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1Abstract—PID controller is a popular control method still

widely used in process industry. In literature there are

model/non-model based calculation methods for PID

parameters. However, a model based analytic formulation in

compact form in discrete time has not been come across yet.

This study presents a new approach for calculation of PID

parameters with model based analytic formulation  (MBCF),

which is presented uniquely in this paper, in compact form, in

discrete time. Furthermore, a procedure for implementation of

the proposed formulas is given in four stages. The formulations

in related literature for PID parameter calculation are all

derived for continuous time. Therefore, extra transformations

are required for a discrete time design. The proposed MBCF

formulation method reduces extra calculation burden and

simplifies calculation complexity. Moreover, this method

provides a direct calculation method for digital PID controller

design in discrete time. The derived expressions in this study

also provide a fast, easy-implemented, and practical PID

parameter calculation method for all field researchers and

application engineers. The validation of proposed MBCF

formulations are comparatively proved with the simulations

and the real time application results.

Index Terms—Compact formulation, controller design, PID

parameter, tuning.

I. INTRODUCTION

Proportional-integral-derivative (PID) controllers have

been widely used and are essential elements in industry

especially in process control applications [1], [2]. The

reason behind this wide usage is not only about its simple

structure and easy implementation but also its sufficient

control performance in the limitless type of real-world

applications [3], [4].

PID controller has all the ‘key ingredients’ for a process

control. To expand the expression of ‘key ingredients’, the

proportional (P) part answer rapidly to the error, the integral

(I) bring a pole to the s-plane as a result of this steady state

errors could be removed and the derivative (D) part is active

in transient response of a system to fix the error [5], [6]. To

conclude, PID controllers are like the ‘bread and butter’ of

control engineering and it is a crucial fundamental for every

control engineer [7].

Manuscript received May 21, 2013; accepted December 31, 2013.

In the last three decades a digital era has started in

industry. Almost all the processes have been adapted to be

controlled with digital controllers such as PLCs,

microprocessors etc. Therefore, digital PID controllers are

regarded more convenient than the analog ones. This recent

change forces the designers to design their controllers in

discrete time. Although there seems to be several

model/non-model based calculation methods for PID

parameters in literature such as Ziegler-Nichols rule,

symmetric optimum rule, Ziegler–Nichols’ complementary

rule, transient response method, some-overshoot rule, no-

overshoot rule, refined Ziegler–Nichols rule, integral of

squared time weighted error rule, and integral of absolute

error rule, only a few of them  are designed in discrete time

[8]. In addition to this, no model based compact form

formulations for PID parameter calculation has not been

presented yet in discrete time.

Most of the studies on PID parameter calculation in the

last decade has been focused on adaptive/optimal/ artificial

auto tuning methods [4], [9]–[12].

Regarding formulations for PID parameter calculation,

there are only few studies. [13] presents a direct synthesis

design (DS-d) formulations for the systems with dead time

and inverse response in continuous time. However, these

formulations are restricted by a specific type of a process

with delay and the DS-d formulations of PID parameters

were only available in continuous time.

In [14]–[16] a tuning formula derived for PID parameter

calculation by using phase and gain margins for only

continuous time is presented. These formulations are derived

for a specific plant, and are not generalized for all types of

systems.

This study presents a new approach for discrete time PID

parameters calculation with model based compact form

(MBCF) formulations according to determined performance

criteria. These MBCF formulations are based on the

relationship between the open and closed loop transfer

functions. This relationship is defined by magnitude and

angle values of the closed loop characteristic equation, and

MBCF formulations are obtained according to these values.

In this study, MBCF formulations for
p

K and
d

K

parameters are presented, whereas designers have to
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determine three parameters ( , ,p i dK K K ) for a PID

controller. Therefore, the implementation procedure

navigates the designer to obtain , ,
p i d

K K K parameters from

proposed two MBCF formulations. In this paper, a specified

implementation procedure for MBCF formulations is also

introduced.

