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Abstract. The Feedback with Carry Shift Registers (FCSRs) have been
proposed as an alternative to Linear Feedback Shift Registers (LFSRs)
for the design of stream ciphers. FCSRs have good statistical proper-
ties and they provide a built-in non-linearity. However, two attacks have
shown that the current representations of FCSRs can introduce weak-
nesses in the cipher. We propose a new “ring” representation of FCSRs
based upon matrix definition which generalizes the Galois and Fibonacci
representations. Our approach preserves the statistical properties and
circumvents the weaknesses of the Fibonacci and Galois representations.
Moreover, the ring representation leads to automata with a quicker diffu-
sion characteristic and better implementation results. As an application,
we describe a new version of F-FCSR stream ciphers.

Keywords: Stream cipher, FCSRs, �-sequence, ring FCSRs.

1 Introduction

The FCSRs have been proposed by Klapper and Goresky [1,2,3] as an alterna-
tive to LFSRs for the design of stream ciphers. FCSRs share many of the good
properties of LFSRs: sequences with known period and good statistical prop-
erties. But unlike LFSRs, they provide an intrinsic resistance to algebraic and
correlation attacks because of their quadratic feedback function. However, two
recent results [4,5] have shown weaknesses in stream ciphers using either the
Fibonacci or Galois FCSR. Hell and Johansson [5] have exploited the bias in
the carries behaviour of a Galois FCSR to mount a very powerful attack against
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the F-FCSR stream cipher [6,7]. Fisher et al. [4] have considered an equivalent
of the F-FCSR stream cipher based upon a Fibonacci FCSR to study the linear
behavior of the induced system.

We present a new approach for FCSRs, which we call the ring representa-
tion or ring FCSR. This representation is based on the adjacency matrix of the
automaton graph. A ring FCSR can be viewed as a generalization of the Fi-
bonacci and Galois representations. Similar structure has been widely studied
for the LFSR case as in [8,9,10], and is a building block of the stream cipher
Pomaranch where LFSRs are used [11]. However, we present here for the first
time this structure in the FCSR case.

A Fibonacci FCSR, has a single feedback function which depends on multiple
inputs. A Galois FCSR has multiple feedbacks which all share one common
input. A ring FCSR can be viewed as a trade-off between the two extreme cases.
It has several feedback functions with different inputs. An example of ring FCSR
is shown in Fig. 1.

c6
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m2
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m1 m0

Fig. 1. An example of a ring FCSR (q = −347)

Ring FCSRs have many advantages, while preserving all the good and tradi-
tional properties of Galois/Fibonnacci FCSRs (known period, large entropy,...).
The main one is that the attack of Hell and Johansson [5] does not work
with Ring FCSR. Also, they have better diffusion properties. Moreover, ring
representation allows fine tune in the implementation.

Section 2 gives an overview on FCSRs theory and classical representations.
Section 3 presents ring FCSRs. We discuss implementation in Section 4 and a
new version of F-FCSR is proposed in Section 5.

2 Theoretical Background

First, we will recall some basic properties of 2-adic integers. For a more theoretical
approach the reader can refer to [1,2,12,13,14].

2.1 2-adic Numbers and Period

A 2-adic integer is formally a power series s =
∑∞

i=0 si2i, si ∈ {0, 1}. This series
always converges if we consider the 2-adic topology. The set of 2-adic integers is
denoted by Z2. Addition and multiplication in Z2 can be performed by reporting
the carries to the higher order terms, i.e. 2n + 2n = 2n+1 for all n ∈ N. If there
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exists an integer N such that sn = 0 for all n ≥ N , then s is a positive integer.
Every odd integer q has an inverse in Z2.

The following property gives a complete characterization of eventually peri-
odic binary sequences in terms of 2-adic integers (see [13] for the proof).

Property 1. Let S = (sn)n∈N be a binary sequence and let s =
∑∞

i=0 si2i be the
corresponding 2-adic integer. The sequence S is eventually periodic if and only
if there exist two numbers p and q in Z, q odd, such that s = p/q.

