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Abstract. We study the spin- and flavour- dependentSU(6) violations in the baryon spectrum by means of a Gürsey
Radicati mass formula. The average energy of eachSU(6)-multiplet is described using theSU(6) invariant interaction
given by a hypercentral potential containing a linear and a hypercoulomb term. We show that the non strange and
strange baryon masses are in general fairly well reproducedand moreover that the Gürsey Radicati formula holds in
a satisfactory way also for the excited states up to 2 GeV. Thecoefficients of the Gürsey RadicatiSU(6) breaking
part obtained by the fit of the three-quark spectrum can be used to evaluate in first approximation the splitting within
multiplets also for exotic baryon systems.

PACS. 12.39-x Phenomenological quark models – 12.39.Pn Quark potential models – 11.30.Hv Flavor symmetries
in particles and fields – 11.30.Ly Other internal and higher symmetries in particles and fields

1 Introduction

Different versions of Constituent Quark Models (CQM) have
been proposed in the last decades in order to describe the baryon
properties. What they have in common is the fact that the three-
quark interaction can be separated in two parts: the first one,
containing the confinement interaction, is spin and flavour in-
dependent and it is thereforeSU(6) invariant, while the second
violates theSU(6) symmetry. This separation has been sup-
ported by the very first Lattice QCD calculations [1] and is
confirmed by the most recent ones [2,3]. The various CQMs
differ in the way theSU(6) invariance is violated. One of the
most popular ways was the introduction of a hyperfine (spin-
spin) interaction [4,5,6,7], however in many studies a spin-
and isospin- [8,9,10,11] or a spin- and flavour-dependent in-
teraction [8,9,10] has been considered. In this paper we study
the symmetries of the baryon spectrum using a very simple ap-
proach based on the Gürsey Radicati mass formula (GR) [12].
It is well known that the baryon spectrum exhibits an approxi-
matedSU(6) symmetry and that the GR mass formula, despite
it’s simplicity, describes quite well the way this symmetryis
broken, at least in the lower part of the baryon spectrum. Our
idea is to build up a very simple model based on the GR mass
formula, to fix the parameters of the model in way to obtain
the best description (within the limits of this approach) ofthe
baryon spectrum and thereafter use the model (with the param-
eters values fixed on the baryon spectrum) to give predictions
for the masses of other hadronic systems as for example pen-
taquarks [13]. The model we propose is a simple CQM where
theSU(6) invariant part of the Hamiltonian is the same as in
the Hypercentral Constituent Quark Model [6,7] and where the
SU(6) symmetry is broken by a GR inspired interaction.
In the second section we briefly remind the hypercentral CQM

and its results, then in the third section we construct the model
using the GR as theSU(6) breaking term. In the fourth section
we give the results obtained by fitting the GR parameters to the
strange and non strange baryon energies and we compare the
spectrum with the experimental data. Finally we discuss our
results.

2 The hypercentral model

The experimental4− and3−star non strange resonances can
be arranged inSU(6) multiplets. This means that the quark dy-
namics has a dominantSU(6) invariant part, which accounts
for the average multiplet energies. In the Hypercentral Con-
stituent Quark Model (hCQM) it is assumed to be given by the
hypercentral potential [6]

V (x) = −
τ

x
+ αx, (1)

where

x =

√

ρ2 + λ2, (2)

is the hyperradius andρ andλ are the Jacobi coordinates de-
scribing the internal quark motion. Interactions of the type lin-
ear plus Coulomb-like have been used since long time for the
meson sector,e.g. the Cornell potential. This form has also
been obtained in recent Lattice QCD calculations [2,3] forSU(3)
invariant static quark sources. Introducing, along with the hy-
percentral potential, a standard hyperfine interaction [4]which
breaks theSU(6) symmetry, the hCQM has given a fair de-
scription of the non strange baryon spectrum [6] and of other
various physical quantities of interest: the photocouplings [14],
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the electromagnetic transition amplitudes [15], the elastic nu-
cleon form factors [16] and the ratio between the electric and
magnetic proton form factors [17].
Subsequently, in order to improve the description of the non
strange spectrum, an isospin dependentSU(6) violating term
has been introduced [11]. The complete interaction used in this
latter case is given by

