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In this paper, the nonlinear dynamic behaviour of an electrical machine exhibiting nonlinear vibration 
is investigated using a new analytical technique, namely Optimal Homotopy Asymptotic Method. 
This study provides an effective and easy to apply procedure which is independent on whether or not 
there exist small parameters in the considered nonlinear equation, different from perturbation 
methods, which require the existence of the small parameter. The approximate analytic solution is in 
very good agreement with the numerical simulations results, which prove the reliability of the 
method. 
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1. INTRODUCTION 

Electrical machines are widely used in engineering applications and industry due to their reliability. 
They are dynamical systems encountering dynamical phenomena which can be detrimental to the system. 
From engineering point of view it is very important to predict the nonlinear dynamic behaviour of complex 
dynamical systems, such as the electrical machines. This is a significant stage in the design process, before 
the machine is exploited in real conditions, avoiding in this way undesired dynamical phenomena which 
could damage the system. Basically, the electric machines share the same dynamical problems with classical 
rotor systems, having specific sources of excitation, which lead to nonlinear vibration occurrence. 

The main sources of dynamic problems are the unbalanced forces of the rotor [1], [2], bad bearings or 
nonlinear bearings [3], [4], mechanical looseness, misalignments, other electrical and mechanical faults 
which generate nonlinear vibration in the system. These problems are usually solved by numerical 
simulations [5], experimental investigations [6], [7] or by analytical developments [8], [9]. 

In general, the nonlinear vibration problems are usually solved using perturbation methods, which are 
the most used analytical techniques. Some of the most used methods are the Lindstedt-Poincare method [10], 
the Krylov-Bogoliubov-Mitropolsky method [11], [12] the Adomian decomposition method [13] and other 
perturbation method [14]. Unfortunately, as it is well-known, the perturbation methods have their limitations 
since they are based on the existence of a small parameter and especially in strongly nonlinear systems these 
classical methods fail. Therefore scientists are continuously concerned in developing new analytical 
techniques which aim at surmounting these limitations. 

Recently, new powerful analytical tools were developed, such as the Variational Iteration Method [15], 
[16], [17], [18], [19], [20], Homotopy Analysis Method [21], [22], Homotopy Perturbation Method [23], 
[24], [25], [26] the parameter-expanding method [27], in an attempt to obtain effective analytical tools, valid 
for any strongly nonlinear problems. 

In this paper, a new analytical procedure, namely Optimal Homotopy Asymptotic Method is employed 
in order to study the problem of nonlinear vibrations of an electric machine. The investigated electrical 
machine is considered to be supported by nonlinear bearings and the assumption made in development of the 
mathematical model is that these bearings are characterised by nonlinear stiffness of Duffing type. In the 
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same time, the entire dynamical system is subjected to a parametric excitation caused by an axial thrust and a 
forcing excitation caused by an unbalanced force of the rotor, which is obviously harmonically shaped. In 
these conditions, the dynamical behaviour of the investigated electrical machine will be governed by the 
following second-order strongly nonlinear differential equation: 

3
1 2 2(1 sin ) sinmx k q t x k x f t+ − ω + = ω1 A)(x; =0 ; 00 =)(x , (1)

which can be written in the more convenient form: 
2 3

2 1sin sin 0x x x t x t+ ω −α ω +β − γ ω = ;  A)(x =0 ; 00 =)(x  (2)
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γ = , the dot denotes derivative with respect to time and A is the 

amplitude of the oscillations. Note that it is unnecessary to assume the existence of any small or large 
parameter in Eq.(2). 

The main purpose of the present paper is to use the Optimal Homotopy Asymptotic Method (OHAM) 
for obtaining solutions of strongly nonlinear vibration of the electrical rotating machinery under study. 

2. BASIC IDEA OF OHAM [28], [29] 

The Eq.(2) describes a system oscillating with an unknown period T. We switch to a scalar 
time . Under the transformation tT/t2 Ω=π=τ

tΩ=τ  (3)

the original Eq.(2) becomes 
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Ω Ω
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where the prime denotes the derivative with respect to τ. 
By the homotopy technique, we construct a homotopy in a more general form: 
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while N is a nonlinear operator: 
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where p∈[0,1] is the embedding parameter, h(τ,p) is an auxiliary function such as h(τ,0)=0, h(τ,p) ≠ 0 for 
p 0, λ is an arbitrary parameter. From Eqs.(2) and (3) we obtain the initial conditions ≠

A)p,( =φ 0 , 0
0

=
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τφ∂

=τ

)p,(  (8)

Obviously when p=0 and p=1, it holds: 
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where x0(τ) is an initial guess of x(τ). Therefore, as the embedding parameter p increases from 0 to 1, 
varies from the initial guess x0(τ) to the solution x(τ), so does Ω(p) from the initial guess Ω0 to the 

exact frequency Ω. 
)p,(τφ

Expanding , Ω(p) in series with respect to the parameter p, one has respectively: )p,(τφ

....)(xp)(px)(x)p,( +τ+τ+τ=τφ 2
2

10  (10)

....pp)p( +Ω+Ω+Ω=Ω 2
2

10  (11)

If the initial guess x0(τ) and the auxiliary function h(τ,p) are properly chosen so that the above series 
converges at p=1, one has 

...)(x)(x)(x)(x +τ+τ+τ=τ 210  (12)

....+Ω+Ω+Ω=Ω 210  (13)

Notice that series (10) and (11) contain the auxiliary function h(τ,p) which determines their 
convergence regions. 

