
A New API For Transactional Condition Synchronization ∗

Chao Wang

Lehigh University
chw412@lehigh.edu

Yujie Liu

Lehigh University
lyj@lehigh.edu

Michael Spear

Lehigh University
spear@cse.lehigh.edu

Abstract
In this paper, we introduce a new condition synchro-
nization mechanism based on the idea of predicates
and states. Our algorithm is compatible with hardware,
software, and hybrid transactional memories, is simpler
to implement than the current state of the art, and does
not rely on extensive support from run-time libraries.

1. Introduction
Efficient support for transactional condition synchro-
nization has been a difficult issue for many years [8].
The most straightforward solution is to make condition
variables “safe” for use in transactions, by using OS-
specific mechanisms [7], new hardware features [2],
or custom runtime support [6] for non-lexically-scoped
transactions. In these approaches, a transaction that
waits on a condition is split into two different trans-
actions [5].

While these solutions are sufficient for transaction-
alizing legacy code, they preserve a cumbersome pro-
gramming model: Since they entail breaking a single
atomic transaction into two separate atomic sections
(one before, and one after, the wait on the condition
variable), they require whole-program reasoning about
the composition of transactions that must wait. A much
more appealing approach is to think of condition syn-
chronization as an approach to scheduling transactions:
If a transaction can proceed only if a certain precondi-
tion hold, then the transaction should not execute until
some other thread establishes the precondition.

The simplest compatible programming model is to
guard certain transactions via a read-only prefix, in a
manner reminiscent of conditional critical regions [1,
3]. The transaction can execute the read-only prefix and
determine whether the precondition is met; if so, it con-

∗ This work was supported in part by the National Science Founda-
tion under grants CCF-1218530 and CAREER-1253362.

tinues to execute, and otherwise it aborts, waits, and
then tries again. To make waiting efficient, the aborting
transaction can put a description of the locations it read
into a shared data structure when putting its thread to
sleep, and then any transaction that commits changes to
any of those locations must wake the waiting thread. To
support nesting and composition, Harris et al. proposed
a linguistic construct called retry. When retry is
called within a dynamic (and possibly nested) transac-
tional context, the read set of the transaction is made
visible to future transactions, the speculative writes of
the transaction are discarded, and the transaction is put
to sleep until some other transaction modifies a location
that the retrying transaction read [4].

We observe that there are two problems with retry:
First, it is imprecise in that any store to any location
read by a waiting transaction will cause the waiting
transaction to wake. This includes stores that do not
establish the required precondition, even silent stores.
Second, retry requires the read and write sets of all
transactions to be visible to the runtime library. This
precludes the use of retry in hybrid transactional
memory (HyTM) systems, where the read and write
sets of transactions may be known only to the hard-
ware.

In this paper, we introduce a new condition synchro-
nization mechanism called TXNRESCHEDULE, which
leverages explicit predicates specified by the program-
mer. To wait on some precondition, a thread publishes
a predicate in the form of a lambda expression, evalu-
ates the precondition and puts itself to sleep if the con-
dition is not satisfied. Assuming that the transactional
memory (TM) implementation ensures a total order on
transactions, the lambda can be regarded as an atomic
evaluation of the given predicate on the shared state at
a time when no other transactions are executing. If that
predicate evaluates to true, then it is possible that the

1 2014/6/29



waiting transaction could complete successfully if re-
executed.

To wake a thread, a transaction evaluates every pub-
lished lambda after it commits. If a lambda returns true,
then either the calling thread or some concurrent thread
has just completed a transaction that establishes the
precondition upon which the waiting thread’s transac-
tion depends. Therefore, it is acceptable to wake the
thread. Since intermediate effects of transactions are
not visible, spurious wakeups do not compromise cor-
rectness. Additionally, since the evaluation of lambdas
follows the commit of a transaction, that transaction
can employ hardware TM resources when available.
The result is a system that can maximally use hardware
TM, and that allows condition synchronization based
on a composable mechanism (unwinding and delay-
ing the execution of transactions, instead of committing
partial results and breaking atomicity [6]).

2. An Example
Figure 1 gives an intuition into the behavior we are
proposing for condition synchronization among trans-
actions. In step 1, Thread T1’s transaction cannot com-
plete, due to some precondition not holding. T1 rolls
back its effects and adds a lambda (function + param-
eters) into a shared set. T2 similarly cannot complete
(step 2), so it enqueues a different lambda. After T3

completes (step 3), it uses separate transactions to eval-
uate the two lambdas published by T1 and T2 (steps 4
and 5). The computation for T1’s lambda returns true,
so T1 resumes and the lambda is removed from the set.
T2’s lambda does not return true, so T2 continues to
sleep. After T1’s transaction commits (step 6), there is
one lambda in the set, so T1 uses a transaction to eval-
uate the lambda (step 7). This time, the result is true,
so T2 is woken and the lambda removed from the set.
When T2 commits its transaction (step 8), the set is
empty, so no additional processing is required.