Hint = V (x) +HS +HI +HSI , (3)

whereV (x) is the linear plus hypercoulomb SU(6)-invariant
potential of eq.(1), whileHS is the hyperfine interaction and
HI, HSI are respectively isospin and spin-isospin dependent
terms. Similar results can be obtained in a relativized version
of the model [18], in which the quark kinetic energy has the
correct relativistic form.
The preceding results show that both spin and isospin (or flavour)
dependent terms in the quark Hamiltonian are important. Their
contributions can be considered as perturbativeSU(6)-violating
terms added to the unperturbedSU(6)-invariant energies pro-
vided by the hypercentral potential of eq. (1).

3 The strange baryon spectrum and the
Gürsey Radicati mass formula

The spin and isospin dependent interactions considered in the
previous section are not the only source ofSU(6) violation. In
order to study the strange baryon spectrum one has to consider
theSU(3) violation produced by the differences in the quark
masses. The well known Gell-Mann-Okubo (GMO) mass for-
mula [19] made use of aλ8 violation ofSU(3) in order to de-
scribe the mass splittings within the variousSU(3) multiplets;
according to this formula the massM of a baryon belonging to
a givenSU(3) multiplet can be expressed as

M = M0 +D Y + E

[

T (T + 1)−
1

4
Y 2

]

, (4)

whereM0 is the average energy value of theSU(3) multiplet,
Y is the hypercharge,T is the Isospin of the baryon andD and
E are parameters to be fitted. A simple way to interpret the ori-
gin of such a violation is just to attribute to the strange quark a
mass different from the up and down quark ones. The calcula-
tions were performed without reference to any explicit dynam-
ical model, but using standard group theoretical methods. The
unknown parametersD andE in the SU(3) violating terms
can be in principle fitted to the experimental masses, thereby
providing a phenomenological way to describe the spectrum.
A similar approach for the description of the splittings within
the SU(6) baryon multiplets is provided by the Gürsey Radi-
cati mass formula [12]. In the original paper the mass formula
reads:

M = M0 +CS(S +1)+DY +E

[

T (T + 1)−
1

4
Y 2

]

(5)

whereS is the spin. Eq.(5) can be rewritten in terms of Casimir
operators in the following way

M = M0 + CC2[SUS(2)] +DC1[UY (1)]

+E

[

C2[SUI(2)]−
1

4
(C1[UY (1)])

2

]

(6)

whereC2[SUS(2)] andC2[SUI(2)] are theSU(2) (quadratic)
Casimir operators for spin and isospin, respectively, andC1[UY (1)]
is the Casimir for theU(1) subgroup generated by the hyper-
chargeY . The presence of a spin dependent term is necessary
since states belonging to a definiteSU(6) multiplet do not have
the same spin value. This mass formula has proven to be suc-
cessful in the description of the gruond state baryon masses,
however, as stated by the authors themselves, eq. (6) is not the
most general mass formula that can be written on the basis of a
brokenSU(6) symmetry.
In order to generalize eq. (6) one can consider a dynamical
spin-flavour symmetrySUSF (6) and write the following chain
of subgroups

SUSF (6) ⊃ SUF (3) ⊗ SUS(2) ⊃ SUI(2) ⊗ UY (1) ⊗ SOS(2)
↓ ↓ ↓ ↓ ↓ ↓

(λ1, ..λ5) (λf , µf ) S I Y MS

(7)
where in the bottom row we report the quantum numbers which
label the irreducible representations of the corresponding groups.
Therefore one can describe theSUSF (6) symmetry breaking
mechanism by generalizing eq. (6) as

M = M0 +AC2[SUSF (6)] +BC2[SUF (3)]

+CC2[SUS(2)] +DC1[UY (1)]

