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Abstract

Background: Germ cell transplantation results in fertile recipients and is the only available approach to functionally
investigate the spermatogonial stem cell biology in mammals and probably in other vertebrates. In the current study, we
describe a novel non-surgical methodology for efficient spermatogonial transplantation into the testes of adult tilapia (O.
niloticus), in which endogenous spermatogenesis had been depleted with the cytostatic drug busulfan.

Methodology/Principal Findings: Using two different tilapia strains, the production of fertile spermatozoa with donor
characteristics was demonstrated in adult recipient, which also sired progeny with the donor genotype. Also, after
cryopreservation tilapia spermatogonial cells were able to differentiate to spermatozoa in the testes of recipient fishes.
These findings indicate that injecting germ cells directly into adult testis facilitates and enable fast generation of donor
spermatogenesis and offspring compared to previously described methods.

Conclusion: Therefore, a new suitable methodology for biotechnological investigations in aquaculture was established, with
a high potential to improve the production of commercially valuable fish, generate transgenic animals and preserve
endangered fish species.

Citation: Lacerda SMSN, Batlouni SR, Costa GMJ, Segatelli TM, Quirino BR, et al. (2010) A New and Fast Technique to Generate Offspring after Germ Cells
Transplantation in Adult Fish: The Nile Tilapia (Oreochromis niloticus) Model. PLoS ONE 5(5): e10740. doi:10.1371/journal.pone.0010740

Editor: Hongmei Wang, Institute of Zoology, Chinese Academy of Sciences, China

Received March 12, 2010; Accepted April 29, 2010; Published May 20, 2010

Copyright: � 2010 Lacerda et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Financial support was provided by the Brazilian National Council for Research (CNPq); Minas Gerais State Foundation (FAPEMIG); Coordination for the
Improvement of Higher Level Personnel (CAPES). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: Bruno Queiroz is affiliated with GM Alevinos LTDA, which graciously and without any costs provided the tilapias used in the present study
and facilities for the breeding experiments between transplanted males and non-transplanted females. GM Alevinos LTDA has no interest in patents, products in
development or marketed products, as well as any other related activity, and the authors therefore declare that this does not alter their adherence to all the PLoS
ONE policies on sharing data and materials.

* E-mail: lrfranca@icb.ufmg.br

Introduction

Spermatogonial stem cell transplantation is a fascinating and

very promising reproductive technology developed in 1994 by

Brinster and collaborators [1]. Although clearly presenting

phylogenetic limitations for different mammalian species [2], the

transplantation of spermatogonial cells between males can result in

a recipient animal producing fertile spermatozoa that carry the

donor genotype. First established in rodents, spermatogonial stem

cell transplantation has now been used in other mammalian

species and enabled tremendous progress investigating the

phenotypic and functional characteristics of this fundamental

testicular stem cell. This technique also represents a valuable tool

for studies involving biotechnology, in vitro culture, cryopreserva-

tion, transgenic animal production and the preservation of genetic

stocks of valuable animals or endangered species [3]. In fish, germ

cell transplantation has been performed using primordial germ

cells (PGCs) [4] or spermatogonia [5,6] microinjected into the

coelomic cavity of newly hatched salmon and trout embryos,

migrating thereafter to the undifferentiated gonads in a narrow

window of development determined by the migration of the

endogenous primordial germ cells. However, one substantial

limitation to this technique is that it takes more than a year for the

recipient salmonid gonads to become functionally mature and

produce fertile sperm [4,5,6]. More recently, using a surgical

procedure, it has been suggested that germ cell transplantation in

juvenile fish could potentially be used as an approach to preserve

endangered fish species [7].

