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ABSTRACT – The Daubechies, coiflet and symlet wavelets, with 
properties of orthogonal wavelets are suitable for multicarrier 
transmission over band-limited channels. It has been shown that 
similar wavelets can be constructed by Lagrange approximation 
interpolation. In this work and using established wavelet design 
algorithms, it is shown that ideal filters can be approximated to 
construct new orthogonal wavelets. These new wavelets, in terms 
of BER behave slightly better than the wavelets mentioned above, 
and much better than biorthogonal wavelets, in multipath 
channels with additive white Gaussian noise (AWGN). It is shown 
that the construction, which uses a simple simultaneous solution 
to obtain the wavelet filters from the ideal filters based on 
established wavelet design algorithms, is simple and can easily be 
reproduced. 
 
Keywords – Orthogonal wavelets; finite impulse response filter; 
FIR; multicarrier system; simultaneous solution; ideal filter; 

I. INTRODUCTION 

Wavelets have been pursued in the design of multicarrier 
systems (MCS), even though it was initially feared that they 
might not be optimal in that application [1-3]. This was due to 
the authors only studying biorthogonal wavelets, which lack 
the necessary orthogonality for signal transmissions. Another 
class of wavelets, orthogonal wavelets, was not considered, 
and now it has been realised that they can be used in the 
design of MCSs with better BER than the biorthogonal 
wavelets [4]. Examples of well-known orthogonal wavelets 
are Daubechies, coiflet, symlet and Haar wavelets. Detailed 
performance analyses have been shown in [5] for discrete and 
wavelet packets in MCSs. Orthogonal wavelets permit 
multicarrier signals to be transmitted without a cyclic prefix, 
and, in fact, they have been adopted in the design of marketed 
MCSs such as the IEEE 901 HD Panasonic system for power 
line communications [6]. Meanwhile, [7] has shown that 
filters used in constructing the Daubechies wavelets can be 
reproduced by the Lagrange approximation.  So, MCSs can be 
designed using existing wavelets, or by constructing new, 
orthogonal wavelets.  

There are two different ways by which wavelets have been 
constructed, namely by changing the basis functions of the 
parent scaling function or by constructing new filters [8].  
Using these filters, new wavelets are constructed by “lifting” 
one filter into another [9-13] or by approximation of a related 
ideal filter. Such approximation has been performed using the 
Lagrange approximation to construct orthogonal wavelets in 
[7]  whose mother behaviour must be as discussed in [14]. 
Following the general algorithm discussed in [8] for designing 
any type of wavelet, we report a design that can construct 
wavelets with similar properties to other orthogonal wavelets 
such as Daubechies, symlet, coiflets and Haar wavelets. By the 

definitions of the algorithms in [8], the applied filters were 
approximated following band-limited conditions and the 
results obtained by a simple simultaneous solution. 

The construction of new wavelets for specific applications has 
been reported [8, 14], presenting a general algorithm for 
designing mother wavelets )(t to match a signal of interest 

such that the family of wavelets )2(2 )2/(   tjj forms the 
orthogonal basis of a square-integrable family: here j is the 
scale parameter and τ the shift parameter. In band-limited 
systems, j characterises and limits the available narrow bands.  

It is common knowledge that a band-limited scaling function 
that generates an orthonormal multi-resolution analysis 
(MRA) also gives rise to a band-limited wavelet. So, for band-
limited multicarrier applications, finite impulse response (FIR) 
filters approximated from band-limited criteria can be used in 
the construction of new wavelets [8]. Besides the Lagrange 
solution for constructing orthogonal wavelets reported in [7], 
the design of orthogonal wavelets from FIR filters by solving 
the results of ideal filters approximation using band-limited 
conditions simultaneously is shown in this work. These are 
linear phase filters derived and approximated to FIR 
conditions, and are maximally flat. They are distortion-free, 
with few, if any, side-lobes so that the narrowband 
interference accruing from non-convergence to zero (faster 
decay) leads to higher performance when compared to some 
known base wavelets. This property explains, for example, 
their good BER and PAPR performances. Other methods for 
designing multicarrier filters are described in [15, 16] and 
[17].  

