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Abstract

Due to technological advances, spatially indexed objects, such as blood oxygen level-dependent time series or
electroencephalography data, are commonly observed across different scientific disciplines. Such object data
are typically high dimensional and therefore challenging to handle. We propose a new approach for spatially
indexed object data by mapping their spatial locations to a targeted one-dimensional interval so objects that
are similar are placed near each other on the new target space. The proposed alignment not only provides a vi-
sualization tool for such complex object data but also facilitates a new way to study brain functional connectivity.
Specifically, we introduce a new concept of path length to quantify the functional connectivity and a new com-
munity detection method. The advantages of the proposed methods are illustrated by simulations and in a study of
functional connectivity for Alzheimer’s disease.

Keywords: community detection; data visualization; functional connectivity; multidimensional scaling; multivar-
iate time series

Introduction

Neuroimaging data, such as functional magnetic reso-
nance imaging (fMRI) and electroencephalography

data, often appear in the form of high-dimensional time se-
ries, where the time series are collected over a grid of spatial
locations and the number of spatial location is large. These
high-dimensional time series data can be handled as spa-
tiotemporal data (Castruccio et al., 2016; Park et al., 2016;
Shinkareva et al., 2006) with the time series representing
the temporal component. A key example is fMRI, a neuroi-
maging technique that measures brain activity over a short
period of time through the changes of blood oxygen levels.
These blood oxygen level-dependent (BOLD) signals are re-
peated measurements on each voxel location of a regular grid
of the three-dimensional (3D) brain. The result is a time se-
ries of BOLD signal at each voxel location. In this regard,
fMRI, or synonymously, BOLD data can be viewed as four-
dimensional (4D) spatiotemporal data with a time series object
at each of the 3D spatial (voxel) locations. We regard each
time series as an ‘‘object’’ and the 4D fMRI data as ‘‘spatially
indexed object data.’’

By leveraging the information on spatial adjacency and the
rich literature for spatiotemporal data, one can tease out the
information in these spatially indexed object data. Such an ap-
proach, however, is not effective to study functional connec-

tivity (Friston et al., 1993), where the focus is on the strength
of statistical associations of the BOLD objects among differ-
ent brain regions, because regions that are anatomically far
from each other could be highly connected.

Brain functional connectivity is a vast field (Friston, 2011;
Preti et al., 2017; Van Den Heuvel and Pol, 2010). A popular
approach is to develop brain networks based on a functional
connectivity map. Such approaches often involve the choice
of a threshold, which may affect subsequent analysis (Sporns,
2010). Moreover, it is not easy to develop statistical tests to
detect group differences in the network structure. To tackle
these challenges, we propose a new network approach that
does not involve thresholding and provides a new approach
to detect communities.

Our approach consists of two steps. In the first step, we em-
ploy multidimensional scaling (MDS) (Borg and Groenen,
2005) to align the BOLD objects along a one-dimensional
(1D) interval, which then leads to a new brain map. In the
next step, we propose a new network approach that is based
on the new brain map constructed in the first step. A by-product
of the approach is a novel way to visualize the 4D brain data of
a subject by compressing the data to a two-dimensional (2D)
image.

MDS is a popular approach for dimension reduction but
has not been fully explored in the area of brain connectivity.
It has been used for clustering or visualizing cortical regions
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(Horwitz, 2003; Welchew et al., 2005, 2002) as well as to map
the brain anatomy to a functional connectivity 3D space (Fris-
ton et al., 1996). In the functional connectivity space, the prox-
imity of regions of interest (ROIs) will be determined by the
strength of their functional connectivity, not by their anatomic
location, and the projection onto a new 3D space with func-
tional connectivity as the metric will allow scientists to visu-
ally explore the underlying mechanism of cortical regions.