This paper is organized as follows; Section II presents and

introduces the MBCF formulations and the implementation

procedure. Six different systems in Section III are generally

used for demonstration of the effectiveness of PID controller

design methods in literature. Dynamics of closed-loop

responses of those systems are investigated using proposed

formulations to design PID. In Section IV, a PID controller

is designed with using proposed formulations and

implemented to a real time DC Motor velocity control

system. The closed loop step responses with/without

disturbance are comparatively given in this section. Finally,

in Section V conclusion and discussion are conducted.

II. PROPOSED MBCF FORMULATIONS AND THE

IMPLEMENTATION PROCEDURE

Proposed study contains two steps; in the first step,

MBCF formulations for PID parameter calculation are

obtained. In the second step, the procedure is presented for

implementation of these MBCF formulations to calculate the

, ,
p i d

K K K parameters.

A. Step One: Obtaining the MBCF Formulations

R(z) C(z)pc
G(z) G(z)

Fig. 1. Block diagram of a simple feedback control system.

Figure 1 shows a basic closed loop control block diagram

of a feedback control system. In this block diagram ‘ ( )cG z ’

is representing the PID controller and ‘ ( )pG z ’ is

representing the controlled system.

In this control diagram ( )cG z discrete time PID

controller transfer function is given below

1

1
( ) .c p i d

z z

z z
G z K K K




   (1)

Characteristic equation of closed loop control system in

Fig. 1 is given in (2)

( ) 1 ( ) ( ) 0.c pF z G z G z   (2)

The control (dominant) poles in (3) are obtained from the

nth degree ( )F z characteristic equation in (2) where

damping ratio “ξ ” and natural frequency “ nw ” are defined

by designer from determined performance criteria

2
1,2

1,2 1,2

( 1 )
1,2 .n n

s T T w jw
z zz e e jw

ξ ξ σ      (3)

If the control pole ‘ 1z ’ in (3) is replaced by ‘z’ in

characteristic (2), the characteristic equation is arranged as

follows:

1 1 1( ) ( ) ( ) 1 0,c pF z G z G z   (4)

1 1( ) ( ) 1.c pG z G z   (5)

Since, 1z is a complex variable, accordingly (5) is a

complex variable, too. Hence, (5) is arranged in polar

coordinate as underneath

1 1 1 1 .j
z zz jw z e

βσ   (6)

Using (6) the magnitude and angle of complex variable

‘ 1z ’ is written as below:

2 2
1 1 1 ,z zz wσ  (7)

1 1

1

tan ( ).z

z

w
β

σ
 (8)

Similarly, 1( )pG z complex variable could determine

polar coordinate as follows:

1 1( ) ( ) ,j
p pG z G z e

ψ (9)

1( ).pG zψ  (10)

Proposed MBCF formulations for calculation of
p

K

and
d

K parameters, which assigns two poles of
th

n degree

characteristic equation, are obtained from (5) with the

replacement of the terms in (7)–(10):

1

1 1

1 2
1

1

1

cos

cos 1

cos
2

( ) 2

sin cos sin
,

( ) sin

p i

p

p

z

z z

K K z
G z

z

G z

β

β

ψ

ψ β ψ

β




  



 
 (11)

1

2
11 1

sin sin
.

sin ( )2 cos 1

i
d

p

z K
K

G zz z

β ψ
β β

  
  

   

(12)

The derivation of (11) and (12) are given in appendix A.

B. Step Two: The Implementation Procedure of MBCF

Formulations

In the implementation procedure of the MBCF

formulations firstly PI controller is designed. Thereafter, PD

controller is designed according to the new system which is

formed from cascaded PI controller and the controlled

system.

Implementation procedure has four sub stages; in the first

sub stage, control rule consists of the PI controller as shown

in Fig 2. Derivatives parameter of PID controller ‘
d

K ‘sets

to zero ( 0
d

K  ) in (11) and (12) from these rearranged

equations PI controller parameters 1p
K and

1iK are
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calculated. In the second sub stage;
1( )G z transfer function

is obtained from cascaded PI controller ( ( )
PI

G z ) and

controlled system ( ( )
p

G z ) transfer functions as shown in

Fig. 3

1( ) ( ) ( ).PI pG z G z G z (13)

As a continuation of second sub stage, obtained new

system ( 1( )G z ) is controlled by PD control rule. Similar to

first sub stage, integrator gain ‘ iK ’sets to zero in (11) and

(12) and PD controller parameters 2pK and 1dK calculated

from these rearranged equations.