Wavelets constructed from other filters have been discussed 
elsewhere, such as the raised cosine functions [18, 19]. 
Depending on the symmetry and periodicity, these filters 
construct wavelets for uniquely different operations. Using 
raised cosine functions in the construction of wavelets has 
been well discussed in [19, 20]. Instead of raised cosine filters 
[20], maximally flat filters based on the Lagrange 
approximation have been reported to yield orthogonal 
wavelets equivalent in coefficients and properties to the 
Daubechies wavelets [7]. By treating the maximally flat 
approximations in a different way and according to band-
limited constraints, type I FIR filters following some 
approximations and solutions can be used in the design of new 
wavelets. We report the case of a fourth order ideal filter, 
approximated under band-limited constraints, with the results 
solved simultaneously. These filters constitute the filter banks 
of the new wavelets reported in this paper. 
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In Section II the preliminary idea of a wavelet multicarrier 
system is discussed, with FIR filters discussed in Section III. 
The proposed filter is set out in Section IV, simulation and 
results are in Section V, with the conclusions in the final 
section.  

II. PRELIMINARY  KNOWLEDGE 

Consider an input signal s(t), that modulates the transforming 
function, or scaling function, φ(t). There are narrowband 
functions ψ(t) derivable from φ(t), which are orthogonal 
wavelets useful in the design of multicarrier systems. By the 
Fourier relation and Parseval’s theory, the signal for band-
limited case can be periodic with β, -2π ≤ β ≤ 2π, so that if 
ψl,m(t) belongs to a set of orthonormal functions, then; 
 

  )()()()( ,, nmkldttt nkml   (1) 

 
where δ(.) is a Dirac delta. Equation (1) defines a simple 
orthogonality condition between daughter wavelets. Since ψ(t) 
is a decomposition of φ(t), we can express the relationship of 
the input signal with φ(t) in discrete form as [21]; 
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where M is the length of the characteristic filter. s[m] is the 
discrete equivalent of s(t). The mother wavelet has a clear 
relation to the filters; 
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where g(m) is a high-pass filter (HPF) and can be directly 
derived or constructed from a low-pass filter (LPF) that 
belongs to the parent scaling function as; 
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where h(m) is the LPF and )(t  is the scaling function. Thus, 
as an alternative to modulating the input symbols by the 
sinusoids, these half-band filters can be used.  

III. FINITE IMPULSE RESPONSE (FIR) FILTERS 

Filter coefficients used in the design of  wavelet filter banks 
relate to Laurent polynomials [22], Chebyshev polynomials 
[23] or the Lagrange half-band functions shown in [7] derived 
as approximations of Chebyshev polynomials. These filters 
must have linear phase [24, 25] and finite length to be finitely 
supported [26]:  examples are FIR filters. This finite support 
derives from approximating an ideal filter response which 
leads to the realization of a new filter, with the number of 
approximations related to the number of ripples which the 

filter exhibits. Maximally flat filters obtain their 
approximations without these ripples. If these ripples (or side-
lobes) do not converge to zero, i.e. decay quickly, two known 
problems are caused; namely ISI and high peak to average 
power ratio (PAPR).  

For a distortion-free data transmission, these filters must have 
linear phase [27, 28] and a narrowband characteristic to be 
suitable for multicarrier transmission. Thus, filters used in the 
design of wavelets must have FIR properties and linear phase. 
For zero-ISI transmission, the filters must satisfy the Nyquist 
criterion: linear phase FIR filters are a perfect example [28]. 
For distortion-free transmission, maximally flat FIR linear 
phase filters are required [27]. These filters must be symmetric 
and of even order to be used in the design of low-pass filters.  

In this work, we adopt the maximally-flat design method for 
distortion-free FIR linear phase design. Other types of filters 
exist, most commonly the opposite of the linear phase FIR 
filters called non-linear phase filters [29]. A very pronounced 
example is the minimum phase filter. Its group delay is not 
constant and so, the phase undergoes some phase distortion. 
FIR filters with non-linear phase delay cause ISI [18]. FIR 
filters of the Nyquist criterion can guarantee freedom from ISI 
and ICI in data transmission [28, 30]. They require that the 
stop-band attenuation be as high as possible [30].  