In recent years, the Nile tilapia (Oreochromis niloticus; Cichlidae)

has become the farmed fish species with the largest production

expansion in aquaculture worldwide [8]. In addition to its fast

growth rate, early sexual maturation and its capacity to adapt to a

wide range of environmental and management conditions, the

Nile tilapia has a great potential for experimental investigations,
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particularly those related to reproductive biology [9]. Different

from mammals, in teleost fish spermatogenesis occurs synchro-

nously within cysts and is maintained by self-renewal and

differentiation of the spermatogonial stem cells to produce

spermatozoa throughout the lifetime of animals [10]. Therefore,

studying spermatogonial stem cell biology can provide unique

opportunities to improve our understanding of fish spermatogen-

esis and to develop biotechnologies applied to these vertebrates. In

this regard, we have recently established in our laboratory all the

necessary procedures for intraspecific/syngeneic spermatogonial

stem cell transplantation in sexually mature tilapia, such as for

instance the depletion of endogenous spermatogenesis using

busulfan in association with a high temperature (35uC), isolation

of tilapia spermatogonial cells and labeling of donors germ cells

[11].

The present investigation reports the fast generation of donor-

derived spermatozoa and production of normal offspring of donor

origin. Moreover, we demonstrate the functionality of cryopre-

served tilapia spermatogonial cell that, after being transplanted,

effectively colonized and were able to differentiate into sperma-

tozoa in recipient testis.

Materials and Methods

Ethics Statement
Animal handling and experimentation were consistent with

Brazilian national regulation and were approved by the Ethics

Committee on Animal Care of the Federal University of Minas

Gerais (CETEA - # 071/05).

Donor and recipient animals
For experiments to investigate the development of injected fresh

and frozen/thawed spermatogonia and generation of spermatozoa

after transplantation, wild-type coloration adult Nile tilapia

(Chitralada strain) were used as donors and recipients fishes. For

experiments to evaluate the functionality/fertility of donor-derived

spermatozoa produced after transplantation, adult hybrid Red

tilapia and adult Chitralada tilapia were used as donors and

recipient fishes respectively.

Recipient preparation
To deplete the endogenous spermatogenesis of recipient tilapia,

the fishes (n = 50) were kept at temperatures of 35uC for at least

two weeks before receiving intraperitoneally two busulfan (Sigma,

St. Louis, MO, USA) injections (18 mg/kg body weight and

15 mg/kg body weight), with a two-week interval between

injections [11].

Donor cell isolation
Germ cells were harvest from the testes of adult males (Red and

Chitralada tilapia) through enzymatic digestion [11,12]. Briefly,

testes were dissociated with 2% collagenase (Sigma, St. Louis,

MO) in Dulbecco Modified Eagle medium/Ham F-12 medium

(DMEM/F12- Gibco, Grand Island, NY) for four hours at 25uC.

The dispersed testicular tissue was then incubated with 0.25%

trypsin/1mM EDTA and 0.03% DNase I for 30 minutes under

similar conditions. An equal volume of fetal bovine serum (FBS,

Gibco) was used to inactivate the trypsin. The cell suspension was

filtered through a 60 mm mesh, centrifuged at 2006g for

10 minutes and re-suspended in DMEM/F12. An enriched type

A spermatogonia cell suspension was obtained by percoll gradient

centrifugation according to methods previously described [11,13].

After enrichment, the cell suspension was pooled for differential

plating to remove eventual testicular somatic cells [14,15]. A total

of 1.56107 cells per dish (60cm2, TPP, Switzerland) were cultured

in DMEM/F12 supplemented with 10% FBS, 10000U/L

penicillin, 10mg/L streptomycin and 10mM Na2HCO3 (Sigma)

for 12 hours at 25uC in an atmosphere of 5% CO2. Since

testicular somatic cells are able to attach to the culture dish this

procedure allowed satisfactory purification of germ cell.

