into the model assumption issue, we investigate 
the value of unlabeled data in the semi-supervised 
learning when the labeled data and unlabeled data have 
different distributions. 

Since this work is motivated from our research on 
content-based image retrieval, where a large amount of 
unlabeled images are available without cost, it is therefore 
natural for us to provide experiments on image 
classification problems for CBIR. The goal is to propose 
a guideline for any system that wishes to utilize unlabeled 
data to assist supervised learning in CBIR. 

 
2. Problem Formulation 

 
In image retrieval, there is a limited labeled training 

sample through relevance feedback [7, 8]. Limited 
training data would only result in weak classification. 
Considering that there are a large number of unlabeled 
images in a given database, we may use them to boost the 
weak classifier learned from the limited labeled data, 
since unlabeled data may contain useful information 
about the joint distributions over features. In such case, 
the hybrid training data set D consists of a labeled data set 

},,1),,{( NicL ii K== x  and an unlabeled data set 
},,1,{ MiU i K== x . ix is the feature vector of an image 

and ic is its label that is either relevant or irrelevant, i.e., 
}1,1{ −+∈c . The image retrieval system acts as a 

classifier to divide the images in the database into two 
classes, either relevant or irrelevant. The labeled data L is 
obtained by the query and relevance feedback, and the 
rest of the images in the database contribute to the 
unlabeled data set U. Denote the labeled positive images, 
i.e., relevant images, as LP , and the labeled negative 
images, i.e., irrelevant images, as LN and denote the 
unlabeled positive images as UP  and the unlabeled 
negative examples as UN . Note that LL NPL ∪= , 

UU NPU ∪= , and ULD ∪= . 
The labeled-unlabeled data problem is a combination 

of both supervised and unsupervised problems [10]. We 
want to build a classifier that generates a label )(xc)  for a 
given input image x. The classifier is built from a 
combination of existing labeled and unlabeled data sets. 
To build a classifier, we usually assume a model for the 
hybrid data (labeled data, or unlabeled data) under 
investigation. Some common assumptions used in the 
image retrieval community are, e.g., the feature 

independence among feature components, and mixture of 
Gaussians (or Gaussian) as the probabilistic structure of 
the image data set.  When the assumed probabilistic 
structure matches the structure that generates the data, we 
say that the model structure is “correct”. 

                      
(a) UL PP = , UL NN =                (b) UL PP = , UL NN ≠  

                       
(c) UL PP ≠ , UL NN =               (d) UL PP ≠ , UL NN ≠  
Figure 1: Four cases of distribution of L and U 

                           (    : LP ,     : UP ,       : LN ,    : UN ) 

In the previous work [9, 4], the underlying assumption 
is that L and U are from the same distribution. In this 
work, we translate this assumption as UL PP =  and 

UL NN =  for simplicity. The “=” means that the labeled 
and unlabeled positive images are from the same 
distribution not that two sets are same. In most 
applications (e.g. CBIR) the size of U is much larger than 
the size of L. Therefore, when L and U are from the same 
distribution, it is equivalent to say L is like a subset of U.  
Then it is easy to understand the role of unlabeled data in 
semi-supervised learning, since adding more unlabeled 
data with the same distribution simply enlarge the 
representative training data set. When L and U are not 
from the same distribution, there are three cases (i) 

UL PP =  and UL NN ≠ (ii) UL PP ≠ and UL NN =  (iii) 

UL PP ≠ and UL NN ≠ . An illustration of the above four 
cases is shown in Figure 1.  

Previous work studied the value of unlabeled data 
under the correct and incorrect model assumption given L 
and U are from the same distribution. In this work, we 
take a new aspect to investigate the value of unlabeled 
data in the semi-supervised learning when L and U are 
not from the same distribution. Model selection is not our 
concern in this sense. 

In the scenario of image retrieval, it is most likely to 
model the positive and negative images as two-class or 

)1( x+ -class classification problem. In this model, the 
positive images are from one class and the negative 
images are from one class or from multiple classes with 
unknown C. Although subclasses within a group can also 
exist for positive images, e.g., red car and white car 
within car category, they are usually treated as one class 
for simplicity. This corresponds to the cases (a) and (b) in 
Figure 1. Cases (c) and (d) correspond to )1( +y -class 



and )( xy + -class classification problem and are 
considered as rare cases in image retrieval. In Section 3, 
we are investigating the value of unlabeled data for the 
cases (a) and (b) and leave the investigation of cases (c) 
and (d) in our future work. 
 
3. Experiments 
3.1. Case a: L and U with same distribution 

In this first experiment, we test the value of unlabeled 
data under the same distribution (case a) on classification 
error. To visualize the effect of the unlabeled data, we 
adopt the same LU-graph as in [9].  

Synthetic data is simulated to provide a better control 
of the data distribution. Gaussian model is used for both 
positive and negative samples. The centroid of the 
positive samples is placed at the origin while the negative 
samples have their centroid randomly placed with a 
distance of 0.5 to the origin. We assume feature 
independence and the variances of the positive and 
negative are randomly selected in the range (0.1~0.3). 
The feature dimension of each sample is 10. The labeled 
data set has a fixed size of 10. We vary the number of 
unlabeled data in semi-supervised learning from 0%, 20% 
to 80% and the size of the whole dataset from 50 to 800. 

