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Abstract—Grouping similar operations is an effective solution 

to the various problems, especially those related to research 

because the services will be classified by joint operations. 

Searching for a particular operation returns, as a result, all 

services with this same operation, but also the problems related 

to the substitution (such as, during a call failure or a 

malfunction). A list of similar operations is returned to the client. 

He chooses an operation, based on non-functional criteria. In this 

work, our goal is to study the functional similarity between 

operations, and thus constituting groups of similar operations, 

while benefiting from the K-means algorithm. 
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I. INTRODUCTION 

The need generated by a client invoking a server 
application is at the origin of what is known today as a web 
service. 

A web service is a solution to a given need, from a 
computer science point of view; a web service is an application 
that makes its features accessible via the Internet. It can be 
public or private. 

Web services are based on SOA architecture (Service 
Oriented Architecture). The latter is based on three main 
actors: provider, directory and client (shown in Fig. 1). 

The main advantage of this architecture is that the client 
does not need to know the service provider; he must simply 
express its need precisely in the form of a query querying the 
UDDI (Universal Description Discovery and Integration) 
directory. 

Faced with this need, several web services may exist, so 
they are returned as a result: the customer then chooses the one 
that best suits his needs and he starts to invoke it. 

Manipulation process seems simple, but as this technology 
is not yet mature, there are still many problems that require us 
to create effective solutions, such as: the search results must 
match the needs expressed, but this is not always the case, and 
this is due to: 

 
Fig. 1. SOA actors. 

1) The continuous growth of the number of services 

deployed on the net complicates more and more the research 

task and also increases the search time. 

2) The Web services are volatile; they often operate in a 

highly dynamic environment as that the providers can remove, 

modify, and relocate them frequently which causes a 

malfunction at the time of their use. 

3) In general, the customer is not interested by all 

operations offered by the service, but by some of them. 

So, in order to remedy this and to facilitate the discovery 
and the substitution, we propose to reorganize the web services 
space in a meaningful manner by constituting groups of 
(Services, Common Operations). The gains we get from this 
reorganization are: 

1) An improved search time (quick and easy search): A 

simple correspondence with the operation and the result will be 

returned. 

2) All results will be returned: All services corresponding 

to the need will be listed, and the client selects the one that 

suits him best according to non-functional criteria. 
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3) During a call failure of an operation or during a 

malfunction, a list of similar operations will be returned; the 

client selects the one that suits him the most, according to non-

functional criteria. 

In this document, we decided, as a first step, to focus on the 
study of similarity between operations of web services, and 
thus constituting groups of (Services, Common Operations). 

The remainder of this document is administered as such: 
Section II, to introduce you to the related work, Section III, 
devoted to the presentation of the proposed approach, 
Section IV is dedicated to the presentation of the results of the 
experimentation, and finally, a conclusion is presented in 
Section V. 

II. RELATED WORK 

Our goal, as mentioned above, is to build clusters of similar 
operations extracted from WSDLs files; and since this is the 
first initiative in the field, we have relied on works done on 
WSDLs files that respond to various problems related to the 
discovery, the composition, the substitution and the similarity 
between Web services using different methods and techniques. 

Authors of [1] suggested a technique for lexical and 
structural similarity assessment of web services descriptions; 
their similarity study is based on the measurement of the 
similarity between descriptions (documentation) of various 
elements, but the majority of web services that we found are 
not documented, which means that the technique is not very 
practical. 

The authors of [2] built a network so that the nodes 
represent the operations of the web services. A link joins two 
similar operations; the similarity is studied according to four 
functions. In the resulting network, similar operations are 
connected and form a graphical component. The authors 
summarize the similarity in only four cases and ignore many 
others significant cases, so the results risk of being not good 
enough. 

In [3], web services are organized into substitutable service 
communities, as each community is associated to a specific 
functionality, so the web services meet the same need. This 
similarity has been defined through the similarity study of their 
operations. The authors in this work define mapping technique 
between services such as mapping between two Web services 
can be simple or complex. Simple mappings align one element 
(input/output parameter) to another. Complex mappings deal 
with incompatibilities of operation signatures, data types, data 
units, etc. Mappings (simple or complex) require the 
aggregation of some functions in order to convert units, 
currencies, and measurements as well as to perform data 
transformations, but these functions have not been identified or 
discussed. 

