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Abstract

Background: Due to the degeneracy of the genetic code, most amino acids can be encoded by multiple synonymous

codons. Synonymous codons naturally occur with different frequencies in different organisms. The choice of codons

may affect protein expression, structure, and function. Recombinant gene technologies commonly take advantage

of the former effect by implementing a technique termed codon optimization, in which codons are replaced with

synonymous ones in order to increase protein expression. This technique relies on the accurate knowledge of codon

usage frequencies. Accurately quantifying codon usage bias for different organisms is useful not only for codon

optimization, but also for evolutionary and translation studies: phylogenetic relations of organisms, and host-pathogen

co-evolution relationships, may be explored through their codon usage similarities. Furthermore, codon usage has

been shown to affect protein structure and function through interfering with translation kinetics, and cotranslational

protein folding.

Results: Despite the obvious need for accurate codon usage tables, currently available resources are either limited

in scope, encompassing only organisms from specific domains of life, or greatly outdated. Taking advantage of the

exponential growth of GenBank and the creation of NCBI’s RefSeq database, we have developed a new database,

the High-performance Integrated Virtual Environment-Codon Usage Tables (HIVE-CUTs), to present and analyse

codon usage tables for every organism with publicly available sequencing data. Compared to existing databases,

this new database is more comprehensive, addresses concerns that limited the accuracy of earlier databases, and

provides several new functionalities, such as the ability to view and compare codon usage between individual

organisms and across taxonomical clades, through graphical representation or through commonly used indices. In

addition, it is being routinely updated to keep up with the continuous flow of new data in GenBank and RefSeq.

Conclusion: Given the impact of codon usage bias on recombinant gene technologies, this database will facilitate

effective development and review of recombinant drug products and will be instrumental in a wide area of

biological research. The database is available at hive.biochemistry.gwu.edu/review/codon.
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Background
There are 64 possible nucleotide triplet combinations

but only 20 amino acids to encode; as a result, most

amino acids can be encoded by more than one codon.

Codons that are translated to the same amino acid

are called synonymous. In each organism there is a

preference for certain codons over others; therefore,

synonymous codons occur with different frequencies, a

phenomenon termed codon usage bias, which is ob-

served across species, albeit with different intensities

[1]. Two major hypotheses have been proposed for

explaining the existence of codon usage bias. One ar-

gues that codon usage bias contributes to the efficiency

and accuracy of protein translation and is therefore

maintained by selection [2]. The other claims that

codon usage bias exists because of the non-randomness

in mutational patterns, whereby some codons may be

more prone to mutation than others and are therefore
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found at different frequencies [3]. These hypotheses are

not mutually exclusive [4–7]. Relative synonymous

codon usage (RSCU), Codon adaptation index (CAI)

[8], effective number of codons (ENc) [9] and tRNA

adaptation index (tAI) [10] are commonly used metrics,

aiming to quantitate codon bias in a gene or a species.