Inspired by this visualization advantage (Friston et al., 1996)
and a previous success (Chen et al., 2011) where one rearranges
high-dimensional scalar objects into functional data (Wang
et al., 2016), we propose to project the BOLD time-course ob-
jects, which were originally spatially located on the 3D brain,
onto a 1D space. This projection aligns all brain regions on
an interval, for example, [0, 1], so that the BOLD object at
each spatial location is assigned to a new horizontal location
in [0, 1]. A 2D brain image is then formed for each subject
by lining up the BOLD time-course objects vertically on
their new locations. We design a new statistical method to rear-
range those spatially indexed temporal data in such a way that
‘‘similar’’ objects (temporal data in this case) are placed near
each other to facilitate data visualization and subsequent data
analysis. Because the multivariate spatial locations are collapsed
into 1D spatial locations, dimension reduction is thereby accom-
plished. While this may seem daring at first, the simulation
and data analysis in the sections ‘‘Alignment of Time Ser-
ies’’ and ‘‘Results’’ show the advantages of this approach.

The 1D spatial locations then facilitate a new network
approach as nearby objects have stronger connectivities and
naturally form a community. A new community detection
method is then applied to the aligned fMRI time series. We
demonstrate the advantages of such an object alignment ap-
proach through a study of the functional connectivity for Alz-
heimer’s disease. Beyond fMRI data, the proposed approach
is broadly applicable to any high-dimensional or spatial tem-
poral data.

Finally, the proposed alignment approach leads to two new
approaches (see sections ‘‘Path Length of the Aligned Data’’
and ‘‘A New Community Detection Method’’) to quantify the
brain connectivity, which were successfully applied to BOLD
data as described in the section ‘‘Resting-State fMRI Data.’’

Materials and Methods

Resting-state fMRI data

The resting-state fMRI data are from a study of Alz-
heimer’s disease at the University of California, Davis. The
study included 172 Alzheimer patients and 67 normal sub-
jects, for whom resting-state fMRI data were obtained for
8 min, resulting in 240 time points of image acquisitions,
but the first four observations were discarded to let the scanner
magnetization achieve a steady state, so the final length of the
BOLD time series was m = 236. The data were preprocessed
with SPM8 according to a standard protocol: time-slicing
correction; head motion correction; co-registration (by min-
imizing the normalized mutual information); normalization;
regressing out nuisance parameters, which include six mo-
tion parameters, cerebrospinal fluid (CSF) signal, white mat-
ter signal, and global signal; and bandpass filtering with
cutoff frequencies of 0.01 and 0.08 Hz. The normalization
step follows the standard settings of SPM8, and the affine
transformation is performed through a nonlinear deformation

to align with the MNI template provided by SPM8. The
whole-brain BOLD signals were then summarized into 90
cortical regions based on the automated anatomical labeling
(AAL) system. The signals representing these 90 regions
were obtained by averaging BOLD signals around the seed
voxels, defined by locally regional homogeneity (Zang
et al., 2004).

Alignment of time series

Consider n spatially indexed objects, X1, ., Xn, whose
spatial location are in a p-dimensional space. These n objects
are endowed with a distance (or disparity) matrix D = [djk],
where djk = d(Xj, Xk) is a distance function between two ob-
jects Xj and Xk. MDS is a visualization and dimension reduc-
tion tool to map these n objects to n new locations, s�1, . . . , s�n,
in a q-dimensional Euclidean space so that the distances djk

between objects and their corresponding Euclidean distance
d�jk = jjs�j � s�k jj are preserved as much as possible.

Here, q < p and q is usually preselected as q = 1, 2, or 3 for
visualization purpose, so that the original data, which could be
abstract objects on a higher (p)-dimensional space, can now
be visualized in a lower (q)-dimensional Euclidean space.
The special case q = 1, which is called unidimensional scaling
(UDS), is the focus of this article. It has the attractive feature
that it aligns all the objects to line up on an interval, creating a
total ordering for these n objects. Alternatively, one may as-
sume that the original objects have a latent order and that
UDS aims at recovering this order. For BOLD objects, the
alignment produces a 2D image for each subject, where the
horizontal axis marks the new aligned location of each region
and its corresponding (temporal) BOLD signals are displayed
on the vertical axis.