Moreover, S is strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|. In this
case, we have the relation sn = (p · 2−n mod q) mod 2.

The period of S is the order of 2 modulo q, i.e., the smallest integer T such
that 2T ≡ 1 (mod q). The period satisfies T ≤ |q| − 1. If q is prime, then
T divides |q| − 1. If T = |q| − 1, the sequence S is called an �-sequence. As
detailed in [1,2,13,15], �-sequences have many proved properties that could be
compared to the ones of m-sequences: known period, good statistical properties,
fast generation, etc. In summary, FCSRs have almost the same properties as
LFSRs but they have a nonlinear structure.

2.2 Galois FCSRs

A Galois FCSR (as shown in Fig. 2) consists of an n-bit main register M = (m0,
. . . , mn−1) with some fixed feedback positions d0, . . . , dn−1. All the feedbacks are
controlled by the cell m0, and n − 1 binary carry cells C = (c0, . . . , cn−2). At
time t, an automaton in state (M, C) is updated in the following way:

1. Compute the sums xi = mi+1 + cidi + m0di for all i such that 0 ≤ i < n
with mn = 0 and cn−1 = 0 and where m0 represents the feedback bit;

2. Update the state as follows: mi ← xi mod 2 for all i ∈ [0..n−1] and ci ← xi

div 2 for 0 ≤ i < n for all i ∈ [0..n− 2].

The reader can refer to [13] for a complete description of Galois FCSRs and
some properties. We recall however a very important one, found in [16].

Property 2. Let q = 1 − 2
∑n−1

i=0 di2i and ri =
∑∞

t=0 mi(t)2t (for 0 ≤ i < n);
ri is the 2-adic integer corresponding to the sequence observed in the i-th cell
of the main register M . Then, for all 0 ≤ i < n, there exists pi ∈ Z such that
ri = pi/q.

d0dn−2dn−1

cn−2 c0

mn−1 mn−2 m1 m0

ci(t − 1) ci(t)

x
y s

ci(t) := xy ⊕ xci(t − 1) ⊕ yci(t − 1)

s := x ⊕ y ⊕ ci(t − 1)

Fig. 2. A Galois FCSR and 2-bit adder with carry
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Fig. 3. A Fibonacci FCSR

In a Galois FCSR, a single cell controls all the feedbacks. As a consequence,
there exist some correlations between the carries values and the feedback value.
This fact is the basis of the attack presented in [5].

2.3 Fibonacci FCSRs

A Fibonacci FCSR (represented in Fig. 3) is composed of a main register M =
(m0, . . . , mn−1) with n binary cells. The binary feedback taps (d0, . . . , dn−1) are
associated to an additional carry register c of wH(d) binary cells, where wH(d)
is the Hamming weight of d = (1 + |q|)/2.

An automaton in state (M, c) is updated in this way:

1. compute the sum x = c +
∑n−1

i=0 midn−1−i;
2. then, update the state: M ← (m1, . . . , mn−1, x mod 2), c← x div 2.

As shown in [13], Property 2 also holds for Fibonacci FCSRs : the sequence
observed in a cell mi is a 2-adic integer.

The cell mn−1 is the only one with a non-linear behaviour in a Fibonacci
FCSR. As shown in [4], an attack can be carried out if a linear filter is used with
a Fibonacci FCSR.

3 A New Approach for FCSRs

Galois and Fibonacci FCSRs are two different automata with similar properties,
as seen in the previous section. In a Galois FCSR, the first cell m0 modifies
wH(d) cells of the main register. In a Fibonacci FCSR, the cell mn−1 is modified
by wH(d) cells of the main register. Ring representation of FCSRs is a trade-off
between these extreme cases.