We have generated a database, the HIVE-Codon Usage

Tables (HIVE-CUTs), presenting the codon usage statis-

tics for every organism that has available compiled se-

quencing data. The sequence data collected for this

analysis have been derived from the GenBank [11] and

RefSeq [12] databases. The codon usage tables are linked

to a taxonomy tree to allow comparative analysis of the

codon usage frequencies. Knowing the frequency of oc-

currence of codons within a genome is essential in com-

mon biological techniques and in a number of fields of

study. Codon optimization, which involves replacing rare

codons with frequent ones, requires knowledge of the

preferred codons in a given organism. Furthermore, syn-

onymous codon usage patterns can be an essential tool

in revealing evolutionary relationships between species

as well as host-pathogen coevolution and adaptation of

pathogens to specific hosts [13–17]. Interestingly, some

viruses appear to take advantage of the codon usage of

their host to temporally regulate late expression of their

proteins [18]. An area of research that is currently gain-

ing attention pertains to how codon usage may affect

protein structure. It has long been assumed, based on

Anfinsen’s theorem [19], that since synonymous muta-

tions do not affect the primary structure of a protein,

they also should not affect the secondary and tertiary

structure. However, recent data have suggested that this

assumption is untrue; synonymous codon changes can

profoundly affect the translation rate of a protein, which

in turn may modulate the folding of the nascent poly-

peptide chain [20–24]. As the translational kinetics of a

protein depend, at least in part, on the frequency of its

codons, having access to codon usage information can

be valuable in determining effects of synonymous muta-

tions on protein structure. It should be noted that syn-

onymous mutations may have multiple other effects on

protein expression and function beyond translational

kinetics that may instead be linked to effects on nucleo-

some structure, transcription factor binding, splicing ef-

ficiency, RNA-protein interactions, microRNA binding,

and RNA secondary structure [24–28]. These effects of

synonymous mutations, although of high importance,

are not directly related to codon frequency and therefore

will not be further discussed here.

Despite the applicability of codon usage tables to many

areas of research, currently available resources provide

data that are limited, inaccurate or out of date. Some

existing databases contain information on bacterial

and archaeal genomes but not on eukarya and viruses

[29, 30]. The widely used Kazusa database, on the

other hand, includes information on all domains of life

but has not been updated since 2007 [31]. However,

following the rapid development of high-throughput

sequencing over the last few years, the amount of se-

quence information available has drastically increased.

The last update of the Kazusa database (GenBank release

160, June 2007) contained just over 3 million coding

sequences (CDSs); in comparison, this new database

analyses 35 million CDSs from GenBank and another

255 million from RefSeq. For many organisms in the

Kazusa database, the number of CDSs included was too

low to be useful; for example, the codon usage table for

the western lowland gorilla (Gorilla gorilla gorilla) was

based on only two coding sequences. These shortcom-

ings are widely recognized by researchers who often gen-

erate new codon usage tables for the species they are

studying [32, 33]. However, this process, in addition to

being labour intensive and requiring computational

knowledge, may create substantial variability, as the da-

tabases from which the sequences are retrieved change

over time and different criteria may be applied in the in-

clusion of sequences for analysis. The presented HIVE-

CUTs database, on the other hand, will be updated every

2 months, corresponding with GenBank releases, and

each version of the database will remain available to pro-

vide a stable reference.

Furthermore, compared to the Kazusa database the

HIVE-CUTs database has the advantage of utilizing both

GenBank and RefSeq sequences separately. The incorp-

oration of RefSeq data into the proposed database is a

critical development that is necessary to provide re-

searchers the most accurate data available, and warrants

the creation and maintenance of this new database.

NCBI’s RefSeq database aims to minimize redundancy

and provide high quality annotations, and provides a

data source that was not included in the older database.

For example, in the Kazusa database, the sequence for

human coagulation factor IX, a single copy gene, was in-

cluded 13 times due to the inclusion of multiple submis-

sions by various groups. However, the same analysis

performed on the RefSeq Homo sapiens assembly would

include this gene only twice—the wild type sequence

and an alternative splicing variant. Overall, larger and

more accurate sources of sequencing data have made

the generation of current codon usage tables a necessity

for a wide range of applications.

Construction and content
Input data

Codon usage for all available organisms was computed

separately for both the GenBank and RefSeq databases

at NCBI. Data from GenBank was derived from Gen-

Bank release 215.0 (released August 15 2016 [11]), while
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RefSeq data [12] used all assemblies that were current as

of September 29 2016. Within the RefSeq division, all

genome assemblies that were designated “latest” are in-

cluded in the database. These assemblies were selected

by parsing the RefSeq “assembly summary” files available

on NCBI. For GenBank, the divisions incorporated into

our codon usage database are BCT (bacterial), PRI (pri-

mate), ROD (rodent), MAM (other mammalian), VRT

(other vertebrate), INV (invertebrate), PLN (plant and

fungal), VRL (viral), and PHG (phage). The other divi-

sions published by GenBank do not derive from organ-

ismal sources (e.g. the “EST” (expressed sequence tag)

division), or come from organisms with no assigned

names (e.g. “ENV” (environmental samples)). In total,

288 million coding sequences (35 million from Gen-

Bank, 253 million from RefSeq) were included in the

database, resulting in the creation of over 855,000

codon usage tables.