+E

(

C2[SUI(2)]−
1

4
(C1[UY (1)])

2

)

(8)

The generalized Gürsey Radicati mass formula eq. (8) can be
used to describe the whole baryon spectrum, provided that two
conditions are fulfilled. The first condition is the possibility of
using the same splitting coefficients for differentSU(6) mul-
tiplets. This seems actually to be the case, as shown by the
algebraic approach to the baryon spectrum [8], where a for-
mula similar to eq. (8) has been applied. The second condition
is given by the possibility of getting reliable values for the un-
perturbed mass valuesM0. Our idea is to use for this purpose
theSU(6) invariant part of the hCQM, which provides a good
description of the non strange baryon spectrum and to intro-
duce a Gürsey Radicati inspiredSU(6) breaking interaction to
describe the splittings within eachSU(6) multiplet. We shall
therefore make use of the following three quark Hamiltonian

H = H0 +HGR (9)

with

H0 = 3m+
p2
λ

2m
+

p2
ρ

2m
+ V (x) ,

and

HGR = +AC2[SUSF (6)] +BC2[SUF (3)] + CC2[SUS(2)]

+DC1[UY (1)] + E

(

C2[SUI(2)]−
1

4
(C1[UY (1)])

2

)

,

whereV (x) is the hypercentral potential of eq.(1), and m is
the constituent quark mass. It has to be remarked that, in or-
der to simplify the solving procedure, the constituent quark
masses are assumed to be the same for all the quark flavours
(mu = md = ms = m), therefore, within this approxima-
tion, theSU(3) symmetry is only broken dynamically by the
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spin and flavour dependent terms in the Hamiltonian. In other
words, in this approximation, the effects of the strange quark
mass on the baryon spectrum are described by the two terms of
eq.(4).
The eigenproblem ofH0 can be solved numerically, the spin-
flavour part of the resulting eigenfunctions has definite proper-
ties under transformations of theSUSF (6) group and its sub-
groups. Using the notation of equation (7) the spin-flavour part
of the wave function can be written as

|(λ1, λ2, λ3, λ4, λ5), (λf , µf ), I, Y, S,MS〉 . (10)

Often the irreducible representations are identified not bythe
quantum numbers but by their dimension. Thus, for example

∣

∣

∣

∣

(3, 0, 0, 0, 0), (2, 1), I =
1

2
, Y = 1, S =

1

2
,MS

〉

≡ |281/2, [56, 0
+], N〉

is the spin-flavour part of the nucleon wave function. The nota-
tion used is

|2S+1dim(SU(3))J , [dim(SU(6)), LP ], X〉,

where dim(SU(n)) is the dimension of theSU(n) representa-
tion,S andL are the total spin and orbital angular momentum
of the quark system, respectively,J andP are the spin and par-
ity of the resonance andX = N,∆, . . . denotes the type of
baryon resonance.
The action ofHGR on the eigenstates ofH0 is completely iden-
tified by the expectation values of the Casimir operators on the
states of eq. (10)

〈C2[SUSF (6)]〉 =







45/4 for [56]
33/4 for [70]
21/4 for [20]

〈C2[SUF (3)]〉 =







3 for [8]
6 for [10]
0 for [1]

〈C2[SUI(2)]〉 = I(I + 1)

〈C1[UY (1)]〉 = Y

〈C2[SUS(2)]〉 = S(S + 1) (11)

Therefore the mass of each baryon state|B〉 can be written as:

〈B|H |B〉 = Eγν + 〈B|HGR|B〉 (12)

whereEγν denotes the eigenvalue ofH0 with γ = 2n+ lρ+ lλ
(n being a non negative integer),ν denotes the number of nodes
of the space three quark wave functions andlρ, lλ are the or-
bital angular momenta corresponding to the Jacobi coordinates
(see e.g. [6]).
SinceHG.R. does not depend on the spatial degrees of freedom,
theSU(6) breaking term introduced in this model is diagonal
in the baryon states, this means that the Gürsey Radicati term is
able to give energy splittings within theSU(6) multiplets, but
no configuration mixing effects can arise from such an interac-
tion 1. Therefore the model is expected to fail in the description

1 The kind of problems that one can face neglecting the spatialde-
pendence on theSU(6) breaking part is discussed by Jennings and
Maltman [20]

of all thoose observables where a good description of the three
quark wave function is crucial.

