
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

84 | P a g e

www.ijacsa.thesai.org

A New Approach for Grouping Similar Operations

Extracted from WSDLs Files using K-Means

Algorithm

Rekkal Sara

LAPECI Laboratory

University of Oran 1 Ahmed Ben Bella;

Oran, Algeria

Amrane Fatima, Loukil Lakhdar

Computer Science Department, Faculty of Sciences,

University of Oran 1 Ahmed Ben Bella;

Oran, Algeria

Abstract—Grouping similar operations is an effective solution

to the various problems, especially those related to research

because the services will be classified by joint operations.

Searching for a particular operation returns, as a result, all

services with this same operation, but also the problems related

to the substitution (such as, during a call failure or a

malfunction). A list of similar operations is returned to the client.

He chooses an operation, based on non-functional criteria. In this

work, our goal is to study the functional similarity between

operations, and thus constituting groups of similar operations,

while benefiting from the K-means algorithm.

Keywords—Web services; WSDL; inputs; outputs; similarity;

syntax analysis; semantic analysis; Hungarian maximum

matching; K-means

I. INTRODUCTION

The need generated by a client invoking a server
application is at the origin of what is known today as a web
service.

A web service is a solution to a given need, from a
computer science point of view; a web service is an application
that makes its features accessible via the Internet. It can be
public or private.

Web services are based on SOA architecture (Service
Oriented Architecture). The latter is based on three main
actors: provider, directory and client (shown in Fig. 1).

The main advantage of this architecture is that the client
does not need to know the service provider; he must simply
express its need precisely in the form of a query querying the
UDDI (Universal Description Discovery and Integration)
directory.

Faced with this need, several web services may exist, so
they are returned as a result: the customer then chooses the one
that best suits his needs and he starts to invoke it.

Manipulation process seems simple, but as this technology
is not yet mature, there are still many problems that require us
to create effective solutions, such as: the search results must
match the needs expressed, but this is not always the case, and
this is due to:

Fig. 1. SOA actors.

1) The continuous growth of the number of services

deployed on the net complicates more and more the research

task and also increases the search time.

2) The Web services are volatile; they often operate in a

highly dynamic environment as that the providers can remove,

modify, and relocate them frequently which causes a

malfunction at the time of their use.

3) In general, the customer is not interested by all

operations offered by the service, but by some of them.

So, in order to remedy this and to facilitate the discovery
and the substitution, we propose to reorganize the web services
space in a meaningful manner by constituting groups of
(Services, Common Operations). The gains we get from this
reorganization are:

1) An improved search time (quick and easy search): A

simple correspondence with the operation and the result will be

returned.

2) All results will be returned: All services corresponding

to the need will be listed, and the client selects the one that

suits him best according to non-functional criteria.

Invoke

UDDI

Provider

WSDL

Step 3

Step 4

Step 2

Step 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

85 | P a g e

www.ijacsa.thesai.org

3) During a call failure of an operation or during a

malfunction, a list of similar operations will be returned; the

client selects the one that suits him the most, according to non-

functional criteria.

In this document, we decided, as a first step, to focus on the
study of similarity between operations of web services, and
thus constituting groups of (Services, Common Operations).

The remainder of this document is administered as such:
Section II, to introduce you to the related work, Section III,
devoted to the presentation of the proposed approach,
Section IV is dedicated to the presentation of the results of the
experimentation, and finally, a conclusion is presented in
Section V.

II. RELATED WORK

Our goal, as mentioned above, is to build clusters of similar
operations extracted from WSDLs files; and since this is the
first initiative in the field, we have relied on works done on
WSDLs files that respond to various problems related to the
discovery, the composition, the substitution and the similarity
between Web services using different methods and techniques.

Authors of [1] suggested a technique for lexical and
structural similarity assessment of web services descriptions;
their similarity study is based on the measurement of the
similarity between descriptions (documentation) of various
elements, but the majority of web services that we found are
not documented, which means that the technique is not very
practical.

