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This paper describes a variant of the Periodic Capacitated Arc Routing Problem for inspections in a railroad network. Inspections
are performed by vehicles over a time horizon on which some stretches need evaluation more frequently than others due to its use.
Each car can evaluate one stretch per day without being attached to a depot; at each day, the shift may start and end at different
locations.This characterizes the problem as the Periodic Capacitated Arc Routing Problemwith ContinuousMoves in which firstly
the delays on attendances areminimized and, second, the displacement costs.We present amathematical model and an Ant Colony
Optimization algorithm to solve the problem. The use of a local search procedure and some principles of Granular Tabu Search is
crucial for the algorithm’s performance.The numerical results are promising, especially for critical situations where the arcs’ needs
are close to the total vehicles’ capacity.

1. Introduction

Arc Routing Problems have high applicability and are widely
studied; they consist of finding routes that cover streets,
roadways, railways, roads in general. The Capacitated Arc
Routing Problem (CARP), introduced in [1], is an essential
problemof this class onwhich the creation of routes considers
vehicles with a limited capacity that must collect or deliver
demands. The CARP assists the decisions at the operational
level, planning routes for only one period. If the problem
involves a time horizon greater than one day, the complexity
of the problem increases, and it becomes the Periodic Capac-
itated Arc Routing Problem (PCARP), first described in [2].
The PCARP is an upgrade of CARP considering multiple
periods, involving tactical and operational decisions.

In this paper, we study a variant of the PCARP in the con-
text of inspection andmaintenance of railways. Homogenous
vehicles with limited capacity are responsible for ensuring the
good state of repair and the flux in the rail network. They
travel over the rails making measures that may show any
irregularity; this predictive job aims to prevent accidents due

to wear and tear. In countries like Brazil, the railroad network
is extensive and the workers need to travel with the vehicles
during their shifts. At each day, they evaluate one stretch, and
the car ends its turn at any city where theworker can rest.This
characteristic is the same found in some pick-up and delivery
problems [3], for example, in the maritime case where ships
perform routes from city to city, or in the production and
distribution of argon [4, 5]. In these problems, the moves are
continuous because the vehicles do not have the obligation of
returning to a depot. Thus, the inspection and maintenance
of railroads are named Periodic Capacitated Arc Routing
Problem with Continuous Moves (PCARP-CM).

Solving real-life problems is not an easy task even for
commercial solvers. In the PCARP, exact algorithms usually
prove optimal solutions only for limited and small instances
[6, 7]. An alternative to larger instances is to tackle them
using heuristic algorithms as Scatter Search [8], Memetic
Algorithms [9–11], Adaptive Large Neighborhood Search
[12], and Ant Colony Optimization (ACO) [13, 14]. The ACO
has achieved good results for dynamic routing problems
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on which the costs may modify according to the moves
[15]. The PCARP-CM is similar: it has demands updated at
each period, which can interfere in the objective function.
Provided that, our work presents an ACO Algorithm which
achieves competitive results when compared to the result
obtained by a commercial solver. It is a new approach of ACO
that combines concepts of Granular Tabu Search [16] and
Local Search.

The next section shows a brief literature review con-
cerning the PCARP, its applications, and solving methods.
The third section presents details concerning the PCARP-
CM in the railroad inspection and its mathematical model.
In the fourth section, the algorithm procedure of the ACO
is described. Last but not least, the computational results
demonstrate our algorithm performance. Finally, we show
our conclusions.

2. Literature Review

The PCARP is an Operational Research problem that has
been developed based on real-world applications. Besides
introducing the PCARP as a general problem, earlier studies
show applications in snow removal, on inspection of power
lines, spreading herbicides in rails, and mainly in garbage
collection [7, 9, 17]. The garbage collection is readily asso-
ciated with some concepts: the streets are the arcs or links,
the crossings are the nodes, there is a frequency during
the week, the demand is the amount of garbage, and the
vehicle’s capacity is the maximum loading of waste allowed.
The citizens produce garbage storing it in plastic bags or
containers; the collects must be well planned considering
that some regions may have higher garbage production than
others, requiring more attendances.

Achieving the tactical decision’s level is a valuable con-
tribution of the PCARP for the scientific and business
development because the problem covers a planning horizon
composed of as many periods as needed. The periods must
be a fraction of time. Conventional approaches worked with
days and bound the number of routes that should compound
the planning periods. Some developments set a combination
of attending days to each arc [8, 9, 11, 13, 17, 18], others use time
intervals [7], or just frequencies [6, 14] to generate solutions.
Recent approaches have been discretizing the time in a way
that the finishing time of one activity is the initial time for
the next one [12, 19, 20].

The first proposed mathematical model appeared in [17],
on which optimal solutions were reached for small instances
with five periods and ten arcs. The resolution approach
adopted used three heuristics: two insertionmethods and one
two-phase algorithm (cluster and routing). Usually, heuristics
are the most viable option to solve the problem due to
its NP-Hard nature. Some of these solving approaches are
Evolutionary algorithms like the Memetic Algorithm [9–11];
Scatter Search [8]; two-phase methods [6]; Adaptative Large
Neighborhood Search [12]; ACO [13, 14].

The context of surveillance, monitoring, and mainte-
nance of roads [21] gave origin to the PCARP with Irregular
Services [6], in this case, demand may have more than
one pattern of frequency. When dealing with monitoring

activities, minimizing the displacement costs may be irrele-
vant; on the other hand,monitoring asmany times as possible
may guarantee a safer road network. Other applications can
even involve inventory constraints for vehicles responsible for
watering open-pit mines [12, 20].

This research differs from previous works in both the
modeling approach and the proposed solving method. The
decisions consist of planning only a move for each car in each
period, different from conventional approaches on which
there is a complete route for each car in each period. Also, the
frequency of attendances uses the time interval represented
by periodicities. The main difference consists in the fact that
the cars are not attached to a depot where they must start
and finish their routes. Moreover, our ACO algorithm is also
distinct from the ones already applied to PCARP: in [13]
the ACO optimizes the order of tasks to be inserted into a
solution, and in [14] the ACO is applied after the arc routing
problem is transformed into a Vehicle Routing Problem.

3. Problem Definition

3.1. Inspecting Railroads. We are concerned by the planning
of inspection and maintenance of railways where a set of
homogenous vehicles with limited capacity travel over the
rails searching for any irregularity. These inspections aim to
prevent accidents due towear and tear, guaranteeing the good
state of repair and the flow in the rail network.Wemodel this
situation as a Periodic Capacitated Arc Routing Problemwith
Continuous Moves (PCARP-CM).

The railroad network is extensive in countries with con-
tinental dimensions, Brazil, for example, and the sequence
of railroad stretches inspections must have proper planning
over a time horizon. The vehicles must sweep vast paths
daily at a slow velocity to achieve the examination accurately.
Consequently, it is impracticable to return to a depot at the
end of the working day. In classical problems, like garbage
collection and winter gritting, the vehicles depart from a
depot and cover a considerable number of streets with a fast-
growing demand. Also, in most common cases, the vehicle
capacity is related to the quantity of charge; nevertheless
in our proposed model, the capacity is implicit in the
displacements.