Data processing

The data from both divisions was processed using Py-

thon 2.7, using the Biopython module (version 1.68) to

parse the annotated genome features [34]. Each record

was processed according to the tags available in the file;

only protein coding sequences (“CDS” tag) were in-

cluded for codon usage and GC percent analysis. Pseu-

dogenes and “low quality” proteins (transcripts with a

corrected base relative to the genome) were excluded

from the analysis. The taxID number of the organism is

parsed from the “db_xref” tag in the file, while the sci-

entific name of the organism is retrieved from NCBI’s

taxonomy database [35]. Features for which the anno-

tated sequence could not be extracted were also ex-

cluded; as a result, records with unusual tags may not

have been included, and records that specified their

sequence data via another accession record were not

included. However, the number of records excluded is

low and should not affect the quality of the data overall.

Features containing ambiguous nucleotides were in-

cluded, but the individual codons containing ambigu-

ous nucleotides were excluded. Other information that

is parsed from each record includes the translation

table and accession number of each individual CDS.

The actual execution of data download and parsing was

performed using High-performance Integrated Virtual

Environment (HIVE) platform [36]. HIVE was originally

created and optimized for loading, parsing, storage, and

analysis of extra-large datasets.

Output and organization

The resulting codon usage tables are organized in dic-

tionaries by assembly accession numbers for RefSeq, or

by the species name for GenBank. This means that

multiple genome submissions for a given organism are

combined in GenBank, but are separate entries in

RefSeq. Additionally, mitochondrial, chloroplast, plastid,

leucoplast, and chromoplast genes are considered separ-

ate from the genomic data, and have their own organel-

lar codon usage tables. However, as plasmids are located

in the same area as the genome, draw from the same

tRNA pools, and use the same genetic code as the gen-

ome, plasmid coding sequences are not separated from

the organism’s genomic codon usage table. The resulting

codon usage tables can be downloaded as a tabular text

file, or searched through using our publicly accessible

web interface. To obtain the data that best represents

the codon usage of an organism, users should search for

a single RefSeq assembly, as this is derived from a single

sequence assembly from a single organism. GenBank

data is compiled from any number of different submis-

sions of varying completion status, and may therefore be

skewed when searching for a single organism (see

Additional file 1). However, GenBank contains much

more data deriving from many more organisms than

RefSeq, so even though it may not provide the most ac-

curate data for an organism’s codon usage, it will be of

use for less well studied organisms. Additionally, codon

usage tables for each CDS, as opposed to each organism,

are also produced by the program; these tables cannot

currently be viewed via the web, but can be downloaded

and parsed. The files available for download through the

website are tabular text files comprised of codon usage

tables organized either by species/assembly or coding se-

quence; each entry contains information about the rec-

ord (e.g. assembly number and DNA type) and the totals

for each codon. Table 1 indicates the magnitude of the

database, including the number of tables and species

included, as well as the distribution of tables between

GenBank and RefSeq and between genomic and other

organellar tables. Furthermore, each version of the

database will be accessible through a stable identifier,

allowing researchers to always reference a consistent

version of the database.

Table 1 HIVE-CUT database size and statistics

Measure GenBank RefSeq Total

Number of tables 781,595 73,817 855,412

Number of species 665,044 37,904 689,420

Genomic tables 353,423 73,553 426,976

Mitochondrial tables 316,820 220 317,040

All plastid tables 111,352 44 111,396

Total number of sequences 34,885,329 253,803,831 288,689,160

This table contains statistics on the data in the database. While the GenBank

division contains a much larger number of tables, the number of sequences

in each table on average is much higher in RefSeq. The structure of RefSeq

assemblies makes them a better representation of genomic codon usage for

an organism when available. The HIVE-CUTs database contains substantially

more entries than other codon usage databases
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The ENc has been adapted from Wright 1990 [9]. In-

stead of being calculated on a per gene basis, one ENc

value is computed for the entirety of the genomic coding

sequences. In addition, stop codons are also considered

and included in the calculation as any other amino acid.

The ENc is also calculated using each different genetic

code, and users can select the one most appropriate for

their organism of interest.

Website interface

HIVE is used to implement the data-storage and

visualization web-portal for this project. Its interface

follows Data-Driven Documents (DDD) paradigm in-

stead of static HTML pages to tackle the visualization

challenges presented by the outputs from large data

sets [37]. The separation among content, functional-

ity, and object model is the underlying concept of

HIVE’s interface achieved by construction of Docu-

ment Object Model (DOM) model on the client side.