The authors of [2] built a network so that the nodes
represent the operations of the web services. A link joins two
similar operations; the similarity is studied according to four
functions. In the resulting network, similar operations are
connected and form a graphical component. The authors
summarize the similarity in only four cases and ignore many
others significant cases, so the results risk of being not good
enough.

In [3], web services are organized into substitutable service
communities, as each community is associated to a specific
functionality, so the web services meet the same need. This
similarity has been defined through the similarity study of their
operations. The authors in this work define mapping technique
between services such as mapping between two Web services
can be simple or complex. Simple mappings align one element
(input/output parameter) to another. Complex mappings deal
with incompatibilities of operation signatures, data types, data
units, etc. Mappings (simple or complex) require the
aggregation of some functions in order to convert units,
currencies, and measurements as well as to perform data
transformations, but these functions have not been identified or
discussed.

Dong et al. in [4] suggested a clustering algorithm that
gathers together parameters names into a meaningful concept,
they use the following heuristic: parameters that often appear
together tend to express the same thing; this algorithm was
implemented in Woogle which is a search engine for web

services. The authors consider only some elements such as
parameters names, operations names and descriptions and
ignore others elements, such as types.

In literature [5], authors have suggested an approach to
determine the similarity between web services. To do so, they
implemented three functions that successively return a
similarity value between the web services’ identifiers, a
similarity value between their operations and a similarity value
between their descriptions and that by exploiting at the same
time semantic similarity measurements and others syntactic
ones. The authors use several metrics to calculate semantic and
syntactic similarity where they had to choose just the best of
them. Also, the authors did not calculate the precision of their
method.

In [6], similar web services are clustered, the similarity
study was based on the semantic comparison of elements
extracted from WSDL files such as parameter names and
operation names, using the Wu method. Authors consider some
elements and ignore others, such as types.

III. PROPOSED APPROACH

A. Methods and Basic Tools

1) Syntactic and semantic analysis
In our work, the similarity between operations depends on

the similarity between their descriptions extracted from
WSDLs files, since it is difficult, even impossible, to access
their source codes.

The description extracted from the WSDLs files is in a
high-level language (human language). For this, we used
semantic and syntactic methods considered better to evaluate
them. These methods return similarity measures between [0, 1],
such that 0 means dissimilarity and 1 means similarity. As long
as we tend to 1 as long as the compared elements are more and
more similar.

a) Syntactic analysis

Syntactic similarity is presented in this survey though
different String-Based algorithms (Fig. 2).

String-based measures determine the similarity by
operating on string sequences and character composition. The
string-based methods are divided into: character-based and
terms-based approaches. Algorithms of character-based
similarity measurement consist of Smith-Waterman, N-gram.
Damerau-Levenshtein, Jaro–Winkler, Needleman–Wunsch,
Jaro, and Longest Common Substring (LCS). Algorithms of
term-based similarity measurement include Block Distance,
Cosine similarity, Dice’s coefficient, Euclidean distance,
Jaccard similarity, Matching Coefficient and Overlap
coefficient [7].

The works led by [8], [9] concludes that Jaro-Winkler has
performed better in term of results in several experiments and
can be used in several fields and it is much faster than the
others methods.

In this work, we choose to use the Jaro-Winkler method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

86 | P a g e

www.ijacsa.thesai.org

Fig. 2. String-based similarity measures. [7].

b) Semantic analysis

These methods consist of assigning to a pair of words, a
metric based on the similarity of their meaning. According to
[10], these methods can be classified into three categories:

1) Evaluating similarity by counting edges

Consists in calculating the distance between two concepts
in a taxonomy as WordNet, by the shortest path, in other

words, it evaluates the number of semantic links separating the
two concepts in the ontology. There are several methods, the
most known are: Rada (1989), Lee (1993), Wu & Palmer
(1994), etc.