Each vehicle can perform one railroad stretch per day;
a stretch is a direct link between two cities that offer the
structure for the worker to rest. Work teams take turns of
more than one day in this kind of service, and the vehicles
never stop unless necessary. The length of each stretch is
known a priori and is defined based on the capacity of the
cars and on two variables that can differ from place to place:
speed and traffic flow. Determining the starting and ending
point of these stretches simplifies themodeling process of this
problem concerning the vehicles capacity constraint.

A periodicity can represent the frequency of inspection
of each stretch. It represents the maximum time interval
required between two consecutive passages. This problem
is cyclical, repeating from time to time, and occurs in a
permanent regime. Thus, the routes must be planned over
a limited time horizon that must be greater or equal than
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the maximum periodicity. On the last planned day, the same
quantity of vehicles that had left each starting point must
return to it. Consequently, the plan can be repeated as many
times as necessary.

3.2. Mathematical Model. The formulation is based on an
undirected graph 𝐺 = (𝑋, 𝐸) composed of 𝑛 nodes 𝑖
representing the cities where the drivers could finish their
daily turn and stay overnight, thus 𝑋 = {1, 2, . . . , 𝑛}. The
stretches are represented by𝑚 edges, where 𝐸 = {1, 2, . . . , 𝑚},
whichmust be served by 𝑛𝑘 cars,𝐾 = {1, 2, . . . , 𝑛𝑘}.Each edge
𝑒 is composed by a pair of nodes 𝑥𝑖𝑗 = (𝑖, 𝑗) or [𝑖, 𝑗]; it may be
traversed in two possible directions from 𝑖 to 𝑗 or from 𝑗 to 𝑖
and it has a cost 𝑐𝑖𝑗 = 𝑐𝑗𝑖 related to the distance. The capacity
of each car is to traverse one arc per day; this simplifies the
model and fulfills the objectives of the problem.

The maximum number of periods in a row on which
an arc must be attended at least once 𝑀𝑃(𝑥𝑖𝑗) expresses the
periodicity of each arc. For example, if an arc has a periodicity
of 15 days, it must be attended at least once between the
first and the fifteenth day, once between the second and the

sixteenth, and so forth. Therefore, the time horizon to be
planned must be greater or equal to the highest periodicity
and it is composed by 𝑛𝑝 periods 𝑝, 𝐻 = {1, 2, . . . , 𝑛𝑝}. The
set 𝑆 contains every edge that has a periodicity lower than
𝑛𝑝 and the set 𝑅 the edges with periodicity equals 𝑛𝑝, thus
𝐸 = 𝑅 ∪ 𝑆. As this is a cyclical problem and the solution
represents a permanent regime of work, after the last planned
day the next moves must be the same as the ones from the
first period. In general, for a period 𝑝 greater than 𝑛𝑝, the
move performed must be equivalent to the one from the day
𝑝mod 𝑛𝑝. No starting point is known a priori but the number
of cars arriving in the last planned day at some point must be
equal to the number of cars leaving this point in the first day.

To give more flexibility to the problem, a periodicity may
be delayed increasing the objective function by a penalty cost
of 𝑃𝑈𝑖𝑗 per day of delay in the arc [𝑖, 𝑗]. To avoid unnecessary
moves and guarantee feasibility, the cars may stop at some
scheduled point during how long necessary. After all, if the
solution shows that it is necessary to stop at some point, it
may be possible to perform the activities in less time than the
time horizon. The following variables are used in the model:

𝑥𝑖𝑗𝑘𝑝 {
{{
1, if the car 𝑘 goes from node 𝑖 to node to 𝑗 in the period 𝑝
0, otherwise

𝑝𝑛𝑖𝑗𝑝 {
{{
1, if the arc (𝑖, 𝑗) has not attended its periodicity in the period 𝑝
0, otherwise

𝑓𝑖𝑘𝑝 {
{{
1, if the car 𝑘 stay stopped in the node 𝑖 during the day 𝑝
0, otherwise

𝑦𝑖 Represents the number of vehicles leaving the node 𝑖 in the day 1
and arriving in the node 𝑖 in the day 𝑛𝑝

(1)

The mathematical programming formulation is

min 𝑍 = ∑
[𝑖,𝑗]∈𝐸

𝑛𝑘
∑
𝑘=1

𝑛𝑝
∑
𝑝=1

𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑝 + ∑
[𝑖,𝑗]∈𝐸

𝑛𝑝
∑
𝑝=1

𝑃𝑈𝑖𝑗𝑝𝑛𝑖𝑗𝑝 (2)

Subject to

∑
[𝑖,𝑗]∈𝐸

𝑥𝑖𝑗𝑘𝑝 + 𝑓𝑗𝑘𝑝 = ∑
[𝑖,𝑗]∈𝐸

𝑥𝑗𝑖𝑘,𝑝+1 + 𝑓𝑗𝑘,𝑝+1 ∀𝑗 ∈ 𝑋, ∀𝑘 ∈ 𝐾, 𝑝 = 1, . . . , 𝑛𝑝 − 1 (3)

∑
[𝑖,𝑗]∈𝐸

𝑛𝑘
∑
𝑘=1

𝑥𝑖𝑗𝑘1 + 𝑓𝑖𝑘1 = 𝑦𝑖 ∀𝑖 (4)

∑
[𝑖,𝑗]∈𝐸

𝑛𝑘
∑
𝑘=1

𝑥𝑖𝑗𝑘,𝑛𝑝 + 𝑓𝑗𝑘,𝑛𝑝 = 𝑦𝑗 ∀𝑗 (5)
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∑
[𝑖,𝑗]∈𝐸

𝑥𝑖𝑗𝑘𝑝 + ∑
[𝑖,𝑗]∈𝐸

𝑥𝑗𝑖𝑘𝑝 +
𝑛
∑
𝑖=1
𝑓𝑖𝑘𝑝 = 1 ∀𝑝 ∈ 𝐻, ∀𝑘 ∈ 𝐾 (6)

𝑛𝑘
∑
𝑘=1

𝑀𝑃(𝑖,𝑗)
∑
𝑑=1

(𝑥𝑖𝑗𝑘,𝑓(𝑑+𝑝−1) + 𝑥𝑗𝑖𝑘,𝑓(𝑑+𝑝−1)) + 𝑝𝑛𝑖𝑗𝑝 ≥ 1

∀ [𝑖, 𝑗] ∈ 𝑆, ∀𝑝 ∈ 𝐻; 𝑓 (𝑟) = 𝑟, 𝑖𝑓 𝑟 ≤ 𝑛𝑝 or 𝑓 (𝑟) = (𝑟)mod (𝑛𝑝) , 𝑖𝑓 𝑟 > 𝑛𝑝
(7)