Dong et al. in [4] suggested a clustering algorithm that 
gathers together parameters names into a meaningful concept, 
they use the following heuristic: parameters that often appear 
together tend to express the same thing; this algorithm was 
implemented in Woogle which is a search engine for web 

services. The authors consider only some elements such as 
parameters names, operations names and descriptions and 
ignore others elements, such as types. 

In literature [5], authors have suggested an approach to 
determine the similarity between web services. To do so, they 
implemented three functions that successively return a 
similarity value between the web services’ identifiers, a 
similarity value between their operations and a similarity value 
between their descriptions and that by exploiting at the same 
time semantic similarity measurements and others syntactic 
ones. The authors use several metrics to calculate semantic and 
syntactic similarity where they had to choose just the best of 
them. Also, the authors did not calculate the precision of their 
method. 

In [6], similar web services are clustered, the similarity 
study was based on the semantic comparison of elements 
extracted from WSDL files such as parameter names and 
operation names, using the Wu method. Authors consider some 
elements and ignore others, such as types. 

III. PROPOSED APPROACH 

A. Methods and Basic Tools 

1) Syntactic and semantic analysis 
In our work, the similarity between operations depends on 

the similarity between their descriptions extracted from 
WSDLs files, since it is difficult, even impossible, to access 
their source codes. 

The description extracted from the WSDLs files is in a 
high-level language (human language). For this, we used 
semantic and syntactic methods considered better to evaluate 
them. These methods return similarity measures between [0, 1], 
such that 0 means dissimilarity and 1 means similarity. As long 
as we tend to 1 as long as the compared elements are more and 
more similar. 

a) Syntactic analysis 

Syntactic similarity is presented in this survey though 
different String-Based algorithms (Fig. 2). 

String-based measures determine the similarity by 
operating on string sequences and character composition. The 
string-based methods are divided into: character-based and 
terms-based approaches. Algorithms of character-based 
similarity measurement consist of Smith-Waterman, N-gram. 
Damerau-Levenshtein, Jaro–Winkler, Needleman–Wunsch, 
Jaro, and Longest Common Substring (LCS). Algorithms of 
term-based similarity measurement include Block Distance, 
Cosine similarity, Dice’s coefficient, Euclidean distance, 
Jaccard similarity, Matching Coefficient and Overlap 
coefficient [7]. 

The works led by [8], [9] concludes that Jaro-Winkler has 
performed better in term of results in several experiments and 
can be used in several fields and it is much faster than the 
others methods. 

In this work, we choose to use the Jaro-Winkler method. 
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Fig. 2. String-based similarity measures. [7]. 

b) Semantic analysis 

These methods consist of assigning to a pair of words, a 
metric based on the similarity of their meaning. According to 
[10], these methods can be classified into three categories: 

1) Evaluating similarity by counting edges 

Consists in calculating the distance between two concepts 
in a taxonomy as WordNet, by the shortest path, in other 

words, it evaluates the number of semantic links separating the 
two concepts in the ontology. There are several methods, the 
most known are: Rada (1989), Lee (1993), Wu & Palmer 
(1994), etc. 

2) Evaluating similarity by Information Content 

The informative content of a concept reflects the relevance 
of a concept in the corpus, taking into account the frequency of 
the appearance of the words to which he refers, as well as the 
frequency of appearance of the concepts he generalizes. There 
are many methods, the most well-known are: Lin (1998), 
Resnik (1995), Jiac (1997) etc. 

3) Hybrid approach 

It is a combination of the similarity measures mentioned  
above. Parameters Length, depth, and local density form a part 
of the nonlinear function which measures the similarity 
between concepts [11]. Among these methods are: Jiang and 
Conrath (1997), Lec (1998). 

According to [8], it cannot be said that there are more 
efficient or more optimal methods than others because the 
studies conducted to examine them took some evaluation 
criteria and ignored others. But the method that provides better 
results with WordNet is Wu - Palmer. Thus, it has the 
advantage of being simple to implement and also have good 
performance, compared to other similarity measures. 