For the same workload, the behavior of retry
would be as follows: In steps 1 and 2, T1 and T2 would
store in a shared set a description of all locations they
read during their transactions. During step 3, T3 must
save a description of all locations it wrote during its
transaction, and then steps 4 and 5 would consist of
computing intersections between T3’s “write” descrip-
tion and the “read” descriptions from T1 and T2. From
a programmability perspective, retry is easier, as it
does not require the programmer to encode the state

T1

T2

T3

1

2

3

4

5

6 7

8

Time

Figure 1: Example interaction between three threads.

upon which T1 or T2 depends: any change to any lo-
cation read by either waiting transaction will cause the
corresponding thread to resume. However, from an per-
formance perspective, our mechanism is more desir-
able: since the read and write sets of transactions need
not be visible to the run-time system, it is possible to
use hardware TM to execute T3’s transaction, the sub-
sequent transactions by T1 and T2, and all transactions
for evaluating lambdas. Similarly, in some programs it
is possible to execute via HTM those transactions that
ultimately must wait (see Section 4). Note, too, that our
mechanism can be used to simulate retry, by encod-
ing an explicit validation of address/value pairs as the
lambda for the waiting transaction.

3. A Generic Algorithm
We present a generic algorithm for rescheduling trans-
actions in Algorithm 1. We add one method to the TM
API: TXNRESCHEDULE, which a transaction can use
to roll back its attempt and then delay its re-execution
until some other transaction establishes the necessary
precondition. We use AFTERTXNCOMMIT to describe
code that should be executed by a thread after it suc-
cessfully commits a transaction.

We assume that a transaction’s abort mechanism
consists of two parts: rolling back its changes to shared
state and per-thread metadata (RESETMETADATA) and
restoring a checkpoint in order to re-attempt the trans-
action (ROLLBACK). To abort a transaction and delay
its resumption until after some predicate is established,
TXNRESCHEDULE atomically checks the condition
upon which it depends, and if the check fails, it adds
its caller to the set of waiting threads (Q). The func-
tion does not return until some other thread removes

2 2014/6/29



Algorithm 1: A Generic Algorithm for TM-
Reschedule

shared states
Q : Set<Thread> // waiting threads; initially ∅

// p refers to the thread that performs the operation
// c refers to a wait condition (function and parameters)
// t refers to the transaction p is executing

procedure TXNRESCHEDULE(c)
1 t.RESETMETADATA()

// lines 2–4 execute atomically
2 if ¬EVAL(c) then
3 p.c← c

4 Q← Q ∪ {p}
// the test on line 5 executes atomically

5 while p ∈ Q do
wait()

6 t.ROLLBACK()

procedure AFTERTXNCOMMIT()
// line 7 executes atomically

7 Set<Thread> l← Q.elements

8 for x ∈ l do
// lines 9–10 execute atomically

9 if x ∈ Q ∧ EVAL(x.c) then
10 Q← Q \ {x}

the caller from Q. Note that it is necessary to test the
condition atomically with the addition of the caller to
Q, but that this need not be atomic with respect to the
reads and writes performed by the aborted transaction.
Note too that in a practical system, the condition (c)
must be passed by value, not reference, or else the reset
on line 1 might undo changes to c. We assume that c
has no side effects.

The mechanism to wake threads is invoked imme-
diately after any transaction commits, and is presented
as AFTERTXNCOMMIT.1 The committing transaction
copies the list of waiting transactions, so as to avoid
interaction with concurrent waiting and committing
threads. Then, for each entry in the copy, the thread
tests the associated condition, and if the condition
holds, then the waiting thread is removed from the set,
so that it may resume.

4. A Practical Algorithm
Our implementation of TXNRESCHEDULE assumes
that a software TM runtime is available, at least, as a

1 Strictly speaking, read-only transactions need not call this
method.

fall back option. In hardware/hybrid TM environments,
calls to TXNRESCHEDULE from a hardware transac-
tion are likely to cause the transaction to restart in soft-
ware mode, although some exceptions are discussed at
the end of this section.

There are three challenges when attempting to achieve
a practical implementation of Algorithm 1. First, the
algorithm relies upon spin waiting, which can waste
processor cycles in the event that threads must wait for
an extended period of time. This is easy to solve by
employing per-thread semaphores, as in our prior work
on transactional condition variables [6]. The solution
entails assigning a semaphore to each thread as semp,
replacing line 5 with semp.wait(), and then adding a
line 11, semx.signal(). This line should run only if
the condition on line 9 is true, but should not be atomic
with respect to lines 9–10.