𝑛𝑘
∑
𝑘=1

𝑛𝑝
∑
𝑝=1

(𝑥𝑖𝑗𝑘𝑝 + 𝑥𝑗𝑖𝑘𝑝) ≥ 1 ∀ [𝑖, 𝑗] ∈ 𝑅 (8)

𝑥𝑖𝑗𝑘𝑝, 𝑝𝑛𝑖𝑗𝑝, 𝑓𝑖𝑘𝑝 ∈ {0, 1} ∀ [𝑖, 𝑗] ∈ 𝐸, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝐻
𝑦𝑖 ∈ 𝑁+ (9)

The objective function (2) minimizes the displacement costs
and tries to avoid as many possible delays as possible during
the time horizon, so 𝑃𝑈𝑖𝑗 ≫ 𝑐𝑖𝑗. Constraints (3) assure the
network flow conservation; in addition, there is the possibility
for a vehicle to remain still at a node during a day. Equations
(4) and (5) ensure that the number of cars leaving a node
at the beginning of the first period is the same arriving at
the end of the last one, respectively. Constraints (6) establish
that a car must perform a move or remain still at some point
for each planned day. Constraints (7) and (8) control the
periodicity of each arc. In (7) all arcs that do not have the
periodicity equal to the number of days in the time horizon
have the possibility of delays reacting with a penalty in the
objective function. It is important to notice that the index
𝑝 in the variable 𝑥𝑖𝑗𝑘𝑝 cannot exceed the value of 𝑛𝑝, being
converted by a correspondent value inside the time horizon;
for example, at the day 𝑛𝑝 + 1 the edges evaluated on the first
period are performed again. Constraints (8) do not allow arcs
with a periodicity equal to 𝑛𝑝 to suffer delays, because these
arcs would not be served. Finally, equations (9) define the
domain of all the variables.

4. The Ant Colony Optimization

Construction algorithms generate feasible solutions to prob-
lems by iteratively adding components until achieving a
complete solution. Usually, there is no backtracking in this
kind of process, e.g., at each step of the Greedy Construction
Heuristics the component that gives a maximum myopic
benefit is added to the solution. Greedy algorithms frequently
generate solutions with better quality than a random solution
but have the disadvantage of generating a limited number of
solutions; also, the early choices effect in the latter ones, caus-
ing poor moves near the final phase. ACO is an alternative to
create diversified solutions.

The behavior of real ants looking for food inspires
the Ant Colony Optimization (ACO) algorithm. The ants
spread pheromone during their search, creating a trail which
influences the path choice of other ants. The algorithm uses
numerical information to represent the pheromone trails
and keeps information about the search experience. Each

ant takes randomized decisions iteratively until achieving a
complete solution; these decisions follow a probability that
considers all information available at the moment.

Each artificial ant in ACO constructs a stochastic solu-
tion, conducting to a wide variety of different routes. The
construction uses the information available at the moment
and also the experience obtained with other solutions to add
components, one by one, in the solution. If it is possible to
create a procedure that generates a solution for a discrete
optimization problem, then, in principle, it is possible to
apply the ACO.

To increase the quality of the solutions produced by the
ACO algorithm, it is possible to design hybrid ACO-local
search algorithms. Local search algorithm improves a solu-
tion iteratively by looking on a definedneighborhood.During
the search, if it finds a better solution, it replaces the current
solution and the exploration moves to the new solution’s
neighborhood. The replacement can be done with the best
solution found after exploring thewhole neighborhood (best-
improvement rule) or as soon as solution improving the best
one so far is found (first-improvement rule). Needless to
say, the choice of a good neighborhood is crucial for the
algorithm’s performance. The hybridization of a local search
algorithm within the ACO scheme will be described in the
subsection Improvement Phase.

4.1. The Problem Representation. In this paper, a solution is
represented by a sequence of cities determining the starting
and the ending city of each day’s trip, so that the last city
is the departure point for the next travel. Solutions with the
same sequence of visits are symmetric and result at an equal
value of the objective function, independently of the days
and the direction on which the cities are visited. Generating
reasonable solutions is not trivial for the PCARP-CMbecause
of the continuity of the moves and the lack of a depot as
a reference. Also, the cyclicity of the problem increases the
number of symmetric solutions.

The ACO constructive algorithm proposed in this paper
consists of finding a route into a directed graph. To this
end, first an initial vertex is selected randomly but, in doing
so, higher probability is given to the vertex having a higher
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Figure 1: An example problem (a) and its graph representation (b).

degree (number of edges connected). By choosing the initial
vertex randomly, the constructive algorithm can generate a
wider variety of solutions.Then, a graph is generated for each
car based on layers; the initial layer contains just the possible
vertex; the following layer includes all the adjacent vertices to
the previous one, including itself. The process follows from
layer to layer comprising all the possible connections with the
past layer until achieving the final one. Not all the adjacent
nodes are possible connections in all layers because of the
cyclicity; the last layer will contain just the possible ending
vertices based on the time distance. If only one car is available
in the problem, the ending vertex must be the initial. If the
problem comprises more than one car, it is necessary to
evaluate the possibilities that respect the cycles during the
time horizon.There will be 𝑛𝑝+1 layers for each car. Figure 1
shows a toy problem and its associated graph.

Leaving a layer and going to the next one represents a
move.The graphmay give a false impression that the problem
is simple, but after each move, the costs change dynamically
because it may occur one delay. In periodical problems, the
demands suffer influence by the period and the car’s route.
In our ACO algorithm, the ants start at the initial vertex and
will probabilistically move until making a complete route for
all the cars which, in other words, means going through all
the layers. If in Figure 1, an ant moves from A in layer 0 to D
in layer 1, which represents the car movement on the first day.

Defining the starting vertex helps the search in avoiding
many symmetric solutions. To increase the ACO effective-
ness, we enhanced it with some ideas of the Granular Tabu
Search (GTS) [16]. The GTS is applied to optimization and
graph-theoretic problems, and it uses what is named granular
neighborhoods in a local search algorithm to reduce the
computing time. In each iteration, the search is less myopic
because it occurs among neighbors with desirable character-
istics. For example, for the Vehicle Routing Problem, a sparse
graph can be created to guide the search, it will contain just
relevant arcs, e.g., with short distances.

For our ACO, we created two sparse graphs that avoid
poor moves. The first one removes the arcs that maintain the

car in the same node, for example, equivalent to removing
the arcs A-A in Figure 1. The second will be modified at each
move by eliminating some possibilities in specific days, the
same as adding some arcs to a tabu list as follows. If an ant
traverses an arc whose periodicity equals the time horizon,
it will not be necessary to do it twice. Also, once an arc has
been served, it does not seem reasonable to return to it soon,
so we do not consider it for some time. Indeed, the arc is
not considered for some periods corresponding to the arc
periodicity divided by constant 𝜒 (we set 𝜒 = 1.5 in our
numerical experiments). Notice that although the arc should
ideally be revisited precisely at the end of its periodicity, the
constraints of the problemmight force us to do it before.This
process may block all the moves at some point, and when this
happens, the algorithmwill use just the first sparse graph, and
if the problem continues, none are used.