For the functional connectivity application, the object is the
BOLD time series at a brain region and there are 90 such re-
gions rendering n = 90 objects, spatially indexed in a p = 3 di-
mensional space. For the jth object, it is the BOLD time series
Xj = (Xj1, ., Xjm) at the jth brain region, measured at m time
points. For the distance djk, we use a function of the Pearson
correlation (PC) between the BOLD time series at the jth
and kth brain regions since PC is arguably the most popular
measure of the functional connectivity for BOLD data (Ban-
dettini et al., 1993; Biswal et al., 1995; Cordes et al., 2001;
Greicius et al., 2003; Hampson et al., 2002). However, our ap-
proach can be based on other correlations, such as the Spear-
man rank correlation (Hollander et al., 2013; Spearman, 1904)
or Kendall’s s (Kendall, 1938, 1962), and other similarity
measures for time series (Ferreira and Zhao, 2016).

Let Xj = (Xj1, ., Xjm) and Xk = (Xk1, ., Xkm) be two BOLD
time series objects measured at m time points. We assume
that they have been normalized by their respective tempo-
ral means and variances, so +m

l = 1
Xjl = +m

l = 1
Xkl = 0, and

+m

l = 1
(Xjl)

2 = +m

l = 1
(Xkl)

2 = 1: For these normalized time series,

the PC between them is

qjk = ÆXj, Xkæ = +
m

l = 1

XjlXkl: (1)

Distance measure

While PC is originally designed for independent and iden-
tically distributed paired data, it has been used for paired
time series under the stationary assumption. However, the
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PC should not be viewed as a measure of a statistical corre-
lation when the time series data are not stationary, as spuri-
ous correlations may be triggered for a pair of nonstationary
time series (Granger and Newbold, 1974). To overcome this
shortcoming and to avoid the stationary assumption, we
took a novel view that regards the BOLD time series as a
discrete realization of a stochastic process in L2 (Hsing
and Eubank, 2015) and use the cosine of the angle be-
tween two centered L2-processes as a measure of similar-
ity. Here, for any two L2-processes, X and Y, the cosine of
the angle for the two centered processes is defined as

ÆX�E(X), Y �E(Y)æ
jjX�E(X)jj�jjY �E(Y)jj, where for any two L2-processes X and

Y, its inner product is defined as ÆX, Yæ =
R

X(s)Y(s)ds.
That is, a zero angle leads to a maximum similarity measure
of one, a 90� angle leads to zero similarity, and an angle of
180�, meaning that they are in the opposite direction, leads
to the minimum similarity measure of �1. With this view,
the cosine of the angle between the two (centered) pro-
cesses that generate the normalized BOLD time series Xj

and Xk can be approximated by the cosine of the angle be-
tween Xj and Xk, which is the PC between the two normal-
ized time series Xj and Xk.

The advantage of this holistic view is that there is no need
to assume stationarity of the time series, and a distance (or
disparity) measure between Xj and Xk can be constructed as

djk = 2(1�qjk) = +m

l = 1
(Xjl�Xkl)

2, which is the squared L2 dis-

tance between two normalized time series Xj and Xk. Such a
distance metric allows objects with stronger connectivity to
be arranged closer to each other, rendering a level of smooth-
ness on the sequence of realigned objects.

Implementation of MDS

Let js�j � s�k j = d�jk be the Euclidean distance between the
reconfigured Xj and Xk after the UDS (q = 1). The implemen-
tation of MDS involves the choice of a loss function, where
we use the normalized stress function (De Leeuw, 1977). The
resulting locations (s�1, . . . , s�n) are obtained by minimizing
the stress function:

stress(s1, . . . , sn) =
+j< k(jsj� skj � djk)

2

+j< kd2
jk

: (2)