Definition 1. A ring FCSR is an automaton composed of a main shift register
of n binary cells m = (m0, . . . , mn−1), and a carry register of n integer cells
c = (c0, . . . , cn−1). It is updated using the following relations:

{
m(t + 1) = Tm(t) + c(t) mod 2
c(t + 1) = Tm(t) + c(t) div 2 (1)
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TR =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 4. Matrix and graph representation of FCSR presented in Fig.1

where T is a n×n matrix with coefficients 0 or 1 in Z, called transition matrix,
of this form: ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 1
∗ 1 (∗)

∗ 1

. . .
. . .

(∗) ∗ 1
1 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Note that ÷2 is the traditional expression: X div 2 = X−(X mod 2)
2 .

Ring FCSRs differ from Fibonacci and Galois FCSRs in the fact that any cell
can be used as a feedback for any other cell. A more convenient way to draw
ring FCSRs is presented in Figure 4, which represents the same FCSR as the
one in Figure 1.

3.1 Remarks on the Transition Matrix

According to Definition 1, we have the following property, where ti,j is the
element at the i-th row and j-th column:

T = (ti,j)0≤i,j<n with ti,j =
{

1 if cell mj is used to update cell mi,
0 otherwise.

As the main register of a ring FCSR is by definition a shift register, the over-
diagonal of the transition matrix T is full of ones, i.e. for all 0 ≤ i < n we have
ti,i+1 mod n = 1. For example, the FCSR presented in Fig.1 has the following
transition matrix TR (and q = −347):

This notation agrees with the one proposed in [13]. In particular, Galois and
Fibonacci FCSRs have respectively transition matrices TG and TF of the form:

TG =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d0 1
d1 0 1 (0)
d2 0 1
...

. . .
. . .

dn−2 (0) 0 1
1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

TF =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
0 1 (0)

0 1

(0)
. . .

. . .

0 1
1 dn−2 . . . d2 d1 d0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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3.2 Characterizing the Cells Content

Definition 1 introduces the transition matrix of a ring FCSR. We explain now
how the value q can be computed from the transition matrix T .

Let mi(t) denote the content of the i-th cell of the main register at time t and
Mi(t) the series observed in this cell, from time t:

Mi(t) =
∑

k∈N

mi(t + k)2k.

From Equation 1, we derive the following relation

M(t + 1) = TM(t) + c(t) (2)

where M(t) = (M0(t), · · · , Mn−1(t)), and c(t) = (c0(t), · · · , cn−1(t)) is the
content of the carry register at time t.

The series Mi(t) and the vector M(t) play a fundamental role in our approach.
We have the following important generalisation of Property 2.

Theorem 1. The series Mi(t) observed in the cells of the main register are
2-adic expansion of pi/q with pi ∈ Z and with q = det(I − 2T ).

Proof. According to the definition of Mi(t) and to Definition 1, we have M(t) =
2M(t + 1) + m(t) where m(t) is a binary vector of size n. Using Equation 2, we
get:

(I − 2T ) ·M(t)− 2 · c(t)−m(t) = 0.

Considering the adjugate of I − 2T , we obtain:

det(I − 2T ) ·M(t) = Adj(I − 2T )(m(t) + 2 · c(t)).
In this relation, the right member is a vector of integers (p0(t), . . . , pn−1(t)).
Dividing by det(I − 2T ), we obtain Mi(t) = pi(t)/ det(I − 2T ).

Lemma 1. With the notation of Theorem 1, if q = det(I − 2T ) is prime, and
if the order of 2 in Z/qZ is maximal, then each Mi is an �-sequence.

4 Implementation Properties

We detail in this section the new implementation characteristics of ring FCSRs.
All this section applies also to LFSRs by replacing addition with carry with
addition modulo 2.