IV. TRANSMISSION FIR FILTER 

For distortion-free communications, FIR filters with constant 
group delay are preferred, that is linear phase FIR filters. Let 
the frequency response of a linear system h(n) = Ax(n-k) be; 
 

kjeAXH   )()(  
(5) 

 
If the input signal has amplitude (A), the properties needed for 
the filter formulation are; 
 

kjAeH  )(  
(6) 

 
where |H(ω)| = A is the amplitude and θ(ω) = - kω  is the 
phase. In distortion-free transmission, the amplitude is 
constant and the phase response is linear. Only FIR filters 
have these properties if stability and causality is required. This 
property will be exploited for band-limited multicarrier system 
design in the following sections. An FIR filter is defined as; 
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where k in this equation 5 is equivalent to n in Equation 7 in  
defining the unique discrete filter coefficients. A linear-phase 
filter can be designed using a symmetry condition for the 
impulse response; 
 

)1()( nMhnh   (8) 
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Thus, h(n) represents the impulse response of the linear phase 
filter which repeats according to the symmetry condition in 
Equation 8. It is most times preferred as mirroring.  

A. GENERAL CASE FOR SYMMETRIC FILTERS WITH EVEN 
ORDER M  

The general case for symmetric filters is defined by [31] as; 
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where M is the filter length. Equation 9 represents the case 
of an ideal filter, and Equation 11 represents the phase. 

B. APPROXIMATION OF THE IDEAL FILTER AND THE 
SIMULTANEOUS SOLUTION  

We choose an ideal filter of order 4, as an example, so by 
Equations 9 and 10, we set M = 4; 

wjwjjw ehehehhH 32 )3()2()1()0()(    (12) 

From the symmetry condition defined in Equation 8, 
 

)3()0( hh   
and 

)2()1( hh   
 

 





















2/32/

2/3
2/3

)3()2(

...)1()0(
)(

wjjw

jwwj
wj

eheh

eheh
eH   

 
 
(13) 

By trigonometric identities, Equation 13 reduces to; 

 )2/cos()1(2)2/3cos()0(2)( 2/3   hheH j    (14) 

For a signal band-limited at [-π π], Nyquist zero-ISI sampling 
criteria requires that the signal be sampled between ,0 and

.2/  Thus,
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Since we are considering half-band filters, at ,2/   
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Solving Equations 15 and 16 simultaneously for h(0) and h(1), 
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Thus, the effective filter coefficients needed for the linear 
phase maximally flat FIR (low-pass filter) filter design are 
given as; 

 )0()1()1()0( hhhhh   (18) 

Solving for higher orders than the example above can yield 
closer to the ideal frequency response of the filter but this 
would require more run-time. Meanwhile, using Equation 18, 
the filter can be plotted as in Figure 1.  

 
 

Figure 1: New filter vs. Daubechies filter (db2) 

V. THE PROPOSED WAVELET IN MULTICARRIER SYSTEM 

For a first simple test, we compare the proposed wavelet with 
other base wavelets (db2, bior3.1, bior3.3, bior3.5) in 
multicarrier systems built from their respective filters. In the 
first case, the system model is described and in the second 
case, the channel model with equalization followed is also 
described. 

A. THE PROPOSED WAVELET FILTER IN MULTICARRIER 
SYSTEM MODEL OVER AWGN CHANNELS ONLY 

The model involves a multicarrier BPSK system modulated by 
the wavelet packet transform as shown in Figure 2. 
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Figure 2: WPT-Modulation with AWGN channel 

Using a BPSK mapping scheme with 256000 symbols, the 
input symbols were wavelet-modulated and passed through an 
ideal channel, with just the addition of AWGN, indicated by 
“N” in Figure 2.  