This communication is done asynchronously, using

an Ajax (Asynchronous Javascript and XML) web ap-

plication model.

Internally, HIVE is a computer cluster executing a

large number of heavily parallelized scientific processes.

The front end (user interface) is a simplified represen-

tation of an advanced infrastructure that exists on the

back end. There are intermediate layers based on

Common Gateway Interface (CGI) and SQL database

that help with the communication between front end

and back end. As the user waits for the service to be

completed, a daemon process is responsible for the

execution of services, for monitoring progress, and

updating the state during the parallel execution. After

completion the whole page gets updated with the

requested data so the client’s browser can launch spe-

cific visualization engines. This allows generation of

appropriate interactive visualization. In Fig. 1 there is

a general workflow of the HIVE platform.

One of the visualization tools that are used on the

page is a dynamic Taxonomy Tree that is constructed

using the d3js JavaScript library [37]. The information

for this tree is derived from taxonomy data held at NCBI

(released May 5 2016 [35]). HIVE’s visualization tree is

capable of loading information about a specific node in-

cluding its taxonomy ID, parent, and children informa-

tion. The other visualization tool being used is Google

Charts that are integrated into HIVE’s visual library.

Google Charts are customizable on many parameters,

and these parameters are used to generate a bar chart

that allows the users to make a side by side comparison

of selected codon tables.

Users can access additional webpages and resources

that utilize codon usage tables through the “Other Re-

sources” tab on the webpage.

Fig. 1 HIVE Platform [36]. A client process submits the information request from the HTML form or web application into the HIVE server; this

request is queued for execution and it is computed inside the distributed environment. The front end monitors the status of the request and

once the computation is finished, data is retrieved and visualizations are prepared to be sent to the client’s web page
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Utility and discussion
We have generated new codon usage tables for every

organism in GenBank and RefSeq and created a user-

friendly platform where codon usage data can be re-

trieved from a publically available website [38]. The

initial HIVE-CUTs webpage contains a search tab, re-

sults tab, and help tabs on the right and bottom. The

web interface for searching the database features several

options for searching the data. Users must decide

whether to search through GenBank or RefSeq, as well

as what type of data (genomic or another organelle) they

want to analyse. Users can search for entries based on

scientific names, taxonomical ID numbers (taxID), or (in

RefSeq only) assembly accessions. All of these options,

except searching for a single assembly, can be applied to

any taxonomical rank, allowing users to retrieve and

compare data from different clades. When searching for

a species-rank scientific name or taxID number, users

also have the option to combine entries belonging to

sub-species of that entry, by choosing the “deep search”

option, e.g. retrieving E. coli and all its strains, or only

retrieving submissions for E. coli with no strain informa-

tion assigned. Once a search is submitted the results

appear in several tables and graphs. Each window and

graph can be enlarged or closed. The codon usage tables

are in plain text format with each codon, its frequency

per 1000 codons, and the raw total for that codon in the

genome, in the default order specified by NCBI’s stand-

ard genetic code definition (Fig. 2). This is a common

format and the table can be copied and directly pasted

in a number of applications such as ATGme [39] and

Rare Codon Calculator: %MinMax [40]; several such

tools are linked directly from the database webpage.

Each search will produce two graphs, one plotting the

GC percent frequency of the organism’s coding sequences

as well as at each codon position, and the other plotting

the frequencies of each codon per 1000 codons. The

graphical presentation of the frequencies of each codon

(Fig. 2) can be especially useful when comparing frequen-

cies across different codon usage tables. To enable com-

parisons between different organisms and clades, multiple

queries can be submitted simultaneously; the codon and

GC frequencies for each query are plotted both individu-

ally and together (Fig. 3). In addition, a text table listing

the ENc for each query is generated. ENc is a metric that

measures codon bias in terms of deviation from an as-

sumed neutral distribution of synonymous codon usage.