The expectation-maximization (EM) [10] algorithm is 
employed for semi-supervised learning. The Gaussian 
assumption is made for L and U in the EM algorithm.  
Figure 2 shows the precision in the top 20 retrieved 
positive samples. Precision measures the purity of the 
retrieved set, i.e., the percentage of relevant objects 
among those retrieved.  
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Figure 2: Precision for top 20 retrieved positive samples 

It is clear in Fig. 2 that when L and U are from the 
same distribution, adding more unlabeled data certainly 
helps improve the precision. As more and more unlabeled 
data is added, the improvement becomes less significant. 
This agrees with the results by the other researchers. 
 
3.2. Case b: L and U with different distribution 

However if the labeled negative samples are not 
representative, i.e., UL NN ≠ , adding more unlabeled 
data will degrade the classification performance as shown 
in Figure 3.  In this case, positive samples are still placed 
at the origin and two negative classes have centroids 

placed with a distance of 0.5 to the origin. The labeled 
negative samples are from one negative class only, so 
they are not representative for the whole unlabeled data. 
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Figure 3: Precision for top 20 retrieved positive samples 

It is clear that more unlabeled data will degrade the 
classification performance when L and U have different 
distributions. This is reasonable because semi-supervised 
learning assumes that the negative samples are generated 
from the same class. This assumption is no longer valid in 
our test. More unlabeled data just won’t help. 
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Figure 4: Precision for top 20 retrieved positive samples 

 
3.3. Migrating effect of different distribution 

The labeled and unlabeled data can contribute to a 
reduction in variance in semi-supervised learning under 
the ML estimation [4]. In this experiment, we test the 
value of unlabeled data by changing its probabilistic 
distribution structure with addition of different noises. In 
this work, we consider the case of adding noise to the 
unlabeled negative samples only so that UL PP =  but for 
the negative data it is varying from UL NN =  to 

UL NN ≠ . Gaussian and Laplacian distributed noise [11] 
is considered. The purpose of this experiment is to see the 
migration effect of the unlabeled data for L and U from 
same to different distribution. 

Figure 4 shows the results. The signal-to-noise (SNR) 
ratio is used to control the magnitude of the noise added 
to the unlabeled negative samples. In general, when the 
distribution of the unlabeled data is migrating from same 
distribution to different distribution, i.e., from UL NN = to 

UL NN ≠ , adding more unlabeled data (the size of L is 
fixed at 10) will degrade the precision. It is also 
interesting to point out that adding noise of different 
distribution (e.g., Laplacian) other than Gaussian, will 
have the worse effect on the value of unlabeled data. This 



is simply because adding noise other than Gaussian will 
change the distribution of the unlabeled data more 
noticeably. 

 
3.4. Detect different distribution 

The results in Section 3.1 to 3.3 show that unlabeled 
data will help if L and U are from the same distribution, 
otherwise, more unlabeled data will degrade the 
performance depending on the degree of difference 
between distribution of L and U, i.e., migrating effect. 
Then it is natural to ask a question: how to detect whether 
L and U are from the same distribution. The purpose is to 
use unlabeled data wisely only when it helps.  

In statistics, parametric and non-parametric methods 
can be applied to test if two series of random variables are 
from the same distribution. Since it is difficult to have the 
accurate model of the image database, parametric testing 
is hard to apply. We will apply non-parametric testing 
instead. Commonly used non-parametric testing methods 
are Dixon Test,  Wilcoson Test, and Median Test  [12].  

A subset of Corel dataset consisting of 14 categories  
with 99 images in each category is used for the 
experiments. Each time two categories are randomly 
chosen as positive and negative images. 20 images are 
randomly chosen as the labeled dataset while the rest used 
as unlabeled data. Table 1 shows the rejection value 
under different confidence level using Dixon test [12]. 
The image features are 37-dimension of color moments 
(9) in HSV color space, wavelet moments for texture 
(10), and edge-map based structure features (18) [13]. 
The distribution of unlabeled negative images is changed 
by the additive Laplacian noise. The larger rejection value 
is, the higher probability that L and U are from different 
distributions.  The rejection value, e.g., 10 for 95% 
confidence level can be used as an indicator to measure 
the difference of distribution of L and U.   

4. Discussion 
Different from the previous work focusing on the 

probabilistic model selection, we take a new aspect on the 
value of unlabeled data in semi-supervised learning. We 
investigate the migrating effect of different probabilistic 
distribution of labeled and unlabeled data for image 
retrieval problem.  The purpose is to provide a guideline 
to use unlabeled data wisely only when it helps. Our 
results show that unlabeled data helps only if L and U are 
from the same distribution. Investigation of cases (c) and 
(d) in Figure 1 will be our future work. 

In this paper, we investigate the value of unlabeled 
data in the semi-supervised learning rather than in the 
active learning. Active learning  [4] or selective sampling 
[5], studies the strategy for the learner, e.g., machine to 
actively select samples to query the teacher, e.g., user for 

labels, in order to achieve the maximal information gain 
in decision-making. How to select a most-informative 
subset of unlabeled data for active learning will be 
investigated in our future work as well. 

Table 1: Detect different distribution of L and U 
Rejection 

Value 
UL NN :

 
.: LapNN UL +

 (3dB) 
.: LapNN UL +

(10dB) 
.: LapNN UL +

(20dB) 
.: LapNN UL +

(40dB) 

99% 12.1 16.1 15.2 13.3 13.2 

95% 8.8 11.9 11.6 10.9 10.3 

90% 8.1 10.3 10.4 8.9 8.5 

80% 7.1 8.6 9.1 8 7.7 

C
on

fid
en

ce
  L

ev
el

 

50% 4.9 6.1 6.4 6.1 5.7 
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