Path/fan-out – The Galois FCSR is considered in many works [13,17,18] as
the best representation for hardware implementation. It has a better critical
path, i.e, a shorter longest path, than a Fibonacci FCSR. A drawback of the
Galois representation is that the fan-out of the feedback cell m0 is wH(d) with
d = (1+ |q|)/2. At the opposite, the Fibonacci representation has a fan-out of 2.
A ring FCSR allows the designer to tune both the critical path and the fan-out
through the choice of the transition matrix:
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Table 1. Comparison of the different representations

Fibonacci Galois Ring

Path �log2(wH(d))� 1 max(�log2(wH(ai))�)
Fan-out 2 wH(d) max(wH(bi))

Cost (#adders) wH(d) − 1 wH(d) − 1 wH(T ) − n

i0 i2 ifi1 if−2

c0
jc

f−1
j c

f−2
j c1

j

Fig. 5. A naive adder

– the critical path is given by the row ai with the largest number of 1s;
– the fan-out is given by the column bi with the largest number of 1s.

We compare in Table 1 the critical path, the fan-out and the cost of the different
representations of an FCSR. We have expressed the critical path as the number
of adders crossed. The choice of the adder has also an impact on the path of a
ring FCSR. A naive adder (Fig. 5) composed of a serialisation of generic adder
leads to a path of max(wH(ai))−1 adders. However, it is possible to exploit the
commutativity to perform additions in parallel. This reduces the critical path to
max(�log2(wH(ai))�) adders.

For each given q, it should be possible to find a transition matrix corresponding
to a critical path with only one adder and a fan-out equal to 2. This is the case
of the ring FCSR given in Fig. 1.

Cost – Ring FCSR have implementations which require fewer gates than Fi-
bonacci/Galois equivalent ones. This possibility was first observed in [10] for
LFSRs. However, the solution proposed in [10] is specific to LFSRs and can-
not be applied systematically to FCSRs. The number #adders of 2-bit adders
required in the different representations of an n-bit FCSR is shown in Table 1.
Ring representation is the only one that allows to find an implementation with
less than (wH(d)−1) 2-bit adders. For q = −347, a Galois or Fibonacci represen-
tation leads to #adders = 4. A ring representation with the following transition
matrix TR:

TR =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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leads to an implementation with #adders = 3, a fan-out of 2 and a critical path
of 1 adder.

Side-channel attacks – It seems possible to work out an equivalent of the side-
channel attack of Joux and Delaunay [18] on Galois FCSR using the results of Hell
and Johansson [5]. Such an attack would exploit the power consumption to recover
the feedback m0 (because of the excessive fan-out of the feedback cell) and there-
fore how the carry cells are modified. As the ring FCSR has a reduced fan-out and
uncorrelated carries, it is a better alternative to prevent side-channel attacks.

5 F-FCSR Based on Ring Representation

In this section, we propose a generic algorithm to construct F-FCSR stream
ciphers based upon a ring FCSR with a linear filter. We give two particu-
lar examples which are F-FCSR-H v3 and F-FCSR-16 v3. Any designer using
the proposed algorithm could generate its own stream cipher according to the
following parameters:

– key length k and IV length v that will provide the corresponding size n :=
k + v of the T matrix (usually k = v);

– the number u of bits output at each clock taken between 1 and n/16 to
ensure a hard inversibility of the filter. Moreover for later design we require
u to be a divisor of n;

– the number of willing feedbacks � usually taken between n/2−5 and n/2+5
to ensure a sufficient non linear structure and a sufficiently weighted filter.

The algorithm is composed of 3 particular steps: the choice of the matrix T , the
choice of the linear filter and the key/IV setup.

5.1 The Choice of the Matrix T

According to the remarks in Section 3, we pick a n× n random matrix T with
the following requirements:

– the matrix must be composed of 0 and 1 and with a general weight equal to
n + �;

– the over-diagonal must be full of 1 and tn−1,0 = 1 (to preserve the ring
structure of the automaton);

– the number of ones for a given row or a given column must be at most two.
This last condition allows a better diffusion by maximizing the number of
cells reached by the feedbacks. It also provides uncorrelated carries and a
fan-out bounded by 2.

For each picked matrix with the previous requirements, test if:

1. log2(q) ≥ n; det(T ) �= 0;
2. q = det(I − 2T ) is prime; the order of 2 modulo q is |q| − 1.
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The first condition ensures a non-degenerated matrix. The second ensures good
statistical properties and a long period.