In the third sub stage, PID controller parameters

( , ,p i dK K K ) are calculated from former obtained PI and

PD controller parameters ( 1 1 2 1, ; ,p i p dK K K K ).

Fourth sub stage is the stability analysis and fine-tuning.

C. First Sub Stage: PI Design

PI controller parameter 1iK as shown in Fig. 2 is

calculated from (12) where ‘ dK ’ parameter sets to zero and

is rearranged as follows

1
1

1

1

1
2cos

sin
.

sin( )
i

p

z
z

K
G z

β
ψ

β

 

  (14)

1
1

i

z
K

z 

1p
K

1 sT
e

s


( )

p
G s

( )
p

G z

1( )G z

( )
PI

G z

Fig. 2. Control block diagram of PI controller system.

1pK and 1iK parameters in Fig. 2 are calculated from

(11) and (14) with the help of calculated numerical values in

(7)–(10).

D. Second Sub Stage: PD Design

Control block diagram of the new PD controlled system

1( )G z is given in Fig. 3.

Derivative parameter 2pK and 1dK of PD controller is

calculated from (11) and (12) where iK sets to zero and

rearranged as below:

1
2

1 1

sin cos sincos
,

( ) ( ) sin
p

p p

z
K

G z G z

ψ β ψψ
β

 
   (15)

1
1

1

sin
.

sin ( )
d

p

z
K

G z

ψ
β

 (16)

2pK and 1dK parameters in Fig. 3 are calculated from

(15) and (16) with the help of calculated numerical values in

(7)–(10).

1

1
d

z
K

z



2p
K

2 ( )G z

( )
PD

G z

1( )G z

Fig. 3. Control block diagram of PD system.

E. Third Sub Stage: PID Parameter Calculation

Forward transfer function of PID controlled system as

shown in Fig. 4 is written with the help of Fig. 3 as follows:

2 1( ) ( ) ( ),PDG z G z G z (17)

1( )

2 2 1 1 1

( ) ( )

1
( ) ( ).

1

PD PI

G z

p d p i p

G z G z

z z
G z K K K K G z

z z

        





(18)

Equation (18) can be rearranged as below

1 2 1 1 1 2

1 1

1

1

( ) ( )

,

PID p p i d i p

p d

z

z

z

z

G z K K K K K K

K K




   

 (19)

where:

1 2 1 1,p p p i dK K K K K  (20)

1 2 ,i i pK K K (21)

1 1.d p dK K K (22)

1
d

z
K

z



p
K

( )
p

G z

( )G z

( )
PID

G z

1
i

z
K

z 

Fig. 4. Control Block Diagram of PID controller system.

PID parameters pK , iK and dK are calculated from

former 1pK , 1iK , 2pK and 1dK parameters which are

calculated in the first and second sub stages.

F. Fourth Sub Stage: Stability Analysis and Fine Tuning

If the characteristic equation degree ‘ n ’ of the controlled

system is greater than two ( 2)n  , stability analysis should

be made.
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After the stability analysis of the system in Fig. 4, a ‘ fK ’

parameter could be cascaded as shown in Fig. 5 for a stable

condition. This ‘ fK ’ parameter is used for fine-tuning of

the dynamic response of the system according to the

performance criteria.

1
d

z
K

z



p
K

( )
p

G z

( )G z

( )
PID

G z

1
i

z
K

z f
K

Fig. 5. Control Block Diagram of Control system with parameter “ fK ”.

Parameter ‘ fK ’ can be calculated from (23) [17]

1
1

1
1

,

N

i
i

f M

i
i

Z z

K

P z





 


 

(23)

where 1z control pole is calculated from (3) and iZ , iP are

the zero and poles of  the ( )G z respectively.

III. PERFORMANCE ANALYSIS OF PROPOSED METHOD

In this section, PID controller performances are examined

for several systems. The selected system and PID controller

parameters are given in Table I which is calculated through

the proposed method. Several systems are carefully selected,

which are frequently encountered in literature to analyse the

performance of PID controllers [18], [19].

Simulation study of the step responses under the various

disturbance effects are given in Fig. 6–Fig. 11.