We note here that although MDS aims at finding a global
minimizer to achieve a perfect total ordering, it is not critical
to have a perfect ordering for a method to be effective in data
applications. First, MDS is a powerful visualization tool as
demonstrated by the heat maps in Figure 3. Second, a key
purpose of aligning objects is to create smoothly transitioned
objects to facilitate further data analysis. Figure 1 demon-
strates this concept, where a smooth process Z(s, t) in
Figure 1a represents smoothly transitioned objects Zs(t) =
Z(s, t), which are indexed by s and lined-up vertically
along the horizontal s-axis. These initial indices s are then
randomly permuted, and the corresponding perturbed objects
are displayed in Figure 1b, which are subsequently aligned
using our MDS method. The result is an imperfectly aligned
data, where the aligned objects in Figure 1c, which are recon-
structed from the randomly perturbed data in Figure 1b,
appear to be smoothly transitioned similar to the smooth pro-
cess in Figure 1a. For this reason, one can work with just the
information of the order of the configuration fs�1, . . . , s�ng

in the target space and ignore the configured distances
d�jk = js�j � s�k j. This means that one can artificially place
fs�1, . . . , s�ng on an equally spaced grid of the interval [0,
1], and let ~sj = (j� 1)=(n� 1), j = 1, . . . , n, be the locations
of the reconfigured objects. The data analysis in the section
‘‘Results’’ supports such a reconfiguration approach.

For the remainder of the article, we assume, for simplicity,
that MDS maps the original objects {X1, ., Xn} to new lo-

cations f~sj = j� 1
n� 1

, j = 1, . . . , ng on [0, 1], with Xw(j) being

mapped to the target location ~sj, where w is a permutation
function on {1, ., n}. That is, w(j) denotes the spatial
index of the object that is mapped to the final location ~sj

on [0, 1] after the reconfiguration. Note that ~sj are located
in [0, 1] and thus are on a different scale from the original
s�j , where the latter are obtained from the MDS algorithm

in Matlab, using the stress function [Eq. (2)], and are not re-
stricted to be located in [0, 1].

Simulation

To evaluate the effectiveness of the alignment method, we
conduct the following simulation.

1. Generate n = 100 equidistant spatial grid points in 0, 1½ �
such that sj = j� 1

99
, j = 1, . . . , 100:

2. Generate BOLD signals Zj(t) = Z(t, sj) for t = 1, ., 236
as follows:

Z(t, sj) = +
40

r = 1

nr(sj)/r(t)þ ej(t),

where r is an integer, /r = cos r
118

pt
� �

for an odd r and

/r = sin r
118

pt
� �

for an even r; nr( � )~N(0,Sr), nrtnr¢ if

r s r¢; and for any fixed tk, ej(tk)~N(0, r2) represents inde-
pendent noise. The covariance function is defined as follows:

(Sr)jk = kr , if j = k

kre
� jsj � sk j , if j 6¼ k,

�

where kr = 10 1
1:2

� �r� 1
.

3. Perturb Zj(t) to Zp(j)(t), where p is a permutation func-
tion on 1, ., 100 and let Xj(t) = Zp(j)(t) be the objects to be
aligned in the next step.

4. Perform UDS as described in the section ‘‘Alignment of
Time Series’’ to align X1, ., X100 to new reconfigured loca-
tions ~sj, . . . ,~s100.

The Fourier basis functions in step 2 were selected to
mimic the fMRI data in the section ‘‘Resting-State fMRI
Data,’’ which were measured at m = 236 time points. Note
that we have added noise, ej(t), in step 2 to the BOLD signals
to reflect reality. The resulting BOLD signals Zj(t) = Z(t, sj) in
step 2, although noisy, are endowed with a natural ordering
from the original process Z(t, s), which we take to be the la-
tent order of Zj(t). The perturbation of this latent order in step
3 disturbs the ordering of these smoothly transitioned ob-
jects, and the UDS in step 4 aims at recovering the original
latent order. One challenge with the simulation is that there
is no genuine true order for the objects generated from this
experiment since djk = 2(1�qjk), where qjk is the PC in Equa-
tion (1), is not necessarily the best metric to capture the total
order behind the stochastic process. However, it is reason-
able to use the spatial order of the smoothly transitioned
objects as a surrogate for the true order. We adopt this
approach but emphasize that this is a challenge in the
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simulation, as one cannot expect perfect alignment when
evaluating the simulation results. Despite this challenge,
the proposed alignment procedure performs well in the
simulation based on 500 runs mimicking 500 random sub-
jects. To evaluate the performance of the simulation, we
use a criterion based on the relative ordering error (ROE),