4 Results

The parameters inHGR can be determined in order to repro-
duce the experimental values of the energy splittings. We first
adopt an analytical procedure by means of which we choose
a limited number of well known resonances and express their
mass differences usingHGR and the Casimir operator expecta-
tion values given in the previous section. We list in the follow-
ing the analytical expressions for the mass differences of the
chosen pairs of resonances:

(N(1650)S11−N(1535)S11) = 3C

(∆(1232)P33−N(938)P11) = 9B + 3C + 3E

(N(1535)S11−N(1440)P11) = (E10 − E01) + 12A

(Σ(1193)P11−N(938)P11) =
3

2
E −D

(Λ(1116)P01−N(938)P11) = −D −
1

2
E. (13)

Looking at eq. (13) it is easy to understand that for the descrip-
tion of the non-strange baryon spectrum the only relevant pa-
rameters areA, C and the combination(3B +E). It should be
noted that, in order to apply the Gürsey Radicati mass formula
to the excited states, it is necessary to know the coefficientA of
theSU(6) Casimir operator and the excited energies provided
by the CQM.
Once the SU(6) breaking interaction has been determined, the
parameters ofH0 (α andτ ) which lead to the unperturbed en-
ergiesEγν can be fixed by a minimization procedure on the
non-strange baryon spectrum. The complete list of the param-
eter values is reported in Table 1, column (I). In this way the
Eγν levels are placed close to the central mass value of each
SU(6) multiplet. As shown in eq. (13), a further adjustment
to the unperturbed multiplet energy is provided by the pres-
ence of theSU(6) Casimir operator. The resulting spectrum
is shown in Fig. 1 and Table 2 columnM I

calc. Despite of the
simple form of the SU(6) breaking interaction, the general fea-
tures of the spectrum are fairly well reproduced, especially in
the low energy part. It has to be noted in particular that, besides
the ground state masses which have been fixed through eq.(13),
the predicted masses of theΣ∗, Ξ, Ξ∗ andΩ states are nicely
close to the experimental values.
The second approach followed in the application of the Gürsey
Radicati mass formula is to fit all parameters at the same time
in order to obtain the best reproduction of the spectrum of the
3 and 4 star resonances2. The fitted parameters are reported
in Table 1, column (II), while the resulting spectrum is shown
in Fig. (2) and the corresponding numerical values are given
in Table 2, columnM II

calc. The result is a better overall agree-
ment with the experimental data, even if the prediction in the
non strange sector is worsened. For this reason, we prefer the