2) Evaluating similarity by Information Content

The informative content of a concept reflects the relevance
of a concept in the corpus, taking into account the frequency of
the appearance of the words to which he refers, as well as the
frequency of appearance of the concepts he generalizes. There
are many methods, the most well-known are: Lin (1998),
Resnik (1995), Jiac (1997) etc.

3) Hybrid approach

It is a combination of the similarity measures mentioned
above. Parameters Length, depth, and local density form a part
of the nonlinear function which measures the similarity
between concepts [11]. Among these methods are: Jiang and
Conrath (1997), Lec (1998).

According to [8], it cannot be said that there are more
efficient or more optimal methods than others because the
studies conducted to examine them took some evaluation
criteria and ignored others. But the method that provides better
results with WordNet is Wu - Palmer. Thus, it has the
advantage of being simple to implement and also have good
performance, compared to other similarity measures.

2) Hungarian maximum matching
The Hungarian method, or Kuhn-Munkres’ algorithm, is an

algorithm of combinatorial optimization that solves the
assignment issue.

It is, therefore, an algorithm that allows finding a perfect
coupling of maximums weights in a bipartite graph.
Mathematically the problem can be formulated as follows:

Let G (X, U) be a bipartite graph, Fig. 3, of which:

- X = (P ∪ Q) set of nodes of the graph.

- U = set of links connecting the nodes characterized by

costs.

= [f (q1, p1) +f (q2, p3) +f (q3, p2)]/3

= [1.00+0.7+1.0]/3=0.9

Fig. 3. Bipartite graph problem [12].

Character

-Based

Term-

Based

Damerau-

Levenshtein

LCS

Jaro

Jaro-Winkler

Needleman-

Wunsh

Smith-

Waterman

N-gram

Overlap

Coefficient

Matching

Coefficient

Jaccard

Similarity

Euclidean

Distance

Dice’s

Coefficient

Cosine

Similarity

Block

Distance

String-

Based

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

87 | P a g e

www.ijacsa.thesai.org

TABLE I. MATRIX MODELING THE BIPARTITE GRAPH ABOVE

A graph can be represented by a matrix (Table I), whose
cells are considered to be the edges of the graph. A match is a
subset of edges where two edges in the subset cannot share a
common vertex. In other words, it is a set of values in the
matrix where two values can never be in the same line or
column.

3) The K-means algorithm
The k-means algorithm is a method of clustering; it allows

us to group similar objects. It aims to divide n individuals into
K subgroups, as homogeneous as possible; K is a fixed number
by the user.

The procedure follows five steps:

 Choose a number K forming K clusters.

 Choose centers Mi (i=1…n) for each cluster (as much
as possible far away from each other).

 Assign each object O to the cluster Ci of center Mi
such that distance (O, Mi) is minimal.

 Recalculate Mi of each cluster (the center of gravity).

 Return to the third step if you have made an
assignment.

The algorithm stops when:

 Two successive iterations lead to the same partition.

 We define stopping criteria such as the maximum
number of iterations.

a) Advantages

 The k-means algorithm is very popular because it is
very easy to understand and to implement.

 Its conceptual simplicity and speed.

 Applicable to large data sizes, and also to any type of
data (even textual), just by choosing a good notion of
distance.

b) Disadvantages

 The number of classes must be defined at the
beginning.

 The result depends on the initial draw of the class
centers.

B. WSDL file

As its name indicates, WSDL is used to describe web
services. It is divided into three major elements that can be
separated and used independently or combined to form a

unique XML (eXtensible Markup Language) document. These
elements are:

 The elements: Types, Message, PortType, and
Operation: define the operations offered by a web
service and the inputs and outputs of each of these
operations.

 Binding element: Defines the communication protocols
and Internet transport used to invoke the operations
defined in the PortType element.

 The elements: Service and Port: Defines access points
to the service.