4.2. The Ants Moves. All ants start in the initial node at the
first layer and complete a sequence of decisions allowing them
to go forward until the last node in the last layer, generating
thus a complete solution. Each ant’s move represents a car
movement from one node to another on a given day. The
process of choosing amove considers data of the actual status
of every arc and the pheromone trails left by previous ants;
eachmove option has a probability that uses this information.
Iteratively, the addition ofmovements composes the solution.

Some possibilities may be more attractive in this process.
For example, let us assume that at the end of the 7th planned
day an ant is at city A andmust decide to go to either city B or
city C. The following information is also known: the arc A-C
was traversed 6 days before and it has a periodicity of 30 days;
the arc A-B did not receive attendance yet, what should occur
in every 15 days. Based on this information, it seems more
promising to go to city B.Therefore, it is possible to influence
the ant’s random choice by giving a higher probability to city
B as the next visit. Such heuristic information is handled by a
visibility factor 𝜂𝑖𝑗 which is computed for every move option
by looking at the past moves. It quantifies how good the
arc choice is by reseting the periodicity of the one traversed
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and approaching the other arcs to the deadline. This calculus
considers 𝑙𝑎𝑠𝑡𝑖𝑗 the last day when the edge (𝑖, 𝑗) received
attendance, 𝑑 the day when the move is happening, and 𝑔(𝑖𝑗)
an auxiliary function that will help in the calculus:

𝑔 (𝑖𝑗) = 𝑀𝑃 (𝑖, 𝑗) + ∑
[𝑘,𝑙]∈𝐸[𝑖,𝑗]

(𝑙𝑎𝑠𝑡𝑘𝑙 +𝑀𝑃 (𝑘, 𝑙) − 𝑑) (10)

𝜂𝑖𝑗 =
{{{{
{{{{{

𝑔 (𝑖𝑗) 𝑖𝑓 𝑔 (𝑖𝑗) > 0
1 𝑖𝑓 𝑔 (𝑖𝑗) = 0
−𝑔 (𝑖𝑗)−1 𝑖𝑓 𝑔 (𝑖𝑗) < 0

(11)

The higher the value of 𝑔(𝑖𝑗) in (10), the more attractive
becomes going from 𝑖 to 𝑗. A negative value means that some
periodicity, given by 𝑀𝑃, is being violated. The visibility 𝜂𝑖𝑗
must be greater than zero in the algorithm. Therefore, some
intervals were defined as in (11).This computation is required
for all options that respect the two sparse graphs created
and it must occur in every decision (for each day and car).
The heuristic information brings specific knowledge for the
problem. Also, the computation at runtime is important in
dynamic problems [15].

The probability is also influenced by the experience
accumulated with past routes using the pheromone trails
left by ants. At the beginning, 𝑡 = 0, the quantity of
pheromones is low and the same for every arc. Running the
algorithm, the ants spread pheromones in the used path, so
each arc (𝑖, 𝑗) traversed receives an amount of it. As time
goes, the pheromone also evaporates. 𝜏𝑖𝑗𝑘𝑝(𝑡) is the numerical
information that represents the quantity of pheromone in
the arc (𝑖, 𝑗) using the car 𝑘 in the day 𝑝 in the iteration 𝑡.
The more used an arc is, the more attractive it becomes for
an ant. There are different ways to compute the probability
of traversing the arc. The most widely used rule is the Ant
Systems (AS) [22]. The following is based on it.

𝑃𝑖𝑗𝑘𝑝 (𝑡) = [𝜏𝑖𝑗𝑘𝑝 (𝑡)]𝛼 [𝜂𝑖𝑗]𝛽
∑𝑛𝑗=1 [𝜏𝑖𝑗𝑘𝑝 (𝑡)]𝛼 [𝜂𝑖𝑗]𝛽

(12)

The probability that an ant goes from a node 𝑖 to another 𝑗
using a car 𝑘 during the day 𝑝 in an iteration 𝑡, 𝑃𝑖𝑗𝑘𝑝(𝑡), results
from the pheromones and the heuristic information (visibil-
ity). It shows how attractive an arc is. Moreover, parameters
𝛼 and 𝛽 represent the relative importance given to the
pheromones and to the heuristic information, respectively.
A random draw decides the moves of each ant respecting
the probabilities. In this process, the ant moves from layer
to layer until completing the route for each car. If there are
two or more cars, the algorithm generates a new graph for
each one, with a new starting point when necessary, and the
same quantity of layers to represent the moves on each day.
If a vehicle initiates its route in a specific node and finishes it
in the same node, the following car can select a new point to
start. This selection evaluates the possibilities in the sparse
graphs, where nodes with more possible adjacencies have
more probability to be chosen. On the other hand, if a car
finishes its route in a node different than the initial, the next
car must start at this last node to guarantee the cyclicity of the
problem.

4.3. Improvement Phase. It is common to hybridize the ACO
with other heuristics aiming better performance. Once a
complete solution is obtained, a Local Search (LS) algorithm
can improve it. The two approaches are complementary: the
ACO explores the solution space in a coarse-grained way
and the LS refines the solution found. This combination
may be crucial to achieving state-of-the-art performance.We
developed a simple local search algorithm, which evaluates
two neighborhoods and iteratively improves the solution
with the best neighbor found among them, using a best-
improvement rule.

The first neighborhood is the well-known 2-opt algo-
rithm. It removes each pair of nonconsecutive arcs from the
solution so that a reconstruction procedure is able to create
a different route. Two new arcs link the free stretch inverting
its sense. In this problem, this also means changing the days
of attendance. This is replicated to each car. It is possible to
mix two routes, but it increases the search space and implies
an extra difficulty that may change the length of the routes,
violating the capacity.

The second neighborhood consists of removing every
three consecutive arcs and evaluating a better way to recon-
struct the route. Removing it means to cease to cross two
following cities in the solution, so the reconstruction deter-
mines the replacement of it by a different pair. It allows the
elimination of unnecessary moves and the inclusion of an arc
not attended. It also respects the starting and ending point of
every route. If the ending point for the first car is the next car’s
starting one, then this point can be modified.

4.4. The Complete Algorithm. Let 𝑚 be the total number
of ants, each one will move from node to node with a
probability measured by (12) respecting the sparse graphs
when possible.When obtaining a complete solution, the local
search algorithm improves it. All the visited arcs will receive
an amount of pheromone laid by the ant. Furthermore, some
part of the pheromones evaporates with a given rate. Thus,
for the next iterations, the pheromones in each arc must be
updated.

Each completed and improved ant’s solution quantifies
the amount of pheromone to be spread between the iterations
𝑡 and 𝑡 + 1. The objective function value is composed of
penalties for delays and the displacement costs. As the delays
must be avoided and are the priority in the model, we used
the number of delays 𝑛𝑑𝑠 in the solution 𝑠 as criteria to define
this quantity. The displacement costs do not interfere in the
decisions because they are secondary objectives.