2) Hungarian maximum matching 
The Hungarian method, or Kuhn-Munkres’ algorithm, is an 

algorithm of combinatorial optimization that solves the 
assignment issue. 

It is, therefore, an algorithm that allows finding a perfect 
coupling of maximums weights in a bipartite graph. 
Mathematically the problem can be formulated as follows: 

Let G (X, U) be a bipartite graph, Fig. 3, of which: 

- X = (P ∪ Q) set of nodes of the graph. 

- U = set of links connecting the nodes characterized by 

costs. 

= [f (q1, p1) +f (q2, p3) +f (q3, p2)]/3 

= [1.00+0.7+1.0]/3=0.9 

 

Fig. 3. Bipartite graph problem [12]. 
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TABLE I. MATRIX MODELING THE BIPARTITE GRAPH ABOVE 

A graph can be represented by a matrix (Table I), whose 
cells are considered to be the edges of the graph. A match is a 
subset of edges where two edges in the subset cannot share a 
common vertex. In other words, it is a set of values in the 
matrix where two values can never be in the same line or 
column. 

3) The K-means algorithm 
The k-means algorithm is a method of clustering; it allows 

us to group similar objects. It aims to divide n individuals into 
K subgroups, as homogeneous as possible; K is a fixed number 
by the user. 

The procedure follows five steps: 

 Choose a number K forming K clusters. 

 Choose centers Mi (i=1…n) for each cluster (as much 
as possible far away from each other). 

 Assign each object O to the cluster Ci of center Mi 
such that distance (O, Mi) is minimal. 

 Recalculate Mi of each cluster (the center of gravity). 

 Return to the third step if you have made an 
assignment. 

The algorithm stops when: 

 Two successive iterations lead to the same partition. 

 We define stopping criteria such as the maximum 
number of iterations. 

a) Advantages 

 The k-means algorithm is very popular because it is 
very easy to understand and to implement. 

 Its conceptual simplicity and speed. 

 Applicable to large data sizes, and also to any type of 
data (even textual), just by choosing a good notion of 
distance. 

b) Disadvantages 

 The number of classes must be defined at the 
beginning. 

 The result depends on the initial draw of the class 
centers. 

B. WSDL file 

As its name indicates, WSDL is used to describe web 
services. It is divided into three major elements that can be 
separated and used independently or combined to form a 

unique XML (eXtensible Markup Language) document. These 
elements are: 

 The elements: Types, Message, PortType, and 
Operation: define the operations offered by a web 
service and the inputs and outputs of each of these 
operations. 

 Binding element: Defines the communication protocols 
and Internet transport used to invoke the operations 
defined in the PortType element. 

 The elements: Service and Port: Defines access points 
to the service. 

As mentioned earlier, a client looks for a service for the 
operations he carries out. More precisely, a client is only 
interested by the results produced by the operations. So we are 
interested, in this study, at the extraction, from each operation 
the following elements: 

1) Operation’s name. 

2) Output message name. 

3) The outputs parameters and their associated types. 

Our choice of parameters is justified by: 

 In general, a customer is looking for an operation that 
produces outputs that he needs. 

 We are interested in studying the functional similarity 
of operations. Two operations that produce the same 
result necessarily mean that they do the same work (the 
same functionality) and they meet the same need. 

 The authors of [13] have developed a theory of 
substitutability, such that two Web services are 
substitutable: if one requires as many or fewer inputs 
and produces as many or more outputs, which means 
that the focus is more on the outputs than the inputs. 

C. Similarity Process between Operations 

Similarity process between operations consists to: 

 Extract necessary elements from WSDLs files. 

 Transform complex parameters into simple parameters. 

 Evaluate the similarity between operations. 

 Construct groups of similar operations using the K-
means algorithm. 

1) Extract necessary elements from WSDL files 
Extract from WSDLs files the following elements (see 

Fig. 4): 

 Operation identifier. 

 Output message identifier. 

 Output parameters identifiers, and their associated 
types. 
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Fig. 4. Similarity between operations. 

2) Transform complex parameters into simple parameters 
As mentioned earlier, the WSDL file includes the 

description of several elements, whose output parameters, on 
which our similarity study is based. 