Donor germ cell labeling and transplantation
Before transplantation into the testes of sexually mature tilapia,

germ cells were incubated with the fluorescent membrane dye

PKH26-GL (Sigma, St. Louis, MO), which is easily traced to

identify the transplanted cells in the recipient testes [16]. The

staining was performed following the manufacture’s guidelines with

the optimal final concentration of 9mMPKH26. In adult tilapia, the

only non-surgical access to the seminiferous tubules is via the

common spermatic duct that opens in the urogenital papilla

through the urogenital pore. Thus, three weeks after the first

busulfan injection, recipient tilapia were anesthetized with Quinal-

din solution (1:5000 in water; Merck & Co.) and then received the

donor germ cells through the common spermatic duct using a glass

micropipette (outside diameter 70 mm) under a stereomicroscope

(Olympus SZX-ILLB2-100). The collected cells were suspended in

DMEM/F12 and 0.4% trypan blue solution (1:10) at a concentra-

tion of 107 cells/mL. The injected volume was approximately 1 mL

for each recipient. As tilapia usually reproduce in the temperature of

24uC to 26uC, after the transplant the water temperature was

gradually decreased (1–2uC per day) from 35uC to 25uC.

Microscopic observation of donor-derived germ cells in
recipient tilapia
To evaluate the establishment or efficiency of the colonization

of fresh and frozen donor germ cells post-transplantation and the

development (proliferation, differentiation) of these cells in the

recipient gonads, the testes that received PKH26-labeled germ

cells were collected at specific time periods (from 1 hour to 11

weeks), immediately embedded in Jung Tissue Freezing Medium

(Leica Instruments, Nussloch, Alemanha), frozen in liquid nitrogen

and stored at 280uC. Testis samples were cryosectioned serially

and stained with DAPI (targeting DNA in the cell nucleus). The

obtained sections were analyzed under fluorescent (Olympus IX-

70) and confocal microscopies (LSM 510 Meta Zeiss, Oberkochen,

Germany). Testis fragments were also routinely prepared for

conventional light microscopy investigations.

Parentage analysis
One single experiment was developed for this purpose. Total

genomic DNA of donors (red tilapia; n = 15), recipients (Chit-

ralada tilapia; n = 4); females (Chitralada tilapia, n = 4) and F1

individuals fries with approximately two weeks of age post-

fertilization (n= 32) was extracted from dorsal fins or muscles

using the Chelex/proteinase-K technique. For each PCR reaction,

75 ng of tilapia genomic DNA, 56 IVB buffer, 40 mM dNTPs,

5 pmol forward primer, 5 pmol reverse primer and 1 unit of Taq

DNA polymerase (Phoneutria, Brazil) were used in a total volume

of 25 ml. Tilapia DNA microsatellite marker was used to evaluate

the genetic identity of the fish: UNH 104- GenBank G12257 [17].

Thermal cycling was performed using an MJ Research PTC-100.

After initial denaturation for 3 min at 95uC, DNA was amplified

in 5 cycles of polymerase chain reaction (30s at 95uC, 35s at 50uC

and 30s at 72uC) followed by another 25 cycles (30s at 95uC, 35 s

at 48uC and 30s at 72uC) and completed with a final elongation

step of 4 min at 72uC. Nine microliters of each reaction were

loaded onto 6% polyacrilamyde gel and electrophoresis was
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carried out using 16 TBE buffer. The molecular weight of the

DNA fragments was estimated using a 25-pb ladder marker

(Invitrogen) and the samples were analyzed using the Diversity

Database software (Bio-Rad).

Cryopreservation of tilapia germ cells
Testes from sexually mature tilapia (n= 20) were digested and a

spermatogonium-enriched cell suspension was obtained as de-

scribed above. Cryopreservation was performed using slightly

modified methods described by Avarbock and colleagues [18].

Briefly, aliquots of 500 mL of cell suspension (105 cells/mL) were

carefully added to an equal of volume of freezing medium (10% fetal

bovine serum, 80% DMEM/F12, 10% DMSO - Sigma, St. Louis,

MO) and distributed in 1.5 mL freezing vials. Samples were placed

in an ultrafreezer at 280uC and, after 12 h, were transferred to

liquid nitrogen (2196uC). For thawing three weeks after cryopres-

ervation, the cryotubes were placed in a water bath for 1 to 2 min at

25uC and the cryoprotective agent was removed. The trypan blue

exclusion test was used to evaluate cell viability. The proliferative

activity/viability of thawed spermatogonial cells (DNA synthesis)

was assessed using tritiated thymidine (1 mCi/mL) incorporation

into the culture for 48 hours. The cells were then pelleted, fixed with

4% buffered glutaraldehyde and routinely prepared to detect the

thymidine labeling. Thawed spermatogonial cells were transplanted

to sexually mature tilapia (n= 8) as described above.