Larger ENc values correspond to more equal usage of syn-

onymous codons, while the lowest possible ENc value

would result from the case of one codon used for each

amino acid [9]. The ENc was calculated for all genomic

coding sequences collectively. RefSeq and GenBank do

not always assign a genetic code to each genome, there-

fore, ENc was calculated using each genetic code; users

may select the ENc that is appropriate for their organisms

of interest. To facilitate studying the evolution of codon

usage bias across species we incorporated a visual rep-

resentation of their taxonomical relationship in our

Fig. 2 Screenshot of HIVE-CUTs webpage with Homo sapiens results. Results include codon usage frequencies per 1000 codons as a plain text

table (top left) and graph (bottom), in the default order specified by NCBI’s standard genetic code definition. The GC frequency in the genome

and at each codon position is also presented in a graph (top right). The help panel is included (right)
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application. When users submit a search for one or

more taxonomical nodes, the nodes will be highlighted

and the branch will be expanded to show the relation-

ship between them, going back to the highest common

classification. Though the tree is taxonomical, not

phylogenetic, being able to visualize the distance be-

tween organisms of interest and in parallel examine

their similarities in terms of codon usage bias can be

an instrumental tool in evolutionary studies. In the

example shown, Candida albicans and Saccharomyces

cerevisiae, two taxonomically close yeast species, are

shown along with Aspergillus fumingatus, which is

more distantly related. The distance in the taxonomy

tree is reflected in the differences of their codon usage

tables (Fig. 3).

The HIVE-CUTs may be instrumental in recombinant

gene applications such as gene therapy, vaccine devel-

opment and protein therapeutics, and in a wide area of

research including evolution, comparative molecular

biology and translation kinetics.

Knowledge of codon usage across species is crucial

when recombinant proteins are expressed in heterologous

organisms [41–44]. There are several approaches that

are commonly used to increase expression of heterol-

ogous proteins, including codon optimization [45–47],

codon harmonization [48, 49], and supplementation of

rare tRNAs [50–53]. When codon usage in the organism

of origin is starkly different from that of the organism

used for expression, for example when a human gene is

expressed in E. coli, codon optimization (i.e. replacement

of rare codons with more frequent synonymous codons)

can to an increase in expression of a few orders of mag-

nitude [41, 45, 54, 55]. Codon harmonization is concep-

tually similar to codon optimization, wherein codons of

the native protein are replaced with synonymous codons

that have a similar usage frequency in the heterologous

expression host [48, 49]. However, accurate codon usage

data is important for ensuring that optimization or

harmonization strategies actually lead to improved ex-

pression; if the codon usage data is incomplete or

inaccurate, optimization steps could be unsuccessful at

increasing expression or may even reduce it. For ex-

ample, the biotechnology industry often uses Chinese

hamster ovary (CHO) cells to express human recombinant

Fig. 3 Screenshots of HIVE-CUTs webpage with Candida albicans, Saccharomyces cerevisiae, and Aspergillus fumigatus results. a Taxonomy tree

showing the evolutionary relationship between the species. b The GC frequency in the genome and at each position of the codon plotted for

all three species for comparison. c Codon frequencies per 1000 codons plotted for all three species
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proteins. Homo sapiens and Cricetulus griseus (Chinese

hamster) are not very different in terms of their codon

usage bias. Furthermore, in 2007, Cricetulus griseus had

not been extensively sequenced, and therefore its codon

usage tables were not accurate. Using human coagulation

factor IX, a gene that is commonly codon optimized

for clinical applications like gene therapy [56–58], as

an example, it is clear that accurate codon usage data

is critical for optimization strategies. As illustrated in

Fig. 4, when using codon usage tables that were last

updated in 2007 to optimize the human coagulation

factor IX gene for expression in CHO cells using

ATGme [39], 310 codons are identified as suboptimal.

Performing the same analysis with HIVE-CUTs resulted

in 287 optimized codons, only 214 of which were the

same as when using the older tables. Performing codon

optimization or harmonization based on inaccurate

codon usage tables would, therefore, be ineffective. Al-

ternatively, when the tRNA supplementation approach

is used, codon usage, of a single gene or the entire

genome, can be compared to tRNA levels to determine

which tRNA may require supplementation. Availability

of tRNA can be either estimated computationally [10, 59]

or measured experimentally.