The results at the m th-order approximations are given by: 

)(x...)(x)(x)(x~ m τ++τ+τ=τ 10  (14)

m10 ...~
Ω++Ω+Ω=Ω  (15)

We propose that the auxiliary function h(τ,p) to be of the form: 

[ ])(fC...)(fC)(fCp)p,(h kk τ++τ+τ=τ 2211  (16)

where C1, C2,….Ck are constants and f1(τ), f2(τ),… fk(τ) are functions depending on variable τ, k being a 
fixed arbitrary number. 

Substituting Eqs.(12) and (13) into Eq.(7) yields: 
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If we substitute Eqs.(17) and (16) into Eq.(5) and equate the coefficients of various powers of p equal 
to zero, we  obtain the following linear equations: 
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Note that Ωk can be determined avoiding the presence of secular terms in the left-hand side of Eq.(19). 
The frequency Ω depends on the arbitrary parameter λ and we can apply the so-called “principle of 

minimal sensitivity” [30] in order to fix the value of λ. We do this by imposing that 

0=
λ
Ω

d
d  (20)

At this moment, m th-order approximation given by Eq.(14) depends on the parameters C1, C2,…,Cm. 
The constants Ci can be identified via various ways, for example: collocation method, Galerkin method, least 
square method etc.  

It must be highlighted that our procedure contains the auxiliary function h(τ,p) which provides us with 
a simple way to adjust and optimally control the convergence region and rate of solution series. Note that 
instead of an infinite series, the OHAM searches for only few terms (mostly three terms). 
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3. APPLICATION OF OHAM TO THE INVESTIGATION OF NONLINEAR VIBRATION OF THE 
CONSIDERED ELECTRICAL MACHINE 

The validity of the proposed procedure is illustrated for the electrical machine whose dynamic 
behaviour is governed by Eq.(1). 

Form Eq.(18) it is obtained the following solution: 

0 ( ) cosx Aτ = τ  (21)

For i=1 into Eqs.(17) and (19), we obtain: 
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Substituting Eq.(21) into Eq.(22) it is obtained: 
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If we choose k=3 and 
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then Eq.(19) becomes for i=1: 
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Avoiding the presence of a secular term needs: 
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With this requirement, the solution of Eq.(25) is 
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Substituting Eqs.(21) and (27) into Eq.(19), we obtain the following equation: 
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where N.T. means the other nonresonant terms. 
No secular term in x2(τ) requires that 
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From Eqs.(26) and (30) we obtain the frequency in the form: 

10 Ω+Ω=Ω  (32)

The parameter λ can be determined applying the “principle of minimal sensitivity”. From Eq.(20), we 
obtain the following condition: 
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By means of Eqs.(30) and (32), Eq.(31) becomes: 
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The Eq.(31) can be written as: 
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The first order approximate solution is 

)(x)(x)(x~ τ+τ=τ 10  

or by means of Eqs.(21), (27) and (3): 
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The constants λ, Ω0, Ω, C1 and C2 can be determined from Eqs.(26), (33), (34), (35) and by means of 
the residual , which reads: 
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0 1 2 2( , , , , , ) sin sinR t C C x x x t x tλ Ω Ω = + ω −α ω +β − γ ω  

The last condition can be written with collocation method: 
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Finally, five equations with five unknowns are obtained. 
In the case when ω1=1.1, ω2=1.5, ω=1.58, α=2.75, β=12.5, γ=0.2, we obtain: 
 
λ=-1.1120201913228436, Ω0=3.282055275793561, Ω=3.3941604317791465, 
C1=-0.0007293171916262496, C2=0.000714849572157505 
 
Fig.1 shows the comparison between the approximate solution and the numerical solution obtained by 

a fourth-order Runge-Kutta method. 
 
 

 
Figure 1 Comparison of the approximate solution with the 

numerical solution: 
_______ numerical solution; _ _ _ _ _ approximate solution 

x 

t 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be seen that the solution obtained by our procedure is nearly identical with that given by the 

numerical method. 
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4. CONCLUSIONS 

In the present study, an analytical model for an electrical machine has been developed to obtain the 
nonlinear vibration response due to nonlinear stiffness. The system is parametrically excited by an axial 
thrust and at the same time a forcing excitation caused by an unbalanced force of the rotor is acting on the 
system. The mathematical model takes into account the sources of nonlinearity and the corresponding 
equation of motion is solved using the Optimal Homotopy Asymptotic Method to graphically obtain the time 
history of nonlinear response. The proposed procedure is valid even if the nonlinear equation does not 
contain any small or large parameter. The OHAM provide us with a simple way to optimally control and 
adjust the convergence of the solution series and can give good approximations in few terms. The 
convergence of the approximate solution series given by OHAM is determined by the auxiliary function 
h(τ,p). The obtained approximate analytical solution is in very good agreement with the numerical simulation 
results, which proves the validity of the method. 

This paper shows one step in the attempt to develop a new nonlinear analytical technique, which is 
valid in the absence of a small or large parameter. 
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