Results

Transplantation of donor spermatogonia into busulfan-
treated tilapia
The depletion of endogenous spermatogenesis, following

busulfan treatment in association with the temperature of

Figure 1. Preparation and injection of donor germ cell suspension into the adult recipient tilapia testis. Histology of sexually mature
tilapia testis kept at 35uC, control (a) and treated with busulfan (b). Observe that seminiferous tubules of control fish show spermatogenic cysts in
different phases of development (a) whereas Sertoli cells-only (SCO) are present in most of seminiferous tubule of busulfan-treated tilapia, though old
spermatozoa (spz) produced before or during busulfan-treatment is frequently found in the seminiferous tubule lumen (b). (c) Adult tilapia testis
showing the typical morphology of type A spermatogonia (arrow heads). (d) Donor germ cell suspension enriched with type A spermatogonia (arrow
heads) obtained by density gradient centrifugation (percoll) and differential plating. For donor germ cell injection, a micropipette is inserted into the
common spermatic duct that opens in the urogenital papillae (e). After injection, the transplanted testes are stained blue (f) due to the presence of
trypan blue in the injected cell suspension. The appearance of the testes in a recipient tilapia, which did not receive germ cell transplantation, is also
shown in the upper part of Figure 1f. At a higher magnification, in transplanted testis, the seminiferous tubule lumina are completely filled with the
injected blue solution (g, arrow heads). One hour after transplantation, donor spermatogonia are observed in the lumen of a recipient seminiferous
tubules (h, arrow heads). spgB: type B or secondary spermatogonia; spc1: primary spermatocytes; spt: spermatids; Lc: Leydig cell; Ed: Efferent ductules
region; Bv: Blood vessels. Scale bar: a–b= 20mm; insert in b= 4mm; c, d, h = 10mm; e = 3mm; g= 70mm.
doi:10.1371/journal.pone.0010740.g001
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35uC, was verified in recipient testes of tilapia sacrificed at the

time of transplantation. Different from control testis (Fig. 1a),

treated tilapia rarely presented endogenous spermatogenic cysts

three weeks after the first busulfan injection (Fig. 1b). In the

current study, donor spermatogonial cells were obtained from

adult tilapia testes. Histological studies described two subtypes of

type A undifferentiated spermatogonia (presumably stem cells) in

the testis of Nile tilapia [10] and both are large single cells

presenting a prominent nucleolus (spgA, Fig. 1c). As in fish in

general and in tilapia in particular specific molecular markers for

spermatogonial stem cells are not yet known [10], the type A

spermatogonial population obtained to be transplanted in the

present study was identified and selected according to their size

and morphologic characteristics (Fig. 1d). Thus, an enriched type

A spermatogonial cell suspension was transplanted into the testes

in a single non-surgical procedure through the spermatic duct

(Fig. 1e) of recipient adult tilapia, in which endogenous

spermatogenesis had been depleted with busulfan. To monitor

the injection efficiency, a trypan blue solution was added to the

germ cell suspension. Following transplantation, the recipient

testes were stained completely blue (Fig. 1f), indicating that the

cell suspension had access to all seminiferous tubules (Fig. 1g).