ROE =
+n

j = 1
joA

j � ojj
(n� 1)(nþ 1)=3

, (3)

where n is the number of objects; oA
j and oj are, respectively,

the aligned and the true orders of jth object. The scatter plots
of the true order versus the recovered order for the three me-
dian subjects under different levels of measurement error
r = 0, 5, 10 are shown in Figure 2a–c. Here, a median subject
is defined by having the median ROE. The medians for these
500 ROEs are 0.1410, 0.2400, and 0.3408, respectively. A his-
togram of the values of ROE is presented in Figure 2d. Given
that a random permutation leads to ROE = 1, this performance
is quite satisfactory and shows robustness against measure-
ment errors, especially in view of the fact that the simulation
setting is not designed to generate data from the true latent
order. For a perfect alignment, all the dots should be located

on the diagonal line. Since the true latent order is unknown
and these plots correspond to the median performance, the
alignment performs very well when there is no measurement
error and is still quite reasonable in the presence of a moder-
ate amount of measurement error. The error concentrates lo-
cally on both far ends, except for the case in Figure 2c, which
has the highest level of measurement error. We note here that
although there are some deviations from the diagonal line,
they do not much affect the smoothness of the final aligned
process.

Path length of the aligned data

In network modeling, a popular approach to study the brain
connectivity, ROIs are considered as nodes, and edges between
them are established based on their functional connectivity.
Many statistics have been proposed to characterize networks,
and path length is often used to summarize the efficiency of
the network. Recently, the minimum spanning tree (MST) of
brain networks has been proposed to summarize the global ef-
ficiency of brain function (Olde Dubbelink et al., 2014; Stam
et al., 2014; van Dellen et al., 2014). It selects the most efficient
and essential path, which connects all the nodes. While this is

FIG. 1. (a) Smooth stochastic process Z(s, t), (b) randomly permuted stochastic process of (a), and (c) process recovered by
the proposed alignment method. Color images are available online.
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an appealing way to summarize a network, it fails to detect the
differences between the brain connectivity of the normal and
demented subjects for the Alzheimer data in the section
‘‘Resting-State fMRI Data.’’ We thus propose a new approach
that compares the two groups on a different path, where adja-
cency of the objects/nodes is determined by the order of the
reconfigured brain locations. Specifically, the alignment facil-
itates an ordered path, w(1) / w(2) / w(3). / w(n� 1)
/ w(n), of the brain connectivity of a subject. We use their
ordered path to summarize the efficiency of the brain connec-
tivity, defining a path length:

LA = +
n� 1

j = 1

dw(j)w(jþ 1): (4)

A traversal distance of a network is usually used to gauge
network efficiency. Similar to MST, which is a breadth-
first traversal algorithm, path length can be considered as
a version of depth-first traversal algorithm, which can be
used to measure network efficiency. It is conceivable that
an inefficient brain will take longer to travel through, thus

it is plausible that path length can capture the deficiency
of the brain function of the Alzheimer patients. The data ap-
plication in the section ‘‘Results’’ underscores the useful-
ness of this new notion of path length LA, as it is more
effective in detecting the differences between the normal
and demented subjects.

A new community detection method

Since the alignment in the section ‘‘Alignment of Time
Series’’ arranges similar objects to nearby locations on an in-
terval, one could view these similar objects as a community.
An interesting question is how to detect communities by
leveraging the reconfiguration after the alignment. The
most widely used method to detect communities is to maxi-
mize the modularity on networks through thresholded or
weighted adjacency matrices. In brain research, these adja-
cency matrices are usually constructed through func-
tional connectivity maps of ROIs. We proposed a different
approach here that takes advantage of the alignment. First,
we consider the modularity criterion (Newman, 2006),

FIG. 2. Simulation results with median ROE under different noise levels (r = 0, 5, 10) are reported in (a), (b), and (c), re-
spectively. The x-axis is the true order of objects; the y-axis is the aligned order of objects. A summary of the simulation is
reported in (d). ROE, relative ordering error. Color images are available online.
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Qw(c1, . . . , cn) =
1

lw

+
j, k2f1, ���, ng

wjk �
wj�wk�

lw

� �
· 1fcj = ckg,

(5)

where wjk is the weight of the edge between the jth and kth
objects; wj� = +

k 6¼j
wjk; lw = +

j, k2f1, ���, ngwjk; and cj and ck rep-

resent, respectively, the community that the jth and kth ob-
jects belong to, where 1fcj = ckg is an indicator function

indicating whether the jth and kth objects are in the same
community. If there are a total of B communities in the net-
work, this formula indicates that the optimization algorithm
has to search through Bn possible combinations to find the
optimal modularity.