As mentioned earlier, a client looks for a service for the
operations he carries out. More precisely, a client is only
interested by the results produced by the operations. So we are
interested, in this study, at the extraction, from each operation
the following elements:

1) Operation’s name.

2) Output message name.

3) The outputs parameters and their associated types.

Our choice of parameters is justified by:

 In general, a customer is looking for an operation that
produces outputs that he needs.

 We are interested in studying the functional similarity
of operations. Two operations that produce the same
result necessarily mean that they do the same work (the
same functionality) and they meet the same need.

 The authors of [13] have developed a theory of
substitutability, such that two Web services are
substitutable: if one requires as many or fewer inputs
and produces as many or more outputs, which means
that the focus is more on the outputs than the inputs.

C. Similarity Process between Operations

Similarity process between operations consists to:

 Extract necessary elements from WSDLs files.

 Transform complex parameters into simple parameters.

 Evaluate the similarity between operations.

 Construct groups of similar operations using the K-
means algorithm.

1) Extract necessary elements from WSDL files
Extract from WSDLs files the following elements (see

Fig. 4):

 Operation identifier.

 Output message identifier.

 Output parameters identifiers, and their associated
types.

1.0 0.5 0.7 0.0

0.3 0.8 0.7 0.2

0.2 1.0 0.2 0.1

O
u
tp

u
t

m
e
ss

a
g
e-

N
a
m

e

R
es

er
v
e
R

o
o

m
R

es
p

o
n

se

R
o

o
m

ex
p

ir
y
D

at
e

D
at

e

ro
o

m
ID

n
u

m
B

ed
s

S
u
b

el
e
m

en
ts

S
im

p
le

-T
y
p

e
s

In
te

g
er

In

te
g
er

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

88 | P a g e

www.ijacsa.thesai.org

Fig. 4. Similarity between operations.

2) Transform complex parameters into simple parameters
As mentioned earlier, the WSDL file includes the

description of several elements, whose output parameters, on
which our similarity study is based.

These parameters can be of simple type (Identifier + Type)
or complex (Parent identifier + identifiers of sub-elements +
Type).

Comparison of simple parameters doesn’t pose a problem,
unlike complexes. To remedy this, we have to transform the
complex parameters into simple parameters, by aggregating the
identifiers of the sub-elements with the parent identifier (see
Fig. 5 and 6).

3) Evaluate the similarity between operations
Let O1 and O2 be two operations extracted from different

services S1 and S2.

a) Similarity process

i) Similarity calculation

In our work, the similarity between operations is measured
by the following function:

Sim = [Sim_Msg () + Sim_Ops_Name ()]/2.

Where:

 Sim (): is the main function, which calculates the
similarity between two operations.

 Sim_Ops_Name (): is the function that measures the
similarity between the identifiers of the compared
operations (see Section III-C-3(a)(ii)).

 Sim_Msg (): is the function which measures the
similarity between two outputs messages such that:

Fig. 5. The description of the ReserveRoom operation from hotel reservation

service before aggregation.

Operation-

Name

Output-
Message

List-

Parametres

Parametres-

Name

Parametres-
Type

Operation-

Name

Output-
Message

List-

Parametres

Parametres-

Name

Parametres-
Type

Operation 1
Operation 2

O
u
tp

u
t

m
e
ss

a
g
e-

N
a
m

e

O
p

er
at

io
n
-N

a
m

e

R
es

er
v
e
R

o
o

m

R
es

er
v
e
R

o
o

m
R

es
p

o
n

se

P
ay

m
en

t
R

o
o

m

cc
N

u
m

b
er

ca

rd
H

o
ld

er

ex
p

ir
y
D

at
e

In
te

g
er

S

tr
in

g

D
at

e

ro
o

m
ID

n
u

m
B

ed
s

S
u
b

el
e
m

en
ts

S
im

p
le

-T
y
p

e
s

In
te

g
er

In

te
g
er

P
ar

en
ts

 e
le

m
e
n
ts

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

89 | P a g e

www.ijacsa.thesai.org

Fig. 6. The description of the ReserveRoom operation from hotel reservation

service after aggregation.