Within one to two hours after transplantation, microscopic

analysis of recipient testes demonstrated that donor spermato-

Figure 2. Microscopic evaluation of recipient tilapia testis following syngeneic spermatogonial transplantation. The post-
transplantation interval (in hours/weeks) is shown at the top of each figure panel. Isolated PKH26 labeled germ cells (in red) were observed in the
seminiferous tubules lumina (b; arrow heads) or resting on the tubule walls (d; arrow heads), respectively, at one and fourteen hours post-
transplantation. The same areas shown in the panels ‘‘b’’ and ‘‘d’’ represent testis sections under bright field microscopy. From two to eight weeks
after transplantation (f, h, j, l, n, p, r; arrow heads), these PKH26 labeled germ cells, also labeled with DAPI (in blue; e, g, i, k, m, o, q), established
evident spermatogenic cysts of different sizes. Nine weeks after transplantation, donor-derived spermatozoa (spz) labeled with DAPI (s; arrow heads)
and also labeled with PKH26 (t; arrow heads) were observed in the recipient seminiferous tubule lumen. At higher magnification, inserts in ‘‘s’’ show
the sperm flagellum implantation fossa (top insert; arrow head), also illustrated by light microscopy (bottom insert; arrow head); whereas the insert in
‘‘t’’ represents the merged images from ‘‘s’’ and ‘‘t’’. Scale bars: a–b= 50mm; c–t = 10mm.
doi:10.1371/journal.pone.0010740.g002
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gonia were present in the lumen of seminiferous tubules

(Fig. 1h).

The transplantation of genetically marked germ cells is a good

approach for following the donor cell fate in recipient seminiferous

tubules [5,19]. As models carrying a reporter transgene expressed in

male germ cells, such as lacZ or gfp, are not yet available for tilapia, a

red fluorescent cell linker (PKH26-GL, a lipophilic cell membrane

dye) was used to label and track donor-derived germ cells after

transplantation [20,21]. The analysis of recipient testes by

fluorescence microscopy at 1 and 14 h post-transplantation revealed

the presence of donor germ cells in the lumen (Fig. 2a–b) and in

contact with recipient Sertoli cells (Fig. 2c–d). PKH26 labeled germ

cells in a typical cystic arrangement were evident after the second

week following transplantation. These spermatogenic cysts were

found in different sizes and presumably at different stages of

development of spermatogenesis (Fig. 2e–p). At approximately eight

to nine weeks following transplantation, spermatids and spermato-

zoa labeled with PKH26 and arranged in cystic structures and in the

lumen of seminiferous tubules, respectively, were found in the

recipient testes (Fig. 2q–t). Overall, fluorescent-labeled donor germ

cells in different phases of development were identified in multiple

seminiferous tubules in 89% (34/38) of recipient testes (Table S1).

Suggesting that donor spermatogonia can self-renew and/or stay

longer in the testes, isolated PKH26 labeled spermatogonia

surrounded by somatic cells were still observed in the seminiferous

epithelium several weeks post-transplantation (Figure S1). It is worth

mentioning that, due to the procedures of freezing and cryosection-

ing used most of the times when evaluating the recipient tilapia

testes fragments, the shape of the germ cells present inside the

spermatogenic cysts may be distorted.

Figure 3. Offspring and parentage analysis. (a) Normal offspring generate from the cross between transplanted male and female chitralada
tilapias. Scale bar = 0.9cm (b) Genomic DNA analysis of O. niloticus microsatellite marker UNH104. Genotype of recipient tilapia (lanes 2–5), donors
(lanes 6 and 7), offspring (lanes 8 and 9) and mothers (lanes 10 and 11) are shown. Alleles from donors (171pb) were detected in two progeny
individuals (rectangle), indicating that these fish were derived from donor cells and were not related to the surrogate recipients. Lanes 1 and 12 show
the internal size standards (DNA ladder).
doi:10.1371/journal.pone.0010740.g003
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The breeding of the red tilapia (O. niloticus) with Chitralada

tilapia (O. niloticus) resulted in a ratio of approximately 2:1:1 skin

pigmentation phenotype of Chitralada tilapia, spotted and red

tilapia, respectively (Figure S2). Therefore, to investigate the

functionality of the donor-derived sperm produced by spermato-

gonial transplantation, spermatogonia isolated from red tilapia

were transplanted into the testes of busulfan-treated wild-type

coloration Nile tilapia (Chitralada strain). Nine weeks post-

transplantation, the recipient fishes were used as broodstock with

females from the same strain (Chitralada). The crosses generated

normal offspring (Fig. 3a). Because at the early stage of

development the fries do not present differentiate skin color

pattern [22,23] to clearly distinguish the individuals based on their

color phenotype [24], a parentage analysis was performed on

thirty-two larvae produced from these crossbreeds using micro-

satellite marker (UNH104) to determine their genetic identity.