Fig. 6. 1( )G s four equal poles system with 20 % disturbance.

Fig. 7. 2 ( )G s second order system with different time constants and

40 % disturbance.

Fig. 8. 3( )G s system with lag and delay with different time constants

and 20 % disturbance.

Fig. 9. 4 ( )G s integrator with delay system response to different time

constants and 13 % disturbance.

Fig. 10. 5 ( )G s pure delay system with different delay times and 15 %

disturbance.

Fig. 11. 6 ( )G s lead and delay system with 20 % disturbance.

Several parameters for PID controlled systems

( 1 2 3 4 5 6( ), ( ), ( ), ( ), ( ), ( )G s G s G s G s G s G s ) are given in

Table I.
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TABLE I. SEVERAL SYSTEM AND PID CALCULATED PARAMETERS.

Systems pM (%) st (s) K
dT τ sT (s) pK iK dK fK

Four Equal Poles

1 4
( )

( 1)

K
G s

s




4.33

20 0.5 - 1
0.785

2
0.3232 0.0312 1.8247 2.8032

Second Order System

3
2

1 2

( 1)
( )

( 1)( 1)

K s
G s

s s

τ
τ τ




 

2.5

0.5

- 1 2 30.1; 0.5; 1τ τ τ   0.02 1.3363 0.1088 1.5009 1.7571

20 - 1 2 31; 5; 2τ τ τ   0.2 6.904 1.1039 8.4802 1.8699

20 - 1 2 35; 2; 0.7τ τ τ   0.4 38.3 20.2 16.88 4.3647

System with

lag and delay

3( )
1

sTdK
G s e

sτ




25

0.5
1

5

0.5

3.1482
0.1657 1.3574 1.6609

1.5 3 4.031 0.1586 1.9073 0.8963

5 1 0.5092 0.3212 0.2186 0.6362

1.5 0.3 0.25 0.1168 0.4033 0.044 0.4221

5 0 1 0.1 0.5155 0.164 0.9605 0.4618

Integrator with delay

4 ( ) sTdK
G s e

sτ


50

0.5 1

10

0.5

3.0873 0.1006 9.3552 0.7864

25 5 2.3543 0.1764 4.855 1.3846

5 1 0.805 0.0762 0.0378 1.2369

Pure delay

5( ) sTd
G s Ke



5 0.8 1

-

0.5 0.1628 0.3064 0.0163 0.5606

5 0.5 5 2.5 0.1059 0.2241 0.0112 1.0415

50 0.9 10 5 0.1348 0.281 0.0091 0.5203

System with

lead and delay

 1
6 2

2

1
( )

2 1

sTdK s
G s e

s s

τ

τ



 

20 1 2 1 1;τ  2 0.2τ  0.5 0.1268 0.0786
156.4310 0.7292

Note: pM  OVERSHOOT, st  SETTLING TIME, ,K τ  OPEN LOOP GAIN AND TIME CONSTANT, dT  DELAY TIME, sT  SAMPLING TIME, fK  FINE TUNING

COEFFICIENT.

IV. REAL TIME APPLICATION OF MBCF FORMULATIONS

Real time application has two stages. In the first stage

open-loop gain and time constant parameters ( ,K τ ) of the

simplified DC motor model are obtained from the open-loop

response. PID controller parameters are calculated by using

MBCF formulations and implementation procedure,

according to defined performance criteria. PID controlled

system simulation results are given for the comparison

through real time results. In the second stage, Real time

application is implemented by using the Analog devices

ADUC-841 microcontroller and Feedback DC Motor

Mechanical Unit 33-100. Experimental set-up is shown in

Fig. 12.

Fig. 12. Experimental set-up. 1-feedback 33-100 DC servo motor

mechanism, 2  ADUC-841 microcontroller, 3 feedback amplifier

unit.

A. DC Motor Model and Parameters

First, as mentioned above experimentally obtained open-

loop gain and time constant parameters are accurately

calculated by the repetitive tests and simulation results.

Simplified transfer function of the DC Motor is given below

0.78
( ) .

1 0.48 1

K
G s

s sτ
 

 
(24)

Performance criteria for calculation of the PID parameters

are selected as follows: overshoot

4.3%.pM  (25)

Settling time

2.4 .st s (26)

In addition to the performance criteria, sampling time is

determined according to open-loop time constant (approx.