This criterion does not utilize the characteristics of the
alignment based on the new reconfiguration proposed above.
In the new configuration, one may postulate that objects that
are close to each other belong to the same community. With
this information, we set out to detect the community structure
by locating the boundaries of communities on the new config-
uration. Since the reconfiguration lies on the 1D space, we for-
mulate the problem as a change-point detection problem.
Thus, the modularity criterion is changed to:

Qw(B, b1, � � � , bB� 1) =
1

lw
+

j, k2f1, ���, ng
wjk �

wj�wk�
lw

� �

· +
B

h = 1

1fbh� 1�~sj,~sk < bhg,

where (b1, /, bB�1) are the change-points that serve as the
boundaries of communities. That is, (b1, /, bB�1) is a subset
of f~s2, . . . ,~sng, and we further set b0 =~s1, bB = s. With this
set of notations, objects whose aligned positions fall into
the interval [bh–1, bh) are defined as the hth community.
This strategy along with the reconfiguration reduces the
size of the solution space to 2n compared with Bn for the
modularity in Equation (5). However, there exist two pri-
mary challenges for this optimization problem. First, the
number of communities B is unknown. Second, to detect
the boundaries of communities through optimizing the crite-
ria function, Equation (6) involves a combinatorial optimiza-
tion problem.

To tackle these challenges, we apply a genetic algorithm
(Goldberg et al., 1989) to solve the optimization of the objec-
tive function [Eq. (6)]. In a genetic algorithm, candidate
solutions are represented by finite-length of strings of alpha-
bets, which are referred to as genes. Each gene is encoded as
a binary value 0 or 1, with 1 denoting the boundary of a com-
munity. The candidate solutions (b1, /, bB�1) of the criteria
function [Eq. (6)] are thus the locations of those genes
encoded as 1. More details about the algorithm can be
found in a later monograph (Goldberg, 2006).

Results

We apply the methods proposed in the section ‘‘Materials
and Methods’’ to resting-state fMRI data from a study of
Alzheimer’s disease at the University of California, Davis.
The study included 172 Alzheimer patients and 67 normal
subjects, for whom resting-state fMRI data were obtained
for 8 min, resulting in 240 time points of image acquisitions,
but the first four observations were discarded to let the scan-

ner magnetization achieve a steady state, so the final length
of the BOLD time series was m = 236. The data were prepro-
cessed with SPM8 and subsequently partitioned into 90 cor-
tical regions (based on the AAL system) as described in the
section ‘‘Resting-State fMRI Data.’’

For each subject, this resulted in n = 90 time series, which
were subsequently normalized to (X1(t),/, X90(t)), where
the region locations were arranged in the same order as in
the AAL system. The functional connectivity maps of the
90 brain regions are presented in Figure 3a and b for a normal
and demented subject, respectively. These subjects are repre-
sentative of their respective group in the sense that they have
the median number of change-points within each group. We
then applied the alignment approach to both subjects. The
resulting functional connectivity maps based on the reconfigu-
ration are shown in Figure 3c and d. We observe that the in-
formation in panels (a) and (b) is difficult to extract, whereas a
clearer pattern emerged from each of the panels (c) and (d).