This matrix completely defines the ring FCSR. The diffusion speed (which
is faster than in Galois/Fibonacci FCSRs) is related to the diameter d of the
transition graph. This diameter is the maximal distance between two cells of
the main register. In other words, d is the distance after which any cell of the
main register have been influenced by any other cell through the feedbacks. It
corresponds to the minimal number of clocks required to have all the cells of the
main register influenced by any other cell. d should be small for better diffusion.

5.2 The Filter

As in the previous versions of F-FCSR [7], we use a linear filter to extract the
keystream in order to break the 2-adic structure of the automaton. This also
prevents linearization attacks over the set of 2-adic numbers. The filter includes
the cells of the main register which receive a feedback to prevent correlation
attacks. The periodic structure of the filter in the previous versions of F-FCSR
has been exploited in [5] to speed up the linear part of the attack. We prefer
now a non periodic structure:

– let F = {mf0 , · · · , mf�−1} be the set of all the cells mi that receive a feedback
and indexed in this way: the row fi of the matrix T has more than one 1 for
0 ≤ i < �, and fi < fi+1.

– The u bits of output are: ∀ 0 ≤ i < u, zi =
⊕

j≡i mod u mfj .

5.3 Key and IV Setup

As shown in [5], if at a given time, the FCSR is in a synchronized state (i.e. a
state from which after a finite number of steps the automaton will return, i.e.
a state belonging to the main cycle), adjacent states of the main cycle could
be directly deduced using only multiplications over Z/qZ. Moreover, as shown
in [16], a Galois FCSR is synchronized in at most n + 4 clocks, but in reality,
few clocks are sufficient. So, to completely avoid the weakness of the key and IV
setup used in [5], we prefer to maintain a non synchronized state during the key
and IV setup. The new key and IV setup creates a transformation that is really
hard to invert, in order to prevent a direct key recovery attack.

However, using a ring FCSR leads to a new problem: we can not ensure the
entropy of the automaton. In the case of F-FCSR with Galois or Fibonacci struc-
ture, zeroing the content of the carry register prevents collisions (i.e. one point
of the states graph with two preimages) and warrants a constant entropy. This
particular property comes from the particular structure of the adjoint matrix
(I − 2T )∗, which has successive powers of two in its first row in case of a Galois
FSCR (in a Fibonacci FCSR, a similar property holds for the last row). In the
ring case, no obvious structure exists in (I−2T )∗. Note that in this case the col-
lisions search becomes an instance of the subset sum problem, with a complexity
equals to 2n/2 (if the carries are zeroes) or 23n/2 (in the general case).



442 F. Arnault et al.

a(r−1)u+1

a(r−1)u a0au

a1au+1

a(r−1)u+u−1 au+u−1 au−1

a(r−1)u+i au+i ai

cji

mjimji+1

Fig. 6. Disposition of the cells a0, . . . , an−1 in u shift registers and connection of a shift
register in position ji

Thus, the new key and IV setup aims to stay on non-synchronized states as
long as possible and to limit the entropy loss. We connect at u different places
shift registers of length r = n/u (this corresponds to adding n binary cells
a0, . . . , an−1 at different places as shown in Fig. 6).

The u positions denoted by J := {j0 < · · · < ju−1} where the u shift registers
are connected have been chosen such that, for all 0 ≤ i < u, no adder exists
between cells mji+1 and mji (i.e. wH(Rji ) = 1 where Rji is the jth

i row of the
matrix T ). Each shift register is connected using a 2-bit adder with carry (as
shown in Fig. 6). The content of cell mji after transition depends on the values
of mji+1, ai and of the carry cell cji .

With these u shift registers inserted in the ring FCSR, the key and IV setup
works as follows:

– Initialize (a0, . . . , an−1) with (K‖0n−k−v‖IV ), M ← 0, C ← 0.
– The FCSR is clocked r times. At each clock, the FCSR is filtered using F to

produce a u bits vector z0, . . . , zu−1 used to fill back a(r−1)u, . . . , a(r−1)u+u−1:
a(r−1)u+i ← zi for 0 ≤ i < u.