�𝜏𝑠𝑖𝑗𝑘𝑝 (𝑡, 𝑡 + 1)

=

{{{{{{{{
{{{{{{{{{

1
𝑛𝑑𝑠

𝑖𝑓 𝑛𝑑𝑠 > 0, 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑡ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑒𝑠 𝑡ℎ𝑒
𝑎𝑟𝑐 (𝑖, 𝑗) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑎𝑟 𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 𝑝

1
𝜓

𝑖𝑓 𝑛𝑑𝑠 = 0, 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑡ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑒𝑠 𝑡ℎ𝑒
𝑎𝑟𝑐 (𝑖, 𝑗) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑎𝑟 𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 𝑝

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(13)

Equation (13) computes the variation of pheromones between
iterations caused by the 𝑘th solution. A desirable solution
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Algorithm: ACO for the PCARP-CM
1: procedure ACO(cars, arcs, cities)
2: Select an initial point

Iteration 𝑡 = 1
Spread pheromones for the first iteration

3: Do until reaching the Stopping Criteria
4: For each ant // (𝑖 = 1 𝑡𝑜 𝑚)
5: For each car // (𝑘 = 1 𝑡𝑜 𝐾)
6: If car ̸= 1 then evaluate the initial point end if
7: Load possible ending points in the last day for car 𝑘
8: Generate the graph for the problem
9: For each day // (𝑑 = 1 𝑡𝑜 𝑛𝑝)
10: Computes the visibility 𝜂𝑖𝑗 for each possible move

11: Draw the next city to be visited considering
the probabilities 𝑃𝑖𝑗𝑘𝑝(𝑡) from the equation (12)

12: Update the sparse graphs
13: Next day
14: Nest car
15: Apply the Local Search Procedure
16: Save the solution if it is the best one
17: Computes the quantity of pheromones to be spread by the ant 𝑖 in each

arc, car and day �𝜏𝑠𝑖𝑗𝑘𝑝(𝑡, 𝑡 + 1) using the equation (13)

18: Next ant
19: Update the pheromones using the variation and 𝜌 for 𝜏𝑖𝑗𝑘𝑝(𝑡 + 1) in the

equation (14)
𝑡 ←󳨀 𝑡 + 1

20: Loop
21: Return the best solution found

Algorithm 1: The complete ACO algorithm for the PCARP-CM.

does not contain penalties; if there are delays, fewer
pheromones are laid. On the other hand, more pheromones
will attract more ants in the future. When no delays happen,
we set 𝜓 = 0.1 but could be of any value in ]0, 1]. Supposing a
solution for a problem where an arc should had received one
attendance every 15 days and at some moment it had stayed
18 days without it, it had 3 days of delay 𝑛𝑑𝑠. It is necessary
to compute the delays of all arcs and accumulate it in the
variable 𝑛𝑑𝑠 to decide how much pheromones to spread. The
maximum amount happens when there are no delays.

The final amount of pheromone for the next iteration
results from all 𝑚 solutions and ∈ [0, 1], where (1 − 𝜌)
represents the evaporation coefficient, as shown in (14). It
means that the next ants will probabilistically choose tomove
in an arc based on the contribution of every ant and in the
historic of use.

𝜏𝑖𝑗𝑘𝑝 (𝑡 + 1) = 𝜌𝜏𝑖𝑗𝑘𝑝 (𝑡) +
𝑚
∑
𝑠=1

�𝜏𝑠𝑖𝑗𝑘𝑝 (𝑡, 𝑡 + 1) (14)

Algorithm 1 provides a pseudocode of the complete algo-
rithm. Firstly, the procedure receives all the information
concerning the problem.The same initial point is for all ants;
thismight help in the convergence because it eliminatesmany
symmetric solutions. Each ant performs its route, selecting
moves for every car each day. The Local Search Algorithm
improves the solution; if it finds the best objective value, then
the Best Solution is updated. It is computed the quantity of

pheromone to be spread; and after every ant completes its
route, the pheromones are updated.The process repeats until
achieving the stopping criteria, which may be a time limit or
a determined number of iterations.

5. Computational Results

No benchmark instances are available for this problem, so we
generated new ones based on the 23 𝑔𝑑𝑏 for the capacitated
arc routing problem proposed by Golden [1]. These instances
were also transformed in [8, 9, 12, 17, 20, 23], originating
the 𝑝𝑔𝑑𝑏 instances. They have been modified to suit the
PCARP-CM features, and they are labeled 𝑝𝑔𝑑𝑏𝑐𝑚. Since
the PCARP-CM is quite different from the others, we just
kept the graph structure, the number of nodes, and the edges
with its costs from the original instances. The number of
different periodicities could variate from two to four; the
number of cars oscillates from one to six. Each arc received
a coherent periodicity considering: the graph, frequencies,
and the number of vehicles. The time horizon was defined
as the greatest periodicity. After all those transformations,
we duplicated the instances in which the greatest periodicity
was not equal to the least common multiple among the
periodicities. This last process changed some periodicities
and the time horizon to values that were multiple, resulting
in the instances from 𝑝𝑔𝑑𝑏𝑐𝑚24 to 𝑝𝑔𝑑𝑏𝑐𝑚39. It allowed
us to have a more significant diversity of problems, resulting
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Table 1: PCARP-CM characteristics and the result obtained with the mathematical model.

Problem Nodes Arcs
Nb. of

Periodic.
Cars Req.