DNA microsatellite analysis revealed the presence of donor alleles

in two individuals (6.3%) of the F1 progeny (Fig. 3b). These data

demonstrated that the donor spermatogonial cells were the source

of the genetic material used to produce the sperm that generated

descendants of the recipient male’s offspring. Donor-derived germ

cells from syngeneic transplantation were demonstrated to

differentiate into fully functional and fertile spermatozoa in the

recipient testes.

To investigate whether tilapia spermatogonia could be cryo-

preserved and, after thawing, generate normal spermatogenesis

following transplantation to a recipient, germ cells suspensions

from adult fish were subjected to the standard procedure used for

freezing mouse spermatogonial stem cells [18]. Frozen/thawed

spermatogonia survived in culture and retained the ability to

proliferate as determined by tritiated thymidine incorporation

assays (Fig. 4a). To test the functionality of tilapia spermatogonial

cells after cryopreservation, frozen/thawed cells were transplanted

into adult testes. As evidenced by fluorescence microscopy, the

donor germ cells efficiently colonized the testes and generated

PKH26-labeled spermatogenic cysts (Fig. 4b–d) in 88% of

recipient fish (7/8; Table S2) and ultimately formed mature

spermatids (Fig. 4e) and spermatozoa (Fig. 4f) ten to eleven weeks

post-transplantation.

Discussion

This is the first report on successful, non-surgical spermatogo-

nial transplantation directly into the testes of adult fish. The results

revealed that, approximately two months following transplanta-

tion, testes of recipient sexually mature tilapia are capable of

generating functional fertile spermatozoa and generate progeny

with the donor genotype. Within a similar timeframe, cryopre-

served and thawed tilapia spermatogonia formed spermatozoa in

recipient testes. A number of important applications can be

derived from these investigations. In combination with in vitro

cultures, genetic modification and cryopreservation of spermato-

gonial stem cells (also performed in the present study), this

technique is expected to improve fish bioengineering, such as fish

production using transgenic spermatogonia. It may also have

significance in the propagation of endangered fish species and may

facilitate the seed production of commercially valuable fish species.

Also, to extend these possibilities in this group of vertebrates, it has

been demonstrated that adult spermatogonia are able to generate

both spermatozoa and oocytes [5].

Figure 4. Cryopreserved spermatogonial cell transplantation. (a) Spermatogonial cells labeled with tritiated thymidine showing proliferative
activity (arrow heads) after frozen/thawing. Four (b), eight (c, d) and ten weeks (e) post-transplantation, donor labeled germ cells (in red) in cystic
arrangement were observed in the recipient seminiferous tubules (arrow heads). Based on the number and size of PHK26 labeled germ cells, cysts
with appearance of type B spermatogonia (spgB), spermatocyts (spc) and spermatids (spt) were found. Eleven weeks after transplantation, PKH26
labeled donor-derived spermatozoa (spz) were detected in the recipient seminiferous tubule lumen (f, arrow heads). Insert in ‘‘f’’ shows the
spermatozoa flagellum implantation fossa at higher magnification (arrow heads). Panels ‘‘b’’ to ‘‘f’’ show merged fluorescence images. The nuclei are
identified by DAPI staining (blue). Scale bars: a–f = 10 mm; insert = 2 mm.
doi:10.1371/journal.pone.0010740.g004
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The sequential analysis over different periods of time following

syngeneic transplantation revealed that, after colonization, donor

spermatogonia proliferate and result in the production of

functional spermatozoa in the adult recipient gonad within a very

short period (,9 weeks) post-transplantation. These donor-derived

gametes produced normal progeny through natural fertilization

and their genotypes were detected in 6.3% of the individuals from

the F1 generation. Considering the very high similarities between

these two closely related tilapias strains investigated (chitralada

and red tilapia) [17], this result is in full agreement with the

percentage data inferred from the literature related to fish studies

in this field that ranged from 3.8 to 5.2% [5,7,25,26]. Therefore,

from the results observed in the literature and in our study we

could conclude that our success rate was quite good, mainly when

one considers that some or even many of the other 30 larvae

evaluated could eventually present another donor marker if other

specific loci were investigated.