Length of selected path

The path length LA is computed for each subject, and the
average path lengths for the normal and demented groups are
114.69 and 117.47, respectively. The Wilcoxon test reported
in Table 1 suggests a marginal significant difference
( p = 0.0934 for a two-sided alternative hypothesis) between
the two groups and that Alzheimer’s disease reduces brain
efficiency (shorter path length is more efficient). Here, the
Wilcoxon test is used since it does not rely on any paramet-
ric assumption and is fairly powerful in comparison with the
t-test (Lehmann, 2012). In addition, we apply the MST
method (Olde Dubbelink et al., 2014; Stam et al., 2014;
van Dellen et al., 2014) to summarize the efficiency of
brain network. The average shortest path for the normal
and demented groups is 60.37 and 62.29, respectively, but
the result is less significant (p = 0.1361 for the Wilcoxon
test). This suggests that the new measure LA is a more effec-
tive summary than the MST in existing literature to distin-
guish normal from demented subjects for brain efficiency.

Community detection

In addition to using the selected path length to measure the
efficiency of brain function, we are also interested in explor-
ing another important topological property of brain networks,
the community structure in terms of modularity. A modular
organization characterizes many important biological sys-
tems, including brain networks. The modularity is considered
as a topological structure that can combine advantages of
high clustering and high efficiency and optimize between
the brain wiring cost and efficiency (Bullmore and Sporns,
2012). This concept is then utilized to detect community
structures by maximizing Q as commonly performed (New-
man, 2006). Given the new configuration obtained through
the proposed alignment method and based on the discussion
in the section ‘‘A New Community Detection Method,’’ we
adopted the modified Q in Equation (6) to detect the commu-
nity structure. This modularity is used to measure how well
the defined communities maximize the within-group connec-
tion and minimize the between-group connection.

Inspired by the framework of exponential random graph
modeling (Simpson et al., 2011; Van Wijk et al., 2010), we
apply a transformation wjk = exp(qjk) to transfer the cosine
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angle into a nonnegative weight. We applied the change-
point analysis in the section ‘‘A New Community Detec-
tion Method’’ to each subject and observed block diagonal
structures for both the normal and demented subjects in
Figures 4c and d. Furthermore, we applied a threshold
1 0:25, 1½ �(qjk) (Buckner et al., 2009) to aid the visualization

of the modularity structure. After thresholding the correlation
matrix (Fig. 4e, f), we observed block structures appearing
along the diagonal of correlation matrix and that the correla-
tion between these blocks is sparse. This is consistent with
the characteristic of modular structures where members within
the same community connect densely and members between
communities connect sparsely.

We also compared our approach with the algorithm from
the brain connectivity toolbox [BCT; Rubinov and Sporns
(2010)] on all subjects. The results shown in Figure 5a are
based on our proposed algorithm and the Louvain Method
for community detection and confirm that the communities
detected by our approach are as good as those by BCT. In
conclusion, these results indicate that our community detec-
tion approach conveys valuable information.

Finally, we compared modularities and numbers of com-
munities between the normal and demented subjects. The av-
erage modularity, as shown in Table 2, is 0.0896 and 0.0849
for the normal and demented groups, respectively. Although
not statistically significant, our method led to a smaller
p-value ( p = 0.1210) than the one from BCT ( p = 0.1539),

Table 1. Test of Network Efficiency

Network efficiency

�X1
�X2 s1 s2 p

Length of
MST

60.3687 62.2936 10.0258 8.5955 0.1361

Length of
path

114.6889 117.4658 12.9439 10.6568 0.0934

Normal group is indexed by 1 and demented group by 2.
The p-values are calculated from the Wilcoxon rank-sum test.
MST, minimum spanning tree.

FIG. 3. Brain image for a representative normal (b and d) and demented (a and c) subject. Panels (a) and (b) show the
90 normalized BOLD signals arranged horizontally according to the AAL ordering, and panels (c) and (d) show the aligned
normalized BOLD signals. AAL, automated anatomical labeling; BOLD, blood oxygen level dependent. Color images are
available online.
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suggesting that the demented group seems to have less effi-
cient community structures.