2 The PDG [21] quotes a three starsΞ(1690) resonance; however,
since the values of spin and parity are not known, this resonance can-
not be identified with a definite eigenstate of the Hamiltonian and
therefore this state has been excluded from our analysis.
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values of the parameters obtained with the previous analytical
method since we have used only well known and well estab-
lished resonances in order to fix the parameters.
In both cases a non zero value of theSU(6) Casimir coefficient
is needed in order to reproduce the average multiplet energies.
We have also tried a fit imposingA = 0. The resulting parame-
tersα andτ are however considerably different with respect to
those of Table 2 because the lack of the parameterA must be
compensated by theSU(6) invariant energies provided by the
hypercentral potential. This is particularly evident in the case
of the negative parity resonances, where the energy difference
E10 − E01 must be bigger than in the previous case in order
to obtain a good reproduction of the masses; in this way, how-
ever, the right ordering of the Roper resonance and the negative
parity resonances is lost. This means that the presence of the
CasimirC2[SUSF (6)] is needed and its effect is to shift down
the energy of the first excited0+ state with respect to that of
the1−. The effect of this term is very similar to that of the phe-
nomenologicalU potential of the Isgur-Karl model [4]
The mass formula of eq.(8) can be used to add a simple SU(6)
breaking interaction to a CQM and despite its simplicity it gives
rise to a good description of the baryon spectrum. Of course for
the wavefunctions, and other observables, it is not expected to
be as successful as for the spectrum.
Another important feature of this kind of approach is the model
independence of theSU(6) breaking part of the Hamiltonian.
Looking at eq.(13) it is easy to understand that the values of
the parameters of the SU(6) breaking part of the Hamiltonian
(i.e. the B,C,D,E parameters) are completely independent on
the choice ofH0 + AC2[SUSF (6)] which must describe the
central mass value of eachSU(6) multiplet. An important con-
sequence of the independence, in first approximation, of the
coefficients of the Casimir operators on the particular wave
functions, is the possibility of using the sameSU(6) break-
ing Hamiltonian for systems with a different number of quarks.
This has been done in a recent study of the pentaquark spec-
trum, where the Gürsey Radicati mass formula of eq.(8) has
been used for a systematic analysis of the (SU(6) breaking)
splittings within the exotic baryon multiplets [13].
Finally, we present some comments on the Gürsey Radicati
mass formula of eq.(8). As we have already observed, the last
two terms, that is those with coefficientsD andE, describe up
to first order theSU(6)-violation coming from the mass differ-
ence of quarks, as it has been done in the Gell-Mann-Okubo
formula. The remaining terms are expected to appear once an
explicit dynamics for the quark system is introduced. For ex-
ample, in a recent calculation of multiquark state energies, a
spin-flavour dependent interaction of the type

Hλσ =

n
∑

i<j

(λi · λj)(σi · σj)

has been introduced [22];λi are theSUflavour(3) matrices.
The matrix elements of such spin-flavour interaction between
states belonging to definite irreducible representations of SU(6),
SU(3)flavour andSU(2)spin can be calculated as
〈

[f ]SU(6)[f ]SU(3)[f ]SU(2)
∣

∣

∣
Hλσ

∣

∣

∣
[f ]SU(6)[f ]SU(3)[f ]SU(2)

〉

= 4C2(SU(6))− 2C2(SU(3))−
4

3
C2(SU(2))− 8Nq ,(14)

whereNq is the number of quarks [22] andC2(SU(2)) is given
by S(S + 1), S being the total spin. If the spatial dependence
of theSU(6) breaking terms is not neglected, this is no more
true.
As a conclusion, we can say that the Gürsey Radicati (8) is a
simple way to parametrize at the first order the possibleSU(6)-
breaking terms of the strong interaction. The approach we have
adopted here is then to parametrize all theSU(6)-breaking
terms by means of the generalized Gürsey Radicati, without
formulating any hypothesis on the microscopic mechanism (one-
gluon exchange, Goldstone-boson interaction, chiral soliton ...).
The next step will be to introduce an explicitSU(6) breaking
term, containing also the spatial dependence and with a clear
microscopic origin.