– The FCSR is clocked max(r, d + 4) times discarding the output.

The first step of the key and IV setup allows an initial diffusion of the key
through the simple shift registers. The next r clocks helps a complete diffusion
of the IV and of the key in the FCSR. The diffusion is complete at the end of
the key and IV setup. If an attacker is able to recover the state just at the end
of the key and IV setup, he won’t be able to use this information to recover
the key because of the occurence of non-synchronized states that are hard to
inverse: for a given mk+1 bit value of the main register, the values ck and mk

producing mk+1 are not unique and this leads to a combinatorial explosion when
an attacker wants to recover a previous state.

As previously mentioned, this construction does not provide a bijection and
behaves more like a random function. From this point, two attacks are essen-
tially possible: direct collisions search and time memory data trade-off attack for
collisions search built upon entropy loss. As mentioned before, direct collisions
search has a cost of 2(n/2) if the attacker is able to clear the carry bits. With
the use of a ring FCSR that does not allow a direct control of the carry bits
through the feedback bit, the probability to force to 0 the carry bits is about
2−�. Thus such an attack is more expensive than a key exhaustive search. In the
other cases, the corresponding complexity is 2(3n/2) preventing collisions search.
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TMDTO attacks are possible if a sufficient quantity of entropy is lost. As
studied in [19], considering that the key and IV setup are random function, the
induced entropy loss is about 1 bit, so considering an initial entropy equal to n
bits, the entropy after the key and IV setup is close to n− 1 bits. Is it possible
to exploit this entropy loss for a collisions search in a TMDTO attack? A well-
known study case is the attack proposed in [20] by J. Hong and W.H. Kim
against the stream cipher MICKEY. Even if this attack seems to work, A. Rock
has shown in [19] that the query complexity in the initial states space could not
be significantly reduced and that the attacks based on the problem of entropy
loss are less efficient than expected especially regarding the query complexity.
So, we conjecture, that our key and IV setup behaves as a random function, and
that the induced entropy loss is not sufficient to mount a complete TMDTO
attack for collisions search taking into account the query complexity.

5.4 F-FCSR-H v3 and F-FCSR-16 v3

The details of the two constructions, especially the corresponding T matrices,
are given respectively in Appendix A and B. The respective parameters are the
following ones:

– For F-FCSR-H v3: k = 80, v = 80, � = 82, n = 160, u = 8, d = 24;
– For F-FCSR-16 v3: k = 128, v = 128, � = 130, n = 256, u = 16, d = 28.

These two automata have been chosen with an additional property: (|q| − 1)/2
prime. This condition ensures maximal period for the output stream. However
this condition is hard to fill. So we don’t require this condition in the general
case.

5.5 Resistance against Known Attacks

We do not discuss here resistance against traditional attacks such as correlation
/ fast correlation attacks, guess and determine attacks, algebraic attacks, etc.
Some details about this can be found in [7]. Resistance against TMDTO attacks
was considered in Section 5.3. We focus now on the two recent attacks [5] and
[4] against FCSR and F-FCSR.

The attack presented in [5] against F-FCSR, which is based on a Galois FCSR,
relies on the existence of correlations between the carries and the feedback val-
ues. More precisely, the control of the m0 bit leads to the control of the feedback
values. If the feedback can be forced to 0 during t consecutive clocks, the behav-
ior of the stream cipher becomes linear, and its synthesis is possible by solving a
really simple system. This linear behavior happens with a probability about 2−t

for a Galois FCSR. If instead a ring FCSR is used, this probability decreases to
2−t·k where k is the number of cells of the main register controlling a feedback.
Thus, for k values corresponding to most ring FCSR, the linear behavior proba-
bility becomes so small that the cost of the corresponding attack becomes higher
than an exhaustive search. Also the attack from [5] relies on situations where
the carries remain constant during t consecutive clocks. We made an experiment
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with F-FCSR-H v3 to search for states for which carries does not change during
transition. Looking over 238 states, we found only 41 different states for which
carries remains constant after one transition. We found none for which carries
remains constant after two transitions.