5 10
sT

τ τ
  ) as 0.05sT s .

PID controller parameters are calculated with the steps in

Section II and using (15)–(22) and given as:

3.9923,pK  (27)

0.5766,iK  (28)

4.2254.
d

K  (29)

7
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B. Simulation and Real Time Results

In the simulation and real time application study, the PID

parameters in (27)–(29) are used. Closed-loop performances

are comparatively shown in Fig. 13 and Fig. 14 for step

input of the PID controlled DC Machine velocity

without/with disturbance respectively.

(a)

(b)

Fig. 13. Simulation result of controlled system step reference response (a);

real time controlled DC motor step reference response (b).

From the simulation and real time closed loop step

responses the following assessments are given by

considering the Fig. 13 and Fig. 14:

 PID controlled DC Motor system is stable.

 Dynamics of closed loop response of the system

similarly ensure the pre-defined performance criteria

depicted in Table II as given in Fig. 13.

TABLE II.DYNAMICS OF CLOSED LOOP RESPONSES.

Overshoot (%) Settling Time (s)

Pre-defined 4.3 2.4

Simulation 2.7 1.2

Real Time 1.66 2.7

 The response tracks the step reference with zero steady

state error even under disturbance load. Dynamics of

closed-loop responses of the simulation and the real time

study under disturbance is comparatively given in Table II

by considering Fig. 14.

In Table III, t1 and t2 are recover time, V1 is overshoot, V2

is undershoot with disturbance and without disturbance

respectively.

Systems in Section III are generally used for performance

analysis of PID controller design methods in literature

therefore in this section frequently encountered systems in

literature are selected for the assessment of proposed MBCF

formulations. Systems and calculated PID parameters by

using proposed formulations are given in Table I, closed

loop step responses with disturbance of PID controlled

systems are shown in Fig. 6–Fig. 11. In Section IV control

of a DC Motor velocity is applied in real time and a

comparison between closed loop step and disturbance

responses of simulation and real time application is given in

Table II, Table III and Fig. 13–Fig. 14 respectively.

TABLE III. DYNAMICS OF CLOSED LOOP RESPONSES.

V1 (%) t1(s) V2 (%) t2(s)

Simulation 2.1 0.6 1.9 1.2

Real Time 15 0.9 15 1.5

(a)

t
1
=0.9s t

2
=1.5s

V
1
=1.7V

V
2
=2.3V

ref=2V

(b)

Fig. 14. Simulation result of controlled system step response with 50 %

disturbance (a); real time PID controlled DC motor step response with

50 % disturbance (b).

All these results in Section III and Section IV show that

proposed MBCF formulas and proposed method in this

study achieved following goals for an effective PID

controller design;

 Obtain a stable closed loop response.

 Track different step reference with zero steady state

error.

 Suppress disturbance effect and regulate system in a

short period of time.

 Ensure the pre-defined performance criteria.

To sum up, based on all statements given above it can

easily be said that MBCF formulations are an effective and

practical model based calculation method for PID

controllers. In addition, designer will be able to design P, PI

and PD controllers with proposed method.

Through using presented expressions, self-tuning PID

controller could be designed for academic/industrial control

applications, PID parameters could be updated by detecting

8
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parameter variations of controlled system and PID based

adaptive and robust control applications could be used.

V. CONCLUSIONS

The formulations in related literature for PID parameter

calculation are all derived for continuous time. Therefore, if

the PID controller is desired to be designed for discrete time,

extra transformations are required. This proposed method,

provided designers a direct, fast and practical PID controller

design without extra transformations. In addition to this,

designer also will be able to design P, PI and PD controllers

with proposed method.

The proposed MBCF formulations which are used in the

calculations of the digital PID parameters via determined

performance criteria are performed through the transfer

functions in related studies in literature. The dynamic

response of the each system is analysed with simulation

studies. The applicability and accuracy of the proposed

method are shown in real time DC motor velocity control

study which ensures determined performance criteria.

This proposed method will gain a new perspective and

contribute to the literature as new alternative compact form

formulations in digital control.