An area of research that has been recently gaining at-

tention is whether synonymous codon substitutions have

effects on protein translation beyond levels of expression

[32, 60–62]. Codon frequency has coevolved to correlate

with tRNA concentration [63–66]. As a result, transla-

tional efficiency at the codon level is affected by tRNA

abundance. It is generally accepted that rare codons are

translated slower than the common ones and it has

been shown that rare codons often cluster [40]. These

rare codon clusters can induce pauses during transla-

tion that have experimentally been shown to affect

cotranslational folding [20]. Although there is little

consensus regarding patterns of rare codon clusters and

secondary protein structure, there is data from an array

of yeast species suggesting that coil regions of a protein

Fig. 4 Differences in codon optimization based on the HIVE-CUT

and the Kazusa codon usage tables. The HIVE-CUT and the Kazusa

codon usage tables were entered in the codon optimization algorithm

ATGme to determine the number of suboptimal codons [39]. The

Venn diagram shows how many codons were determined to be

sub-optimal in the human coagulation factor IX gene for expression

in CHO (Cricetulus griseus) cells. The codon usage tables used appear

in Additional file 2

Fig. 5 Rare codon cluster distribution based on the HIVE-CUT and the Kazusa codon usage tables. The %MinMax algorithm [40] was implemented

to generate results for the interferon beta-1b gene sequence of Homo sapiens and Gorilla gorilla gorilla. The human and gorilla proteins have similar

amino acid sequences and show similar results with the HIVE-CUT; however, highly divergent results were observed with Kazusa CUTs. The codon

usage tables for these species used in the calculation of the translation rate appear in Additional file 3
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are depleted of common codons while β-sheets are

depleted of rare codons [67]. Interestingly, coil regions

are comprised of loops that fold before exit of the

ribosomal tunnel. In contrast, β-sheet domains are

topologically discontinuous and must await synthesis to

begin folding [67]. Collectively this data supports a

causal relationship between codon choice, translation

rate and protein structure.

The availability of codon usage tables that span a very

wide range of species can be instrumental in unravelling

the role of codon choice on co-translational folding. Al-

gorithms that evaluate the relative rareness of codons in

a nucleotide sequence used to produce a given protein

sequence [40] can serve as a rough proxy for the local

translation rate, and the presence of translational pauses

due to rare codons can be studied. To obtain a more ac-

curate estimation of rare codon clusters, accurate codon

usage tables are required. For example, when examining

the rare codon distribution of the human interferon

beta-1b a number of potential translational pauses are

apparent. A similar pattern of rare codon clusters is also

observed with the gorilla sequence of interferon beta-1b,

which is due both to the similarity of the amino acid

sequence in the two species but also due to similarities

in codon usage bias (Fig. 5). If, however, an older codon

usage table had been used, a dramatically different pat-

tern of rare codon clusters would have been generated

giving rise to false conclusions (Fig. 5). Comparing the

rare codon distribution of a human protein to those of

closely related species has proven useful in determining

the functional role of synonymous mutations [67] and

how they may cause disease [32].

Conclusions
Codon usage bias plays a role in many biological processes,

and substitution of synonymous codons is a very common

technique in industry and research. Accurate codon usage

data is an important part of many common bioinformatics

tools that incorporate the effects of codon usage bias into

their analyses. This database is a dramatic improvement

over existing databases. It is more comprehensive in terms

of the number of species included and more accurate due

to the vastly larger sources and improved quality of sequen-

cing data and their associated annotations.

Availability and requirements
Project name: HIVE-Codon Usage Tables

Project home page: https://hive.biochemistry.gwu.edu/

review/codon

Operating system: Platform independent

Programming languages: Python 2.7, Javascript, C++

Other requirements: Web browser (Chrome or Firefox)

License: The database is publicly available

Additional file

Additional file 1: HIVE-CUT screenshot showing search results for Homo

sapiens using the RefSeq and GenBank databases. (DOCX 154 kb)

Additional file 2: Homo sapiens and Cricetulus griseus CUTs. This table

contains the data used to create Fig. 4 of the main text. (DOCX 22 kb)

Additional file 3: Homo sapiens and Gorilla gorilla gorilla CUTs. This table

contains the data used to create Fig. 5 of the main text. (DOCX 24 kb)
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