In [4], the authors propose a linearization attack against a linearly filtered
Fibonacci FCSR. This attack does not affect any version of F-FCSR. In a Fi-
bonacci FCSR, the carries only influence one bit of the main register at each
clock. Thus, if one could imagine to build a F-FCSR using a Fibonacci FCSR,
such a generator would be subject to an attack where the control of the carries
leads to the control of a part of the main register. Thus, we recommend to NOT
use a Fibonacci FCSR in a linearly filtered stream cipher.

6 Conclusion and Future Work

In this paper, we have presented a new approach for FCSRs that unifies the
two classical representations. We can obtain, with the ring representation, better
diffusion characteristics and faster implementations. The recent attacks designed
against F-FCSR are prevented, when using a ring FCSR, as shown in Section 5.
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A Description of the Transition Matrix for F-FCSR-H v3

Input parameters: k = 80 (key length), v = 80 (IV length), � = 82 (number of
feedbacks), n = 160 (size of T ), u = 8 (number of output bits), d = 24 (diameter
of the graph).

We give here the description of the transition matrix T = (ti,j)0≤i,j<160 (see
Fig. 7 for graphic representations):

– For all 0 ≤ i < 160, ti,i+1 mod 160 = 1;
– For all (i, j) ∈ S, ti,j = 1, where S = { (1, 121); (2, 133); (4, 44); (5, 82);

(9, 38); (11, 40); (12, 54); (14, 105); (15, 42); (16, 63); (18, 80); (19, 136); (20, 2);

(21, 35); (23, 28); (25, 137); (28, 131); (31, 102); (36, 41); (39, 138); (40, 31); (42,

126); (44, 127); (45, 77); (46, 110); (47, 86); (48, 93); (49, 45); (51, 17); (54, 8);

(56, 7); (57, 150); (59, 25); (62, 51); (63, 129); (65, 130); (67, 122); (73, 148); (75,

18); (77, 46); (79, 26); (80, 117); (81, 1); (84, 72); (86, 60); (89, 15); (90, 89); (91,

73); (93, 12); (94, 84); (102, 141); (104, 142); (107, 71); (108, 152); (112, 92); (113,

83); (115, 23); (116, 32); (118, 50); (119, 43); (121, 34); (124, 13); (125, 74); (127,

149); (128, 90); (129, 57); (130, 103); (131, 134); (132, 155); (134, 98); (139, 24);
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Fig. 7. Matrix representation and graph representation of the matrix T chosen for
F-FCSR-H v3

(140, 61); (141, 104); (144, 48); (145, 14); (148, 112); (150, 59); (153, 39); (156,

22); (157, 107); (158, 30); (159, 78) };
– Otherwise, ti,j = 0.

– The corresponding q value is (in decimal notation):

q = 1741618736723237862812353996255699689552526450883

– The set J (for the first part of the Key/IV setup) is:

J = {3, 22, 43, 64, 83, 103, 123, 143}
– The 8 subfilters F0, · · · , F7 are given by:

F0={1, 15, 28, 46, 59, 79, 93, 115, 128, 141, 158}
F1={2, 16, 31, 47, 62, 80, 94, 116, 129, 144, 159}
F2={4, 18, 36, 48, 63, 81, 102, 118, 130, 145}
F3={5, 19, 39, 49, 65, 84, 104, 119, 131, 148}
F4={9, 20, 40, 51, 67, 86, 107, 121, 132, 150}
F5={11, 21, 42, 54, 73, 89, 108, 124, 134, 153}
F6={12, 23, 44, 56, 75, 90, 112, 125, 139, 156}
F7={14, 25, 45, 57, 77, 91, 113, 127, 140, 157}