APPENDIX A

Let 1z denote a control (dominant) pole of nth degree

characteristic equation

1 1 1.z zz jwσ  (A.1)

‘ 1z ’ can be written in polar coordinate as below:

1 1 ,j
z z e

β (A.2)

2 2
1 1 1 ,z zz wσ  (A.3)

1 1

1

tan ( ).z

z

w
β

σ
 (A.4)

Following expressions ( )cG z and ( )pG z are the PID

controller and the controlled system transfer functions,

respectively.

( )cG z is defined as below

1

1
( ) .

c p i d

z z

z z
G z K K K




   (A.5)

If 1z control pole substitutes into ( )pG z and ( )cG z , the

new expression 1( )
p

G z can be given in polar coordinate as

follows:

1 1( ) ( ) ,j
p pG z G z e

ψ (A.6)

1( ).pG zψ   (A.7)

Characteristic equation of closed loop control system is

written as follows and in polar coordinate in (A.9):

1 1 1( ) ( ) ( ) 1 0,c pF z G z G z   (A.8)

1 1( ) ( ) 1 1 (2 1) ,j
c pG z G z e k

γα α γ π        (A.9)

1 1

1 1
1

1

1
( ) ( ) 1.p i d p

z z

z z
K K K G z




    (A.10)

pK and dK expressions are derived as dependent to iK

parameter.

The known and unknown parameters are arranged as

follows

1 1

1 11

1

1

1
.

( )
p d i

p

z z

z z
K K K

G z






   (A.11)

The expressions in (A.2) and (A.5) are put in the equation

above and arranged as follows:

1

1

2
1

1 1

1 1
( ) ,

( )

j

j

j
j

p d i

p

z e

z e

z e
K z K z e K

G z

β

β

ψ
β







    (A.12)

cos sin ,j
e j

β β β   (A.13)

cos sin .j
e j

ψ ψ ψ   (A.14)

Where Euler’s Formula expressions in (A.13) and (A.14)

are placed into (A.12) and rearranged as follows:

1

1 1

1 1

2
1 1

1

cos sin

cos sin 1

( cos sin )

cos sin
,

( )

p d

i

p

j z

z j z

K z K z j

z j z
K

G z

β β

β β

β β

ψ ψ 

 

   

 
  (A.15)

where pK and dK parameters are obtained by arranging as

real and imaginary parts separately in (A.15)

1 1

2
11 1

sin sin
sin ,

( )2 cos 1

i
d

p

K z z
K

G zz z

β ψ
β

β
 

 
(A.16)

1 1

1 1

1
1 1

1

2

2

cos

cos 1

cos
( cos )

( )

.
2

i i

p d

p

K z K z

z z

z
K z K z

G z

β

β

ψ
β



    





(A.17)

The expressions in (A.16) and (A.17) arranged in a matrix

form:

1 1

1 1

1 1

2
1

2
1

1 1

2
11 1

cos

cos 1

cos

0 sin

cos

( ) 2
,

sin sin

( )2 cos 1

i i

p

d

p

i

p

K z K z

z z

Kz z

K

z

G z

K z z

G zz z

β

β

β
β

ψ

β ψ

β



  
  

   

 
  
 

  
 

 
   

(A.18)

1

1 1

cos1

sin

1
0

sin

p

d

z

K z z

K

β
β

β

  
 

          
  

9



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 3, 2014

1 1

1 1

2

1

2

1

1 1

2

11 1

cos

cos 1

cos

( ) 2
,

sin sin

( )2 cos 1

i i

p

i

p

K z K z

z z

z

G z

K z z

G zz z

β

β

ψ

β ψ
β



 
  

 
 
 
   

(A.19)

From the matrix in (A.19), pK and dK parameters are

obtained as their final forms in MBCF formulations:

1

1 1

1 2
1

1

1

cos

cos 1

cos
2

( ) 2

sin cos sin
,

( ) sin

p i

p

p

z

z z

K K z
G z

z

G z

β

β

ψ

ψ β ψ

β




   



 
 (A.20)

1

2
11 1

sin sin
.

sin ( )2 cos 1

i
d

p

z K
K

G zz z

β ψ
β β

  
  

   

(A.20)
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