Sim_Msg = [Sim_List_Pars () +Sim_Msg_Name
()]/2.With:

 Sim_Msg_Name (): is the function that measures the
similarity between the identifiers of the compared
outputs messages (see Section III-C-3(a)(ii)).

 Sim_List_Pars (): is the function that measures the
degree of similarity between parameters. This function
consists of:

A. Building a similarity matrix whose lines refers to the
parameters of the first operation and the columns refer
to the parameters of the second operation (Table II).
The following formula determines the values of this
matrix:

Sim_Pars= [Sim_ident () +Sim_Types ()]/2.

Where:

 Sim_Pars (): is the function that calculates the
similarity between parameters. This measure is
included between [0-1], where 0 means the
dissimilarity of the compared parameters and 1 means
their similarity. As long as we tend to 1 as long as they
become more and more similar.

Where:

 Sim_ident (): is the function that measures the
similarity between the identifiers of the outputs
parameters (see Section III-C-3(a)(ii)).

 Sim_Types (): is the function that measures the
similarity between the types of parameters (see
Section III-C-3(a)(iii)).

B. Calculate the degree of similarity between the list of
parameters, by calculating the average of maximum
scores (the Hungarian method).

TABLE II. SIMILARITY BETWEEN PARAMETERS

O1

 O2
Parameter1 Parameter2 Parameter3

Parameter’1 Sim_Pars() Sim_Pars() Sim_Pars()

Parameter’2 Sim_Pars() Sim_Pars() Sim_Pars()

ii) Similarity between identifiers

An identifier (parameter name or message name or
operation name) is a word or a sequence of concatenated
words.

Measuring the similarity between two identifiers
consists of:

 Chopping identifiers into words, (in the case of an
identifier composed of several words).

 Remove stop words, as well as special characters and
numbers.

 Extending the abbreviations.

R
es

er
v
e
R

o
o

m

R
es

er
v
e
R

o
o

m
R

es
p

o
n

se

cc
N

u
m

b
-P

a
y
m

e
n
t

ca

rd
H

o
ld

e-

P
ay

m
en

t
ex

p
ir

y
D

at
e
-

P
ay

m
en

t

In
te

g
er

S
tr

in
g

D

at
e

ro
o

m
ID

-

R
o

o
m

n
u

m
B

ed
s-

R
o

o
m

S
im

p
le

-T
y
p

e
s

In
te

g
er

In

te
g
er

S
u
b

el
e
m

en
ts

-P
ar

en
t

O
p

er
at

io
n
-N

a
m

e

O
u
tp

u
t

m
e
ss

a
g
e-

N
a
m

e

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

90 | P a g e

www.ijacsa.thesai.org

 Lemmatizing the segments (use the singular, the
infinitive for verbs, the masculine for adjectives, etc.).

 Building a similarity matrix between the words of two
different identifiers, where columns represent the
words of the first identifier and the lines those of the
second, Table III. The matrix values are determined
according to a semantic analysis (WU-PALMER) if the
two words exist in the Word-net, if not, by using a
syntactic analysis (Jaro-Winkler).

 Calculate the degree of similarity between the
identifiers, by calculating the average of maximum
scores (the Hungarian method).

TABLE III. SIMILARITY BETWEEN TWO IDENTIFIERS

Identifier1

Identifier2

Word1 Word2 Word 3

Word’1

WU-Palmer

/ Jaro-

Winkler

WU-Palmer /
Jaro-Winkler

WU-Palmer /
Jaro-Winkler

Word’2

WU-Palmer

/ Jaro-

Winkler

WU-Palmer /
Jaro-Winkler

WU-Palmer /
Jaro-Winkler

iii) The similarity between types

The type T of an identifier is: Integer, Real, String, Date or
Boolean. In [12] and [14], authors propose Table IV, which
determines the similarity between the different possible types:

TABLE IV. SIMILARITY BETWEEN TYPES [12]

 Integer Real String Date Boolean

Integer 1.0 0.5 0.3 0.1 0.1

Real 1.0 1.0 0.1 0.0 0.1

String 0.7 0.7 1.0 0.8 0.3

Date 0.1 0.0 0.1 1.0 0.0

Boolean 0.1 0.0 0.1 0.0 1.0

The similarity between two given types of parameters is
calculated with the following formula:

Sim_Types = min [Sim (T1, T2), Sim (T2, T1)].

Where,

T1 is the type of the first parameter and T2 is the type of
the other.

4) Constitute groups of similar operations using the K-

means algorithm

a) Concept of distance between operations

The distance between two objects is defined by their
convergence or divergence from each other.

In this work, the distance between two operations is defined
by their degree of similarity. this degree is between [0, 1]

where 0 means dissimilarity and 1 means similarity of
operations, as long as we tend to 1, as long as they become
more and more similar. For this, a threshold was defined from
which we consider that the compared operations are very
similar (very close to each other). This has been defined by
experts, who concluded that from a threshold of 0.7, the
operations can be considered very similar.

b) Cluster’s Center

The K-means algorithm consists of determining for each
cluster Ci, a center Mi, so an object O (operation) will be
assigned to the cluster whose distance (Mi, O) is minimal. In
our case, the cluster's center is represented by an operation
called the representative operation, by default, is the first
operation assigned to the cluster Ci, so an operation Oj will be
assigned to the cluster Ci if, and only if, the distance (Mi, Oj)>
= Threshold.

c) Application of K -Means algorithm

K-means algorithm mentioned previously group similar
objects into a single group. The major disadvantage of this
algorithm is the number of classes K which must be fixed at
the beginning, also the random selection of the objects forming
centers’. So to remedy this, the following solution has been
proposed:

 Choose a number K forming K clusters.

 For i =1 to n (Total number of operations) do

 Choose a random operation. Let Oi.
 While: Oi is not assigned yet, do:

Study the distance between Oi and the

representative operations of the clusters (at the

beginning, all the clusters are empty).

 If it is similar, assign it to its cluster, return

to 1.

 Else:

 If there are empty clusters, assigned to

one of these clusters, it becomes its representative element, return to 1.
 Else (if there is no empty cluster):

 Increase the k, create a new

cluster.
 Assign this operation to this new

cluster; it becomes its representative

element, return to 1.

 End while.

 End for
 Count the number of empty clusters, delete them and decrement the K.

d) Stop criteria

All operations are assigned to their clusters.

e) Temporal complexity

The complexity of the worst case is n * m. such as:

 n: represents the total number of operations.

 m: the number of non-empty clusters

IV. EXPERIMENT RESULTS

A. The WSDLs Files Used

The experiment has been carried out on real web services
belonging to different fields: transport, address, location,
weather.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

91 | P a g e

www.ijacsa.thesai.org

B. The WSDLs Files Used

The approach has been applied on an Intel processor
machine (I3-3110M CPU2.40GHZ) with 4GB RAM and
Windows 07 as the operating system.

C. Results and Assessment

The tool has been experimented with 15, 30, 49 WSDLs
samples successively with a number of operation, 36, 150, 300
and a number of parameters in the same order 137, 627,860.

To evaluate our results (the formed groups), we compared
our results with those obtained of experts experience on the
same sample and we calculate the precision and recall. The
result is shown in Table V.

TABLE V. RECALL AND PRECISION MEASUREMENT

 15 WSDLs 15 WSDLs 15 WSDLs

Precision 1.0 1.0 0.98

Recall 1.0 0.97 0.94

D. Discussion of Results

Table V shows the results obtained which are described by
two measures: precision and recall.

1) Precision: This measures the proportion of software

results that are considered relevant or correct, and it is the ratio

of the number of relevant items found by the total number of

items found.