Time
Horizon

Incumb.
Solution

Lower Bound GAP

𝑝𝑔𝑑𝑏𝑐𝑚1 12 22 2 1 32 38 19437,0 410,9 97,9%

𝑝𝑔𝑑𝑏𝑐𝑚2 12 26 3 1 44 53 39576,0 510,3 98,7%

𝑝𝑔𝑑𝑏𝑐𝑚3 12 22 2 2 31 19 344,0 315,0 8,4%

𝑝𝑔𝑑𝑏𝑐𝑚4 11 19 3 2 34 21 8525,0 447,0 94,8%

𝑝𝑔𝑑𝑏𝑐𝑚5 13 26 4 2 53 32 14755,0 659,0 95,5%

𝑝𝑔𝑑𝑏𝑐𝑚6 12 22 2 3 34 14 456,0 418,0 8,3%

𝑝𝑔𝑑𝑏𝑐𝑚7 12 22 3 3 37 45 569,0 491,0 13,7%

𝑝𝑔𝑑𝑏𝑐𝑚8 27 46 4 3 67 27 75367,0 325,0 100,0%

𝑝𝑔𝑑𝑏𝑐𝑚9 27 51 3 4 78 24 70456,0 439,0 99,4%

𝑝𝑔𝑑𝑏𝑐𝑚10 12 25 4 4 70 21 4791,0 684,0 85,7%

𝑝𝑔𝑑𝑏𝑐𝑚11 22 45 2 1 50 60 - 411,4 -

𝑝𝑔𝑑𝑏𝑐𝑚12 13 23 3 1 33 40 545,0 469,5 13,8%

𝑝𝑔𝑑𝑏𝑐𝑚13 10 28 2 2 33 20 620,0∗ 620,0 0,0%

𝑝𝑔𝑑𝑏𝑐𝑚14 7 21 3 2 32 20 145,0∗ 145,0 0,0%

𝑝𝑔𝑑𝑏𝑐𝑚15 7 21 4 2 48 29 144,0 137,0 4,9%

𝑝𝑔𝑑𝑏𝑐𝑚16 8 28 2 3 40 24 182,0 176,0 3,3%

𝑝𝑔𝑑𝑏𝑐𝑚17 8 28 3 3 52 21 175,0 161,0 8,0%

𝑝𝑔𝑑𝑏𝑐𝑚18 9 36 4 3 81 33 9410,0 369,0 96,1%

𝑝𝑔𝑑𝑏𝑐𝑚19 8 11 3 4 29 12 125,0∗ 125,0 0,0%

𝑝𝑔𝑑𝑏𝑐𝑚20 11 22 4 4 53 16 14265,0 244,0 98,3%

𝑝𝑔𝑑𝑏𝑐𝑚21 11 33 2 5 46 12 212,0 204,0 3,8%

𝑝𝑔𝑑𝑏𝑐𝑚22 11 44 4 5 88 22 482,0 423,0 12,2%

𝑝𝑔𝑑𝑏𝑐𝑚23 11 55 2 6 82 17 340,0 329,0 3,2%

𝑝𝑔𝑑𝑏𝑐𝑚24 12 26 3 1 44 54 8586,0 517,6 94,0%

𝑝𝑔𝑑𝑏𝑐𝑚25 12 22 2 2 31 20 348,0 315,0 9,5%

𝑝𝑔𝑑𝑏𝑐𝑚26 11 19 3 2 34 24 548,0 447,0 18,4%

𝑝𝑔𝑑𝑏𝑐𝑚27 13 26 4 2 50 32 723,0 639,0 11,6%

𝑝𝑔𝑑𝑏𝑐𝑚28 12 22 3 3 33 16 444,0 402,0 9,5%

𝑝𝑔𝑑𝑏𝑐𝑚29 27 46 4 3 63 30 2405,0 304,0 87,4%

𝑝𝑔𝑑𝑏𝑐𝑚30 27 51 3 4 78 24 46441,0 375,0 99,2%

𝑝𝑔𝑑𝑏𝑐𝑚31 12 25 4 4 70 24 4838,0 684,0 85,9%

𝑝𝑔𝑑𝑏𝑐𝑚32 13 23 3 1 33 42 527,0 474,0 10,1%

𝑝𝑔𝑑𝑏𝑐𝑚33 7 21 3 2 36 20 157,0 156,0 0,6%

𝑝𝑔𝑑𝑏𝑐𝑚34 7 21 4 2 42 30 120,0 117,0 2,5%

𝑝𝑔𝑑𝑏𝑐𝑚35 8 28 3 3 54 24 174,0 167,0 4,0%

𝑝𝑔𝑑𝑏𝑐𝑚36 9 36 4 3 81 36 383,0 369,0 3,7%

𝑝𝑔𝑑𝑏𝑐𝑚37 11 22 4 4 53 36 1284,0 246,0 80,8%

𝑝𝑔𝑑𝑏𝑐𝑚38 11 44 4 5 88 24 427,0 423,0 0,9%

𝑝𝑔𝑑𝑏𝑐𝑚39 11 55 2 6 82 18 338,0 329,0 2,7%

in 16 new instances. The time horizon being a multiple
of all periodicities is recurrent in the real context but not
mandatory.

We compared our algorithm to sub-optimal or optimal
results produced by the linear programming model. The
solver Gurobi 7.0.1 64 bits, with a time limit of one hour and
the default parameters, was used for this comparison. All
algorithms were implemented in Visual Basic.NET. Table 1

lists all the 39 instances with their respective characteristics
and the results. The first column shows the name of the
problem, and the next ones present the number of nodes,
arcs, periodicities, cars, requirements, and time horizon. The
number of requirements represents the smallest number of
needed passages over the graph during the time horizon.
The last three columns show the answer obtained with the
solver after the time limit. Firstly, there is the incumbent
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Table 2: Results of the tests to define parameters for the ACO Algorithm for the PCARP-CM.

𝛼; 𝛽; 𝜌 Average Standard Deviation 𝛼; 𝛽; 𝜌 Average Standard Deviation 𝛼; 𝛽; 𝜌 Average Standard Deviation