B Description of the Transition Matrix for F-FCSR-16 v3

Input parameters: k = 128, v = 128, � = 130, n = 256, u = 16, d = 28.
We give here a description of the transition matrix T = (ti,j)0≤i,j<256 (see

Fig. 8 for graphic representations):
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Fig. 8. Matrix representation and graph representation of the matrix T chosen for
F-FCSR-16 v3

– For all 0 ≤ i < 256, ti,i+1 mod 256 = 1;
– For all (i, j) ∈ S, ti,j = 1, where S = { (0, 52); (2, 150); (3, 2); (5, 169); (6,

89); (8, 100); (9, 1); (11, 156); (12, 9); (13, 46); (19, 146); (20, 206); (26, 204); (31,

254); (32, 151); (38, 144); (40, 108); (46, 167); (47, 198); (48, 70); (49, 98); (50,

213); (53, 214); (56, 87); (57, 55); (58, 162); (62, 160); (63, 13); (64, 192); (65, 59);

(66, 12); (67, 207); (68, 209); (71, 229); (73, 84); (74, 199); (77, 168); (78, 122);

(79, 35); (80, 154); (82, 153); (85, 188); (87, 51); (89, 4); (90, 49); (93, 231); (95,

224); (97, 249); (101, 208); (102, 120); (104, 218); (105, 8); (108, 77); (109, 68);

(110, 250); (113, 237); (115, 252); (116, 17); (118, 73); (119, 182); (123, 29); (124,

234); (127, 138); (132, 190); (134, 244); (136, 219); (141, 228); (142, 205); (143,

58); (144, 230); (145, 210); (146, 44); (147, 137); (148, 130); (150, 79); (152, 111);

(153, 172); (154, 141); (156, 78); (157, 131); (158, 110); (159, 127); (170, 189); (171,

112); (174, 217); (175, 7); (176, 187); (177, 40); (179, 118); (181, 195); (184, 48);

(186, 64); (189, 246); (190, 47); (191, 37); (192, 211); (193, 85); (194, 181); (195,

61); (196, 54); (198, 222); (199, 83); (203, 105); (204, 201); (205, 43); (206, 139);

(208, 20); (210, 242); (211, 124); (213, 253); (215, 243); (216, 69); (218, 176); (220,

30); (222, 19); (223, 232); (224, 239); (225, 220); (227, 102); (231, 185); (232, 15);

(234, 152); (236, 62); (238, 245); (242, 197); (245, 235); (246, 171); (247, 67); (253,

26); (254, 202) };
– Otherwise, ti,j = 0.

– The corresponding q value is (in hexadecimal notation):

q = (B085834B6BFAE1541C54F7D84F42084C

B0568496DDD0FEA5E99AA79C022023241)

– The set J (for the first part of the Key/IV setup) is:

J = {10, 27, 43, 59, 75, 91, 107, 122, 139, 155, 172, 187, 202, 219, 235, 251}
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– The 16 subfilters F0, · · · , F15 are given by:

F0={0, 40, 68, 101, 134, 158, 193, 218, 253}
F1={2, 46, 71, 102, 136, 159, 194, 220, 254}
F2={3, 47, 73, 104, 141, 170, 195, 222}
F3={5, 48, 74, 105, 142, 171, 196, 223}
F4={6, 49, 77, 108, 143, 174, 198, 224}
F5={8, 50, 78, 109, 144, 175, 199, 225}
F6={9, 53, 79, 110, 145, 176, 203, 227}
F7={11, 56, 80, 113, 146, 177, 204, 231}
F8={12, 57, 82, 115, 147, 179, 205, 232}
F9={13, 58, 85, 116, 148, 181, 206, 234}

F10={19, 62, 87, 118, 150, 184, 208, 236}
F11={20, 63, 89, 119, 152, 186, 210, 238}
F12={26, 64, 90, 123, 153, 189, 211, 242}
F13={31, 65, 93, 124, 154, 190, 213, 245}
F14={32, 66, 95, 127, 156, 191, 215, 246}
F15={38, 67, 97, 132, 157, 192, 216, 247}
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