2) Recall: This measures the proportion of all the correct

results that a software might theoretically find, and is the ratio

of the number of relevant elements found by the total number

of relevant elements.

According to Table V, the results obtained (precision &
recall) are very satisfying, which means that the groups formed
by our software which implement our method, are very close to
those obtained of experts experience on the same sample, this
indicates that our method is very close to the human
evaluation, and confirms the effectiveness and the reliability of
our approach.

V. CONCLUSION AND FUTURE WORK

In this work, our goal has been, as a first step, to focus on
the study of similarity between operations of web services, and
thus constituting groups of (Services, Common Operations).

In this work, we rely on the outputs, as two operations are
considered functionally similar if, and only if, they produce the
same outputs (same results). We used semantic and syntactic

methods considered as better; also we arranged the K-means
method to group the similar operations.

Our future work consists of proposing a research approach
adapted to this new space while proving that this
reorganization of the Web services space as discussed
previously in this article, improves search time and facilitate
the discovery compared to the different existing approaches.

REFERENCES

[1] Natalia Kokash, “A Comparaison of Web Service Interface Similarity
Measures”, STAIRS, p.220-231, 2006.

[2] Chantal Cherifi,Vincent Labatut, Jean-François Santucci “Topological
Properties of Web Services Similarity Netweorks”, Journal of Strategic
Advantage of Computing Information Systems in Enterprise
Management, ATINER, pp. 105-117,2010.

[3] Y. Taher, D. Benslimane, M.-C. Fauvet, and Z.Maamar,” Towards an
Approach for Web Services Substitution”, in 10 th International
Database Engineering and Applications Symposium,2006,pp.166-173.

[4] Dong, X., Halevy, A., Madhaven, J., Nemes, E. and Zhang,
J.2004.Similiraty Seaurche for Web Services.in Proceedings of the 30th
VLDB conference, Toronto, Canada, August 2004,372-383.

[5] Okba Tibermacine, Chouki Tibermacine, Foudil Cherif, “A Practical
Approach to the Measurement of Similarity between WSDL-based Web
Services”, in proceedings of the frensh-speaking conference on software
Architecture (CAL’2014),France,2014

[6] Konduri, A.&C. Chan. “Clustering of web Services based on WordNet
semantic similarity”, 2008.

[7] Wael H. Gomaa, Aly A. Fahmy, “A Survey of Text Similarity
Approaches,” International Journal of Computer Applications, pp. 13-
18, 2013

[8] T Rachad,J Boutahar,S.El ghazi , “A New Efficient Method for
Calculating Similarity Between Web Services”, Journal of Advanced
Computer Science and Applications,vol.5, no 08, p. 60-67, 2014.

[9] Cohen, W., Ravikumar, P. and Fienberg, S., “A comparison of string
metrics for matching names and records”, Proceedings of the
International Conference on Information Integration on the Web (2003)
Pages 73-78.

[10] Sonia Lajmi, “Annotation et recherche contextuelle des docuents
multimédias, Allemagne : éditions universitaires europeennes 2012,
276 p.

[11] Atul Gupta, Dharamveer kr. Yadav “Semantic similarity measure using
information content approach with depth for similarity calculation”,
International journal of scientific & technology research, Volume 3,
February 2014.

[12] Pierluigi Plebniurbe, BarbaraPernin: URBE: Web Service Retrieval
Based on Similarity Evaluation” IEEE Transactions on Knowledge and
Data Engineering, Vol. 21, Nov. 2009.

[13] Kona, S., A.Bansal, L.Simon, A.Mallya,G. Gupta and T.Hite. “USDL: A
Service-Semantics Dsecription Language for Automatic Servic
Discovery and Composition”, 2006.

[14] Stroulia, E.and Y.Wang: “Structural and Semantic matching for
assessing web service similarity”, International journal of Cooperative
Information System14, 407-437.