5 Discussion

We have shown that the Gürsey Radicati (GR) mass formula is
a good parametrization of the baryon energy splittings coming
from SU(6) breaking. The splittings are considered as pertur-
bations superimposed to theSU(6) invariant levels, which, in
our approach, are given by the hypercentral three-quark poten-
tial [6]. The overall good description of the spectrum which
we obtain shows that the GR mass formula can also be used to
give a fair description of the energies of the excited multiplets
at least up to 2 GeV and not only for the ground state octets and
decuplets, where it has been originally applied. There are still
problems with the reproduction of some hyperons, in particu-
lar for theΛ(1405) and theΛ(1520) resonances that come out
degenerate and above the experimental values. There are prob-
lems in the reproduction of the experimental masses also in the
Σ sector where both theΣ(1670)D13 and theΣ(1775)D15
four stars resonances turn out to have predicted masses about
100 MeV above the experimental values. A better agreement
can be obtained either using the square of the mass [8] or try-
ing to include a spatial dependence in theSU(6)-breaking part,
which may have, among others, a delta or Gaussian factor, in
order to decrease the breaking with the increase of the spa-
tial excitation. Although the space dependence of theSU(6)
breaking terms has to be neglected in order to apply the GR
formula, We can consider the Gürsey RadicatiSU(6) break-
ing as the first order parametrization of the splittings due to
an interaction which depends also on the coordinates. Within
this approximation it can be used for the description of the
SU(6)-breaking effects independently from the way in which
one describes the spatial part. It can be applied, with the same
coefficients, also to systems with different number of quarks,
such as baryons or pentaquarks. A similar statement is validif
we restrict ourselves toSU(3) breaking, using a Gell-Mann-
Okubo mass formula. In fact, the representations involved will
differ for each system and the dependence on the number of
quarks will be accounted for by the different values of the vari-
ous Casimir operators. On the contrary, the unperturbedSU(6)
invariant levels will depend on the number of quarks and on the
way in which the spatial part is described, that is an explicit dy-
namics must be considered.
What we have presented here is not the only example of such
a situation. In fact recently in [23] a Hamiltonian, containing
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the quadraticSU(3) Casimir and a Gell-Mann Okubo symme-
try breaking term, has been used for the calculations of energy
splittings both for baryons and pentaquarks. This is an indica-
tion that different effective models for the baryons at the first
oder give origin to a Gell-Mann Okubo mass formula, indepen-
dently from the fact that we consider a Chiral Soliton Model or
a bag model or a CQM, that means independently from which
effective degrees of freedom we use and how we describe from
a spatial point of view the baryon bound states.
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Fig. 1. The energy levels (black lines) for the 3 and 4 star resonances obtained with the Hamiltonian (9) fixing the parameters as described in
equation (13). The numerical values of the calculated masses of baryon resonances are reported in Table 2, columnMI

calc. The values of the
parameters of the Hamiltonian are reported in column (I) of Table 1. The experimental data are taken from PDG [21] (gray boxes).
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Fig. 2. The energy levels (black lines) for the 3 and 4 star resonances obtained with the Hamiltonian (9) fixing the Hamiltonian parameters by
a fitting procedure. The resulting values of the parameters are reported in column II of Table 1, while the numerical values of the calculated
masses are also reported in Table 2, columnMII

calc. The experimental data are taken from PDG [21] (gray boxes).
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Table 1. The fitted values of the parameters of the Hamiltonian (9).
Column (I) corresponds to the analytical fixing procedure ofeq. (13),
while column (II) contains the values obtained with a globalfit to the
experimental resonance masses.

Parameter (I) (II)

α = 1.4 fm−2 2.1 fm−2

τ = −4.8 −3.9
A = −13.8 MeV −11.9 MeV
B = 7.1 MeV 11.7 MeV
C = 38.3 30.8
D = −197.3 MeV −197.3 MeV
E = 38.5 MeV 38.5 MeV
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Table 2. Masses of baryon resonances (all values expressed in MeV) calculated with the Hamiltonian of eq.(9). The columnM (I)
calc contains

the baryon masses calculated with the set of parameters (Table 1 column (I)) obtained with the analytical fixing procedure (eq. (13)), while the

columnM (II )
calc contains the baryon masses calculated with the parameters of Table 1 column (II), obtained with a global fit to all the 3 and4

star experimental data [21].