The very short period necessary for fertile spermatozoa to be

formed in tilapia after germ cells transplantation contrasts with the

technique developed for salmonids, where it takes more than a

year to produce fertile spermatozoa following the transplantation

of germ cells in newly hatched larvae [4,6]. Moreover, as

colonization efficiency in this approach is affected by recipient

age, donor cells must be transferred during a very narrow

timeframe in recipient embryonic development [27]. Overcoming

all these limitations, the methods described in the present study

Figure 5. Illustration of the main steps utilized for germ cell transplantation in sexually mature tilapia (O. niloticus). Donor testes were
removed from tilapia (a) and these testes were incubated in a dissociating solution containing the enzymes trypsin, collagenase and DNAse (b). The
obtained cell suspension was submitted to percoll density gradient centrifugation (c) in order to enrich undifferentiated spermatogonia (spg) and for
differential plating (d) to remove eventual testicular somatic cells. As there are no genetic markers available for tilapia, PKH26 was used to label the
donor spermatogonia (e). The germ cells were transplanted via the common spermatic duct located in the urogenital papillae (f) into recipient tilapia
that had their endogenous spermatogenesis previously depleted with busulfan (g). Recipient tilapia were sacrificed at different time intervals post-
transplantation in order to follow the development of PKH26-labeled germ cells. Transplanted germ cells were able to colonize the recipient testis
and gave rise to fertile spermatozoa at approximately 9 weeks post-transplantation (h) and these spermatozoa resulted in offspring with donor
genetic characteristics (i).
doi:10.1371/journal.pone.0010740.g005
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have the potential to be widely applicable to many fish

species.

Other studies have demonstrated that, when transplanted by

microinjection into recipient fish blastulas, single primordial

germ cells from different fish families [28] and also blastomers

[29,30,31] are incorporated, giving rise to germ line chimeras

that produce functional sperm with donor genetic characteris-

tics. However, donor and recipient blastulas need to be in the

same stage of development, which can be difficult to determine.

While feasible, these methods require the long-term rearing of

recipient animals. In contrast, the use of sexually mature

recipient fish, as established in mammals [32] and demonstrat-

ed in the present study, can facilitate and considerably shorten

the time needed to obtain donor-derived gametes and offspring.

In our study, the necessary time for fertile gamete formation

was about two months following transplantation. It is known

that, in Nile tilapia, the combined duration of meiotic and

spermiogenic phases (preleptotene/leptotene up to spermato-

zoa), is approximately 10–11 days [33]. A delay in the

development of donor-derived spermatogenesis after transplan-

tation had been reported previously [34,35]. The re-establish-

ment of exogenous spermatogenesis in recipient testis is not

immediate. In mammals [34,35,36,37], it was shown that

transplanted spermatogonial stem cells require at least one

week to establish themselves in the seminiferous tubule niche

(colonization), replace their population (proliferation) and later

differentiate to form cells committed to spermatogenesis.

Usually, spermatogonial cells give rise to spermatocytes after

a fixed number of mitotic divisions, depending on the species

considered [38,39]. Eight spermatogonial generations are

observed in Nile tilapia [33], therefore, the yet undetermined

time spent during the mitotic/spermatogonial phase of

spermatogenesis, must be also considered.