 

Figure 3: BER compared for the proposed and other wavelets over AWGN 
only 

In the receiver, the received symbols were wavelet-
demodulated and demapped. No form of coding was applied. 
Figure 3 shows that the proposed wavelet and db2, sym2, 
coif2 (which are orthogonal wavelets) performed alike. 
However, it is also shown that the proposed wavelet clearly 
outperforms the biorthogonal wavelets by up to 5 dB. It is 
common knowledge that biorthogonal wavelets filters lack the 
required reconstruction ability for orthogonal transmission, 
hence the poor BER performance. 

B. SYSTEM MODEL OVER MULTIPATH CHANNELS WITH 
CHANNEL EQUALIZATION 

The investigation was further extended to a multipath 
environment, using the parameters as above for a Rayleigh 
multipath channel with AWGN and frequency domain 
equalization (FDE), as shown in Figure 4.  

 
Figure 4: WPT-Modulation with a channel 

Traditionally, the Rayleigh law describes a change in the 
amplitude magnitude of a signal as it traverses multipath. For 
instance, if there are K paths, the Rayleigh law shows that [32, 
33]: 
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where ),( tq  is the channel impulse response of the kth  
multipath with k  phase which influences signal of k  
amplitude. For frequency selective fading, the channel transfer 
function of ),( tq can be written as: 
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If the wavelet-transformed signal is s(t), then an FFT will be 
required to obtain the frequency domain equivalent; 

)()( tsfS
FT
 , with FT as the Fourier transform. The wavelet 

does not operate with a cyclic prefix (CP), so the convolution 
with the channel transfer function becomes;  

)()(),()( fZfSftQfY   (21) 

Equation 21 is the received signal in the frequency domain 
with Z(f) as the AWGN. If Q(t, f) = 1, Equation 21 can also be 
used to model an AWGN channel only. In the receiver, the 
equalization follows as: 
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where   and (.)* are convolution and conjugation operators 
respectively, and  is the absolute operator. If at a certain 
time 0),( ftQ , then Equation 22 can be modified to include 
error correction parameter as,  thus; 
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                                                                                      … (23) 
This is the FDE equalization. R(f) is the frequency domain 
content of the received signal after equalization. The received 
signals were transformed into the wavelet domain by the 
inverse FFT (IFFT) before demodulating by the forward WPT 
and demapping using BPSK. Figure 5 shows that, in terms of 
BER, the proposed wavelet slightly outperforms db2 (and 
other observed orthogonal wavelets) but strongly outperforms 
all observed biorthogonal wavelets by up to 5 dB. 
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Figure 5: BER of the proposed and other wavelets compared over multipath 
channel with AWGN 

It is interesting to note that even though the proposed method 
has fewer filter coefficients, which reduces processing time, 
the resulting wavelets can do well in multipath environments 
where the orthogonality loss could lead to severe distortion 
and poor BER performance. 
  

VI. CONCLUSION 

In addition to the Lagrange approximation method for 
orthogonal wavelets like Daubechies, coiflets, symlets, and 
Haar, a new way of designing orthogonal wavelets for 
multicarrier system applications has been presented. Using a 
filter approximation for band-limited conditions, new filters 
have been constructed. The approximations were solved 
simultaneously to obtain the required filters. These filters were 
then used to construct wavelets used in the modulation of a 
multicarrier system. These wavelets have been constructed 
from FIR filters, which were approximated from FIR linear 
phase filters. With such distortion-free filters, the proposed 
wavelet has good properties for multicarrier transmission over 
multipath where loss of signal orthogonality would tend to 
produce information distortion and poor BER. In such 
simulation conditions, the new wavelet was compared with 
other base wavelets, orthogonal wavelets db2, sym2, coif2 and 
biorthogonal wavelets bior3.1, bior3.3, bio3.5. Results show 
that the proposed wavelet had a similar performance to 
orthogonal wavelets in AWGN channels, but was better than 
the biorthogonal wavelets. Over a multipath channel, the 
proposed wavelet slightly outperformed db2 and clearly 
outperformed the other wavelets. Higher order approximations 
to construct sub-member wavelets using the studied 
simultaneous approach just like all other known orthogonal 
wavelets is possible but the consequent system would incur 
more run-time. 
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