The average number of communities, as shown in
Table 3, is 4.2500 and 4.8955 for the normal and de-
mented groups, respectively. Our method shows that

the two groups differ significantly (p = 0.0032) in terms
of the number of communities with the demented group
split into more communities. But BCT is less effective
to detect this difference (p = 0.0625). Combining the re-
sults in Tables 2 and 3 and Figure 5 with the findings

FIG. 4. Brain image for a representative normal (b, d, and f) and demented (a, c, and e) subject. Panels (a) and (b) show the
correlation of 90 normalized BOLD signals arranged according to the AAL ordering, and panels (c) and (d) show the cor-
relations of the aligned normalized BOLD signals. Panels (e) and (f) show the thresholded (>0.25) correlations for the aligned
normalized BOLD signals. Color images are available online.
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on the path length, we conclude that in comparison to the
normal subjects, the demented subjects not only have less
global efficiency but also have less intact local functional
modules.

Discussion and Conclusion

We propose a new approach to visualize neuroimaging
data using BOLD signals as the platform. The proposed
approach compresses the 3D spatial locations of the brain
regions into spatial locations of a 1D space, so that the tem-
poral signals of fMRI time series can be aligned along a
horizontal axis and the heat map (Fig. 3) can be used to vi-
sualize the aligned objects. In addition to visualization, two
new approaches emerged from the alignment idea. The first
is a new summary for the global efficiency of the functional
connectivity of an individual brain. This new summary is
based on the path length along the aligned brain location
and is shown in the section ‘‘Results’’ to be effective in dis-
tinguishing Alzheimer’s and normal subjects, thereby pro-
viding new insights in how Alzheimer’s disease alters the
structure of brain connectivity.

The second by-product is a new method to detect commu-
nities through change-points locations of the functional con-
nectivity as brain regions between two change-points are
more similarly connected than those across change-points.
Thus, instead of examining a 90 · 90 adjacency matrix, the
alignment reduces the adjacency matrix to diagonal sub-

blocks of sizes n1, ., nB. Such a data reduction is feasible
because we have reconfigured the objects by aligning
them. When using the weighted modularity criteria, our com-
munity detection method performs competitively with the
BCT approach.

In summary, the alignment approach opens a new way to
explore complex spatially index objects. While we illustrate
our approach with time series objects, the proposed method
is applicable to any functions or abstract objects. As we
have only performed the alignment at the subject level, an in-
teresting question is whether it makes sense to do a uni-
fied alignment for a group of subjects, that is, whether it is
reasonable to use the same ordering for all subjects in a
group. The answer is likely to depend on the homogeneity
of the group. One major advantage of the alignment method
is that it alleviates or overcomes the curse of high dimension-
ality for object data. For instance, by aligning the BOLD sig-
nal of a subject, we provide an ordering for spatially index
signals, so the realigned BOLD signals could be viewed as
longitudinal functional data (Chen and Müller, 2012) or
smooth 2D functional data.

Since methods to deal with such functional data are plen-
tiful due to the fast growing interest in functional data anal-
ysis (Ramsay and Silverman, 2007; Wang et al., 2016), the
alignment approach proposed in this article bridges a gap be-
tween the analysis for high-dimensional object data and
smooth object data. There is clearly a vast array of methods
one can borrow from the statistical literature of functional

FIG. 5. (a) Box plots of modularity comparing BCT (Rubinov and Sporns, 2010) with our approach. (b) Box plots of
number of communities comparing BCT with our approach. BCT, brain connectivity toolbox. Color images are avail-
able online.

Table 2. Test of Modularity

Rank-sum test: modularity

�X1
�X2 s1 s2 p

Align 0.0896 0.0849 0.0217 0.0194 0.1210
BCT 0.0949 0.0906 0.0205 0.0181 0.1539

Normal group is indexed by 1 and demented group by 2.
The p-values are calculated from the Wilcoxon rank-sum test.
BCT, brain connectivity toolbox.

Table 3. Test of the Number of Communities

Rank-sum test: number of communities

�X1
�X2 s1 s2 p

Align 4.2500 4.8955 1.7576 1.9473 0.0032
BCT 3.8198 4.0149 0.7391 0.7281 0.0625

Normal group is indexed by 1 and demented group by 2.
The p-values are calculated from the Wilcoxon rank-sum test.
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data analysis once the alignment has been completed, includ-
ing functional principle component analysis, classification,
clustering, and prediction. This could be an interesting future
direction to explore.
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