To our knowledge, our study is the first to cryopreserve and

after freezing/thawing to functionally evaluate adult spermato-

gonia in fish. Apparently, in the present investigation it took a

little bit longer to form spermatozoa from frozen/thawed

spermatogonia. Despite of the short delay in the development

of donor-derived spermatogenesis, we demonstrate that tilapia

spermatogonial stem cells can be successfully cryopreserved and

are able to maintain their functionality after cryopreservation. A

protocol for cryopreservation of rainbow trout (Oncorhynchus

mykiss) PGCs and the generation of viable gametes derived from

these cryopreserved progenitor cells were already been reported

[26]. However, unlike the technique described here, as the

thawed PGCs were transplanted into the coelomic cavities of

trout hatchlings, they were able to differentiate into gametes

only when recipients reach sexual maturity, i.e. approximately

in two years. Cryopreservation of the male germ line effectively

establishes the potential to preserve threatened fish species

genome. Considering the endangered status of many species of

cichlids [40,41], the cryopreservation and interspecific trans-

plantation of their spermatogonia into the testis of adult tilapia

could make it possible to regenerate the target species, even

after this species is eventually extincted. Moreover, spermato-

gonial cryopreservation following transplantation also has

valuable implications in the production of commercially

valuable strains or species of fish.

Extending the range of questions addressing the fish

spermatogenesis and spermatogonial stem cell biology, the

methodology applied in this study could be also feasible for

interspecific/xenogeneic transplantation. In this context,

preliminary investigation in our laboratory has indicated that

germ cells from Cichla monoculus, an Amazon cichlid, were able

to colonize and form spermatogenic cysts in the tilapia

seminiferous epithelium, suggesting that the testicular micro-

environment of adult tilapia may provides the necessary

conditions for the development of spermatogenesis, at least

from different species of cichlid fish. In this way, besides

facilitating seed production, lifecycle periods of a given fish

species could be significantly shortened if, for instance, the

surrogate parent species present a shorter period until reaching

puberty. Moreover, commercially valuable species that require

demanding labor and high production cost, or even those that

need more rearing space or have seasonal reproduction, can

potentially have their gamete production facilitated and

increased using the appropriate recipient fish species [42].

Taking into account all the positive attributes mentioned in the

present investigation, it seems that the tilapia is an excellent

recipient model.

The procedures reported in the present investigation on

spermatogonial transplantation in adult Nile tilapia are illustrated

in Fig. 5. Based on our results, a new, effective, fast non-surgical

germ cell transplantation technique was developed, allowing a

feasible method for producing fertile fish sperm. In association

with germ cell cryopreservation, this new technique would

probably be suitable for studies related to biotechnology in

aquaculture, also providing possibilities for transgenesis, the

preservation of endangered species and genetic stocks of valuable

fish species. Among several other opportunities, an easy system

was also developed for possibly evaluating spermatogonial stem

cell biology and spermatogenesis in fishes.

Supporting Information

Figure S1 Confocal microscopy analysis of tilapia testis five

weeks after spermatogonial transplantation. Suggesting that

transplanted spermatogonia can self-renew and/or stay longer in

the testes, isolated PKH26-labeled spermatogonia (in red; arrow),

surrounded by somatic cells in green, are still observed in the

recipient seminiferous epithelium several weeks after transplanta-

tion. The insert shows donor cell (spgA) at a higher magnification.

Green fluorescence represents labeling of actin filaments. TA:

tunica albuginea. Scale bar = 10mm.

Found at: doi:10.1371/journal.pone.0010740.s001 (1.38 MB TIF)

Figure S2 Illustrative figure from experiments related to the

crossing of red tilapia (O. niloticus) with Chitralada tilapia (O.

niloticus). Note that most fish present typical Chitralada tilapia

skin pigmentation (black arrowhead), whereas, in approximately

50% of the fishes, the skin pigmentation is similar to the red tilapia

(,1/4; gray arrowhead) or is spotted (,1/4; blue arrowhead).

Scale bar: 3 cm.

Found at: doi:10.1371/journal.pone.0010740.s002 (1.29 MB TIF)

Table S1 Donor-derived spermatogenesis in the recipient tilapia

following syngenic transplantation.

Found at: doi:10.1371/journal.pone.0010740.s003 (0.05 MB

DOC)

Table S2 Donor-derived spermatogenesis in recipient tilapia

following transplantation of cryopreserved spermatogonia.

Found at: doi:10.1371/journal.pone.0010740.s004 (0.04 MB

DOC)
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