0.5;0.5;0.5 15859.2 13475.7 1;3;0.7 14156.6 12647.3 2;1;0.9 16600.6 13848.6

0.5;0.5;0.7 16183.0 13854.6 1;3;0.9 15025.6 13005.7 2;2;0.5 18858.3 15455.2

0.5;0.5;0.9 16865.6 14362.9 1;5;0.5 13867.7 12361.2 2;2;0.7 18088.9 14983.7

0.5;1;0.5 16338.2 13864.6 1;5;0.7 14220.6 12677.9 2;2;0.9 16895.0 14258.3

0.5;1;0.7 16366.0 13904.9 1;5;0.9 15311.4 13212.6 2;3;0.5 18889.3 15366.4

0.5;1;0.9 16448.7 13743.4 1.2;0.5;0.5 14694.5 12995.8 2;3;0.7 18308.4 15481.3

0.5;2;0.5 16179.6 13586.8 1.2;0.5;0.7 14017.7 12392.5 2;3;0.9 16936.0 13945.6

0.5;2;0.7 16568.2 13880.8 1.2;0.5;0.9 13964.2 12529.1 2;5;0.5 19562.6 16174.2

0.5;2;0.9 16399.8 13921.1 1.2;1;0.5 14887.4 13169.0 2;5;0.7 18496.9 14940.5

0.5;3;0.5 16186.0 13569.8 1.2;1;0.7 13984.9 12547.5 2;5;0.9 16932.2 13884.1

0.5;3;0.7 16282.8 13841.7 1.2;1;0.9 14585.2 13018.0 5;0.5;0.5 22404.5 18139.3

0.5;3;0.9 16575.3 14138.1 1.2;2;0.5 14826.1 12995.7 5;0.5;0.7 21988.9 17097.7

0.5;5;0.5 16400.4 13687.8 1.2;2;0.7 14220.1 12561.7 5;0.5;0.9 21437.5 16956.4

0.5;5;0.7 16543.2 14035.1 1.2;2;0.9 14482.6 12947.9 5;1;0.5 22394.5 18020.2

0.5;5;0.9 16782.8 13877.7 1.2;3;0.5 14689.6 13037.8 5;1;0.7 22074.8 17453.2

1;0.5;0.5 13692.0 12598.6 1.2;3;0.7 14149.5 12313.9 5;1;0.9 21361.2 16944.4

1;0.5;0.7 14824.3 13243.7 1.2;3;0.9 14387.4 12872.5 5;2;0.5 22379.4 17334.7

1;0.5;0.9 14973.1 13057.2 1.2;5;0.5 14964.4 13208.6 5;2;0.7 21950.8 16971.1

1;1;0.5 13218.2 12314.9 1.2;5;0.7 14426.6 12720.8 5;2;0.9 21665.8 17300.3

1;1;0.7 14019.0 12449.8 1.2;5;0.9 14424.1 12987.1 5;3;0.5 22677.1 17584.1

1;1;0.9 15032.9 13283.5 2;0.5;0.5 19080.2 15207.4 5;3;0.7 21998.5 17490.6

1;2;0.5 13334.1 11985.9 2;0.5;0.7 18460.9 15324.0 5;3;0.9 21537.6 16456.3

1;2;0.7 14036.5 12858.2 2;0.5;0.9 16795.2 13861.4 5;5;0.5 22644.0 17977.5

1;2;0.9 15299.7 13331.7 2;1;0.5 19165.3 15803.9 5;5;0.7 21955.4 16996.4

1;3;0.5 13567.2 11982.5 2;1;0.7 18345.1 15311.8 5;5;0.9 21402.6 16361.2

solution, then the lower bound, and, finally, the gap between
the incumbent solution and the lower bound.

The scalability of penalties in the objective function leads
a single delay to provoke large gaps.The value of each penalty
is of 1000 while the displacement costs are of an average
of 7.1 with 6.49 of standard deviation for each edge. Three
problems, 𝑝𝑔𝑑𝑏𝑐𝑚13, 𝑝𝑔𝑑𝑏𝑐𝑚14, and 𝑝𝑔𝑑𝑏𝑐𝑚19, have the
optimal value proved, and the others were stopped after 3600
seconds. For problem 𝑝𝑔𝑑𝑏𝑐𝑚11, this time limit was not
enough to find a feasible solution. So, we used the same time
limit for our ACO algorithm.

5.1. Parameter Tunning. The ACO uses parameters that
concern the relative importance given to the pheromone
trails 𝛼 ≥ 0, and to the visibility or heuristic information
𝛽 ≥ 0 combined with the coefficient 0 ≤ 𝜌 ≤ 1 which
determines the evaporation. To determine them, we ran
29250 tests combining some promising values used in [22, 24]
that were 𝛼 = {0.5, 1, 1.2, 2, 5}, 𝛽 = {0.5, 1, 2, 3, 5}, and 𝜌 =
{0.5, 0.7, 0.9}. A large number of ants allow the exploration
of more solutions and more information to update the
pheromones, so we decide to use𝑚 = 100 ants. Furthermore,
for these tests, we used the stopping criteria, on which
the number of iterations is equal to 100. The Local Search
procedure may take a long time improving the solution
when the initial result is poor. So, we removed it from the
algorithm aiming to find one combination of parameters that

brings more productive solutions. The results of these tests
are available in Table 2, which brings the average and the
standard deviation value for all tests.

The results presented in Table 2 are the average value of
the objective function for all instances tested ten times for
each particular combination of parameters with the standard
deviation. It means that each combination of parameters was
tested 390 times, and each instance was solved 750 times.
Each test took an average of 32 seconds to be completed.
Hence, we could evaluate proper parameters considering
the variability inherent to the algorithm. The 𝛼, 𝛽, and
𝜌 parameters resulting from the test were 1, 1, and 0.5,
respectively.

5.2. Algorithm Results. Table 3 shows the results obtained
compared with the ones from the solver. The first column
shows the problem name and the three following ones, the
results from the solver. The fourth column starts the results
of the ACO Algorithm presenting first the objective value
achieved, followed by the number of iterations, time spent,
and the gap relative to the lower bound obtained in the solver.
Finally, the last column shows the best result found so far, also
in bold, and the last row some average values.

We set a time limit of 3600 seconds to have a fair com-
parison; this time is more than the necessary to have many
iterations when the Local Search procedure is not present.
Unfortunately, not all problems have good solutions before
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Table 3: Results obtained with the ACO algorithm for the PCARP-CM.