The second challenge is that we have not described
how to achieve atomicity throughout the algorithm. A
naive approach would employ 4 transactions. Using
semaphores would eliminate the need for a transaction
on line 5, and the transactions on lines 7 and 9–10 are
not concerning, since the calling thread is outside of a
transaction. However, we still require one transaction
(lines 2–4) that must run while its caller (the about-
to-wait transaction) still has an active checkpoint. If
the runtime system allows open nested transactions,
then lines 2–4 can run as an open nested transaction.
Otherwise, some careful design is required.

Since the execution of EVAL(c) may access data that
is simultaneously being accessed by concurrent trans-
actions, we must use transactions to achieve atomic-
ity for this code. We briefly present two interesting im-
plementation options. First, we could save the caller’s
checkpoint to a local variable before line 2, and then
put it back into the caller’s transaction metadata after
line 5. Note that the call to t.RESETMETADATA would
have cleared all other per-transaction metadata, so that
the checkpoint was the only remaining artifact of the
aborting transaction. Thus using a transaction to exe-
cute lines 2–4 would be possible.

The second option leverages the fact that when line
2 is reached, the calling context is effectively a soft-
ware transaction that has performed no reads or writes.
That being the case, we could execute lines 2–4 within
the context of the calling transaction. If they lead to
an abort (which we expect to be unlikely since pred-
icates should be small and accesses to the potentially

3 2014/6/29



contended set Q occur only at the end of the region),
the calling transaction will restart. This is an acceptable
outcome, since the calling transaction may discover
that the contention when attempting EVAL(c) was due
to some other transaction establishing the desired in-
variant. If line 4 completes, the calling transaction can
commit but not discard its checkpoint. Doing so would
lead to all per-thread metadata being re-cleared, and the
caller’s checkpoint remaining valid for use on line 6.

The third challenge in achieving a practical imple-
mentation is that under most circumstances, a call to
TXNRESCHEDULE that is made by a hardware transac-
tion must cause the transaction to restart as a software
transaction. When there are more threads than cores,
this results in a delay before scheduling some other
thread that might be able to make progress. Given that
Intel’s hardware transactional memory support allows
the programmer to emit an 8-bit value to describe any
explicit self-abort, there is a workaround for a limited
class of possible predicate functions EVAL(c). Recall
that a predicate in our proposal consists of a function
and its by-value parameters. For a given program, if
there are less than 256 unique combinations of pred-
icate and parameters, then it is possible to produce a
table containing all possibilities, and then allow a hard-
ware transaction to reschedule by (1) self-aborting with
the desired status code as the parameter to the HTM
abort function, (2) looking up the appropriate function
EVAL(c) in the handler for self aborts, (3) executing
the equivalent of lines 2–5, and then (4) resuming the
transaction from the abort handler.

5. Conclusions and Future Work
In this paper we introduced a new mechanism for trans-
actional condition synchronization. Unlike prior work,
our algorithms do not require splitting atomic trans-
actions, and do not forbid the use of hardware trans-
actional memory for non-waiting transactions. Given
these properties, we are hopeful that our mechanism
will provide an appealing alternative to both the unap-
pealing programming model of transactional condition
variables and the unappealing performance constraints
of the retry mechanism.

As future work, we plan to implement our algo-
rithms and perform a wide range of case studies to de-
termine the utility of TXNRESCHEDULE, both when
rewriting legacy code to use transactions, and when
creating new programs from scratch.

References
[1] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff,

A. Kielstra, C. von Praun, V. Saraswat, and V. Sarkar.
X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing. In Proceedings of the 20th ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, San Diego, CA, Oct.
2005.

[2] P. Dudnik and M. M. Swift. Condition Variables and
Transactional Memory: Problem or Opportunity? In
Proceedings of the 4th ACM SIGPLAN Workshop on
Transactional Computing, Raleigh, NC, Feb. 2009.

[3] T. Harris and K. Fraser. Language Support for
Lightweight Transactions. In Proceedings of the 18th
ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Oct. 2003.

[4] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy.
Composable Memory Transactions. In Proceedings of
the 10th ACM Symposium on Principles and Practice of
Parallel Programming, Chicago, IL, June 2005.

[5] M. Ringenburg and D. Grossman. AtomCaml: First-
Class Atomicity via Rollback. In Proceedings of the 10th
ACM International Conference on Functional Program-
ming, Tallinn, Estonia, Sept. 2005.

[6] C. Wang, Y. Liu, and M. Spear. Transaction-Friendly
Condition Variables. In Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architec-
tures, Prague, Czech Republic, June 2014.

[7] R. Yoo, C. Hughes, K. Lai, and R. Rajwar. Performance
Evaluation of Intel Transactional Synchronization Ex-
tensions for High Performance Computing. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
Denver, CO, Nov. 2013.

[8] R. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai,
and H.-H. Lee. Kicking the Tires of Software Trans-
actional Memory: Why the Going Gets Tough. In Pro-
ceedings of the 20th ACM Symposium on Parallelism in
Algorithms and Architectures, Munich, Germany, June
2008.

4 2014/6/29