Baryon Status Mass State M(I)calc M(II)

calc

N(938)P11 **** 938 281/2[56, 0
+] 938.0 938.0

N(1440)P11 **** 1430-1470 281/2[56, 0
+] 1448.7 1455.8

N(1520)D13 **** 1515-1530 283/2[70, 1
−] 1543.7 1492.9

N(1535)S11 **** 1520-1555 281/2[70, 1
−] 1543.7 1492.9

N(1650)S11 **** 1640-1680 481/2[70, 1
−] 1658.6 1585.3

N(1675)D15 **** 1670-1685 485/2[70, 1
−] 1658.6 1585.3

N(1680)F15 **** 1670-1685 285/2[56, 2
+] 1651.4 1636.6

N(1700)D13 *** 1650-1750 483/2[70, 1
−] 1658.6 1585.3

N(1710)P11 *** 1680-1740 281/2[56, 0
+] 1795.4 1760.6

N(1720)P13 **** 1650-1750 283/2[56, 2
+] 1651.4 1636.6

∆(1232)P33 **** 1230-1234 4103/2[56, 0
+] 1232.0 1251.2

∆(1600)P33 *** 1550-1700 4103/2[56, 0
+] 1683.0 1768.9

∆(1620)S31 **** 1615-1675 2101/2[70, 1
−] 1722.8 1713.7

∆(1700)D33 **** 1670-1770 2103/2[70, 1
−] 1722.8 1713.7

∆(1905)F35 **** 1870-1920 4105/2[56, 2
+] 1945.4 1949.7

∆(1910)P31 **** 1870-1920 4101/2[56, 2
+] 1945.4 1949.7

∆(1920)P33 *** 1900-1970 4103/2[56, 0
+] 2089.4 2073.8

∆(1950)F37 **** 1940-1960 4107/2[56, 2
+] 1945.4 1949.7

Σ(1193)P11 **** 1193 281/2[56, 0
+] 1193.0 1193.0

Σ(1660)P11 *** 1630-1690 281/2[56, 0
+] 1703.7 1710.7

Σ(1670)D13 **** 1665-1685 283/2[70, 1
−] 1798.7 1747.9

Σ(1750)S11 *** 1730-1800 281/2[70, 1
−] 1798.7 1747.9

Σ(1775)D15 **** 1770-1780 485/2[70, 1
−] 1913.6 1840.3

Σ(1915)F15 **** 1900-1950 285/2[56, 2
+] 1906.4 1891.6

Σ(1940)D13 *** 1900-1950 483/2[70, 1
−] 1913.6 1840.3

Σ∗(1385)P13 **** 1383-1385 4103/2[56, 0
+] 1371.6 1390.7

Σ∗(2030)F17 **** 2025-2040 4107/2[56, 2
+] 2085.0 2089.2

Λ(1116)P01 **** 1116 281/2[56, 0
+] 1116.0 1116.0

Λ(1600)P01 *** 1560-1700 281/2[56, 0
+] 1626.7 1633.8

Λ(1670)S01 **** 1660-1680 281/2[70, 1
−] 1721.7 1670.9

Λ(1690)D03 **** 1685-1690 283/2[70, 1
−] 1721.7 1670.9

Λ(1800)S01 *** 1720-1850 481/2[70, 1
−] 1836.6 1763.3

Λ(1810)P01 *** 1750-1850 281/2[56, 0
+] 1973.4 1938.6

Λ(1820)F05 **** 1815-1825 285/2[56, 2
+] 1829.4 1814.6

Λ(1830)D05 **** 1810-1830 485/2[70, 1
−] 1836.6 1763.3

Λ(1890)P03 **** 1850-1910 283/2[56, 2
+] 1829.4 1814.6

Λ(2110)F05 **** 2090-2140 285/2[70, 2
+] 1995.0 1957.3

Λ∗(1405)S01 **** 1402-1410 211/2[70, 1
−] 1657.9 1565.6

Λ∗(1520)D01 **** 1518-1520 213/2[70, 1
−] 1657.9 1565.6

Ξ(1318)P11 **** 1314-1316 281/2[56, 0
+] 1332.6 1332.5

Ξ(1820)D13 *** 1818-1828 283/2[70, 1
−] 1938.3 1887.4

Ξ∗(1530)P11 **** 1531-1532 4103/2[56, 0
+] 1511.1 1530.2

Ω(1672)P03 **** 1672-1673 4103/2[56, 0
+] 1650.7 1669.7
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