Problem
Solver ACO Algorithm

Best
Incumb.
Solution

Lower Bound GAP
Objective
Value

Iterations
Time

(seconds)
GAP

𝑝𝑔𝑑𝑏𝑐𝑚1 19437,0 410,9 97,9% 451,0 312 3606 8,9% 451,0

𝑝𝑔𝑑𝑏𝑐𝑚2 39576,0 510,3 98,7% 3594,0 10 3680 85,8% 3594,0

𝑝𝑔𝑑𝑏𝑐𝑚3 344,0 315,0 8,4% 344,0 89 3628 8,4% 344,0

𝑝𝑔𝑑𝑏𝑐𝑚4 8525,0 447,0 94,8% 2519,0 44 3644 82,3% 2519,0

𝑝𝑔𝑑𝑏𝑐𝑚5 14755,0 659,0 95,5% 9764,0 12 3832 93,3% 9764,0

𝑝𝑔𝑑𝑏𝑐𝑚6 456,0 418,0 8,3% 456,0 312 3606 8,3% 456,0

𝑝𝑔𝑑𝑏𝑐𝑚7 569,0 491,0 13,7% 576,0 32 3675 14,8% 569,0

𝑝𝑔𝑑𝑏𝑐𝑚8 75367,0 325,0 100,0% 22364,0 4 3870 98,5% 22364,0

𝑝𝑔𝑑𝑏𝑐𝑚9 70456,0 439,0 99,4% 31446,0 3 4492 98,6% 31446,0

𝑝𝑔𝑑𝑏𝑐𝑚10 4791,0 684,0 85,7% 3801,0 4 3839 82,0% 3801,0

𝑝𝑔𝑑𝑏𝑐𝑚11 - 411,4 - 442,0 10 3737 6,9% 442,0

𝑝𝑔𝑑𝑏𝑐𝑚12 545,0 469,5 13,8% 536,0 306 3606 12,4% 536,0

𝑝𝑔𝑑𝑏𝑐𝑚13 620,0∗ 620,0 0,0% 620,0 18 3704 0,0% 620,0

𝑝𝑔𝑑𝑏𝑐𝑚14 145,0∗ 145,0 0,0% 149,0 12 3742 2,7% 149,0

𝑝𝑔𝑑𝑏𝑐𝑚15 144,0 137,0 4,9% 1152,0 4 4010 88,1% 144,0

𝑝𝑔𝑑𝑏𝑐𝑚16 182,0 176,0 3,3% 204,0 2 5796 13,7% 182,0

𝑝𝑔𝑑𝑏𝑐𝑚17 175,0 161,0 8,0% 183,0 3 4963 12,0% 175,0

𝑝𝑔𝑑𝑏𝑐𝑚18 9410,0 369,0 96,1% 2447,0 1 10322 84,9% 2447,0

𝑝𝑔𝑑𝑏𝑐𝑚19 125,0∗ 125,0 0,0% 131,0 45 3632 4,6% 131,0

𝑝𝑔𝑑𝑏𝑐𝑚20 14265,0 244,0 98,3% 4278,0 8 3939 94,3% 4278,0

𝑝𝑔𝑑𝑏𝑐𝑚21 212,0 204,0 3,8% 222,0 5 4013 8,1% 212,0

𝑝𝑔𝑑𝑏𝑐𝑚22 482,0 423,0 12,2% 1492,0 1 13001 71,6% 482,0

𝑝𝑔𝑑𝑏𝑐𝑚23 340,0 329,0 3,2% 357,0 1 18064 7,8% 340,0

𝑝𝑔𝑑𝑏𝑐𝑚24 8586,0 517,6 94,0% 620,0 10 3927 16,5% 620,0

𝑝𝑔𝑑𝑏𝑐𝑚25 348,0 315,0 9,5% 370,0 127 3612 14,9% 348,0

𝑝𝑔𝑑𝑏𝑐𝑚26 548,0 447,0 18,4% 573,0 39 3602 22,0% 548,0

𝑝𝑔𝑑𝑏𝑐𝑚27 723,0 639,0 11,6% 4789,0 11 3898 86,7% 723,0

𝑝𝑔𝑑𝑏𝑐𝑚28 444,0 402,0 9,5% 447,0 30 3674 10,1% 444,0

𝑝𝑔𝑑𝑏𝑐𝑚29 2405,0 304,0 87,4% 3415,0 3 4581 91,1% 2405,0

𝑝𝑔𝑑𝑏𝑐𝑚30 46441,0 375,0 99,2% 25424,0 3 4625 98,5% 25424,0

𝑝𝑔𝑑𝑏𝑐𝑚31 4838,0 684,0 85,9% 4906,0 3 4621 86,1% 4838,0

𝑝𝑔𝑑𝑏𝑐𝑚32 527,0 474,0 10,1% 536,0 208 3600 11,6% 527,0

𝑝𝑔𝑑𝑏𝑐𝑚33 157,0 156,0 0,6% 158,0 13 3638 1,3% 157,0

𝑝𝑔𝑑𝑏𝑐𝑚34 120,0 117,0 2,5% 131,0 4 4512 10,7% 120,0

𝑝𝑔𝑑𝑏𝑐𝑚35 174,0 167,0 4,0% 209,0 2 5145 20,1% 174,0

𝑝𝑔𝑑𝑏𝑐𝑚36 383,0 369,0 3,7% 2479,0 1 13780 85,1% 383,0

𝑝𝑔𝑑𝑏𝑐𝑚37 1284,0 246,0 80,8% 4284,0 8 3969 94,3% 1284,0

𝑝𝑔𝑑𝑏𝑐𝑚38 427,0 423,0 0,9% 525,0 1 16899 19,4% 427,0

𝑝𝑔𝑑𝑏𝑐𝑚39 338,0 329,0 2,7% 380,0 1 22137 13,4% 338,0

Average 9365,0 38,6% 3507,0 42,8% 3184,8

starting the local search and, as was said, the improvements
might take a long time. To have a better idea of the algorithm
performance, we let the algorithm free to finish its current
iteration after reaching the time limit. By doing so, it may
happen that some problems run only for one iteration.

On average, the objective values of the ACO Algorithm
were better than the ones obtained by the solver, but the
average gap calculated is a little worst. The lower bounds
calculated do not include any delay until they reach the
time limit; it means that just displacement costs have been
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Table 4: Comparison between performances in tight cases.

Ratio
Number of Instances

Best performance

( 𝑁𝑏. 𝑜𝑓 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑁𝑏. 𝐶𝑎𝑟𝑠 × 𝑇𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛) Gurobi ACO Draw

> 80% 20 4 13 3

≤ 80% 19 19 0 0

considered. In most cases, one delay causes gaps over than
70%, and more than four delays result in values greater
than 90%, so this proportion does not reflect how good the
solution that has priority to reduce delays is. Analyzing the
relation of requirements and the number of moves available,
computed by the number of cars times time horizon, 20
instances need to occupy at least more than 80% of the
vehicles’ capacity. These instances are some tight cases of
difficult resolution. In these situations, the cars do not have
much freedom to stop, and a single decision of move can
make the difference between a good or a poor solution.
Table 4 shows the results considering these cases. In 80%
of them, our algorithm was better or equal than the solver.
In the other situation, Gurobi was unbeatable, but the ACO
achieved close results.

To evaluate other aspects of the ACO, we tested other
strategies or parameters as follows: (1) we used 1000 ants,
(2) the ants did not have the same initial node, or (3)
the local search was done at the end of the algorithm in
a pool of best solutions and randomly selected solutions
instead of doing it for every ant. Those changes sped up
the algorithm and increased the diversification.The behavior
of the algorithm was similar to the first one proposed,
having the best performance in 13 instances and tying in 3
when compared to the solver. The average value improved
to 3053,64, but the GAP worsened to 45,4% on average. The
ACO variability is high, so when comparing both algorithms
we find that this alteration had an improvement of values in
a few instances and less better solutions.

6. Conclusions and Future Work

In this paper, we proposed a mathematical model for the
PCARP with continuous moves applied to the inspection
of railroads. For this purpose, the foremost objective is to
minimize the number of delays on each stretch. Another
secondary aim is to reduce the displacement costs. Finding
a feasible solution may be a difficult task depending on the
problem characteristics.

The problem was tacked by an exact method using the
mathematical model in a solver and a new Ant Colony Opti-
mization Algorithm. Commercial solvers combine heuristics
with exact methods and have shown an excellent perfor-
mance for many problems, including the PCARP-CM. Our
algorithm showed itself to be competitive, achieving better
results in some cases. In summary, the ACO Algorithm
showed advantages in critical situations where the demands
are close to the vehicle’s capacity. The Local Search is crucial
for the algorithm’s performance but can take an extended
computational time depending on the solution obtained.

As the ACO and the solver produced good results in
different situations, in the future, we will intend to hybridize
them within a matheuristic scheme. This process may allow
us to improve the final results and increase the software’s
efficiency.
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[21] F.Marzolf,M. Trépanier, andA. Langevin, “Road networkmon-
itoring: Algorithms and a case study,” Computers & Operations
Research, vol. 33, no. 12, pp. 3494–3507, 2006.

[22] M.Dorigo, V.Maniezzo, andA. Colorni, “Ant system: optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no.
1, pp. 1–13, 1996.

[23] F. Chu,N. Labadi, andC. Prins, “A scatter search for the periodic
capacitated arc routing problem,” in Project Management and
Scheduling (PMS), pp. 415–420, 2004.

[24] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed Opti-
mization by Ant Colonies,” in Proceedings of Proceedings of
ECAL91 - European Conference on Artificial Life, pp. 132–142,
January 1991.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 

Journal of 

Mathematics and 

Mathematical 

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in 
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