These parameters can be of simple type (Identifier + Type) 
or complex (Parent identifier + identifiers of sub-elements + 
Type). 

Comparison of simple parameters doesn’t pose a problem, 
unlike complexes. To remedy this, we have to transform the 
complex parameters into simple parameters, by aggregating the 
identifiers of the sub-elements with the parent identifier (see 
Fig. 5 and 6). 

3) Evaluate the similarity between operations 
Let O1 and O2 be two operations extracted from different 

services S1 and S2. 

a) Similarity process 

i) Similarity calculation 

In our work, the similarity between operations is measured 
by the following function: 

Sim = [Sim_Msg () + Sim_Ops_Name ()]/2. 

Where: 

 Sim (): is the main function, which calculates the 
similarity between two operations. 

 Sim_Ops_Name (): is the function that measures the 
similarity between the identifiers of the compared 
operations (see Section III-C-3(a)(ii)). 

 Sim_Msg (): is the function which measures the 
similarity between two outputs messages such that: 

 
Fig. 5. The description of the ReserveRoom operation from hotel reservation 

service before aggregation. 
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Fig. 6. The description of the ReserveRoom operation from hotel reservation 

service after aggregation. 

Sim_Msg = [Sim_List_Pars () +Sim_Msg_Name 
()]/2.With: 

 Sim_Msg_Name (): is the function that measures the 
similarity between the identifiers of the compared 
outputs messages (see Section III-C-3(a)(ii)). 

 Sim_List_Pars (): is the function that measures the 
degree of similarity between parameters. This function 
consists of: 

A. Building a similarity matrix whose lines refers to the 
parameters of the first operation and the columns refer 
to the parameters of the second operation (Table II). 
The following formula determines the values of this 
matrix: 

Sim_Pars= [Sim_ident () +Sim_Types ()]/2. 

Where: 

 Sim_Pars (): is the function that calculates the 
similarity between parameters. This measure is 
included between [0-1], where 0 means the 
dissimilarity of the compared parameters and 1 means 
their similarity. As long as we tend to 1 as long as they 
become more and more similar. 

Where: 

 Sim_ident (): is the function that measures the 
similarity between the identifiers of the outputs 
parameters (see Section III-C-3(a)(ii)). 

 Sim_Types (): is the function that measures the 
similarity between the types of parameters (see 
Section III-C-3(a)(iii)). 

B. Calculate the degree of similarity between the list of 
parameters, by calculating the average of maximum 
scores (the Hungarian method). 

TABLE II. SIMILARITY BETWEEN PARAMETERS 

O1 

             O2 
Parameter1 Parameter2 Parameter3 

Parameter’1 Sim_Pars() Sim_Pars() Sim_Pars() 

Parameter’2 Sim_Pars() Sim_Pars() Sim_Pars() 

ii) Similarity between identifiers 

An identifier (parameter name or message name or 
operation name) is a word or a sequence of concatenated 
words. 

Measuring the similarity between two identifiers 
consists of: 

 Chopping identifiers into words, (in the case of an 
identifier composed of several words). 

 Remove stop words, as well as special characters and 
numbers. 

 Extending the abbreviations. 

R
es

er
v
e
R

o
o

m
 

R
es

er
v
e
R

o
o

m
R

es
p

o
n

se
 

cc
N

u
m

b
-P

a
y
m

e
n
t 

 
ca

rd
H

o
ld

e-

P
ay

m
en

t 
ex

p
ir

y
D

at
e
- 

P
ay

m
en

t 

In
te

g
er

 

S
tr

in
g

 
D

at
e 

ro
o

m
ID

-

R
o

o
m

 
n
u

m
B

ed
s-

R
o

o
m

 

S
im

p
le

-T
y
p

e
s 

In
te

g
er

 
In

te
g
er

 

S
u
b

el
e
m

en
ts

-P
ar

en
t 

O
p

er
at

io
n
-N

a
m

e
 

O
u
tp

u
t 

m
e
ss

a
g
e-

N
a
m

e
 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 12, 2017 

90 | P a g e  

www.ijacsa.thesai.org 

 Lemmatizing the segments (use the singular, the 
infinitive for verbs, the masculine for adjectives, etc.). 

 Building a similarity matrix between the words of two 
different identifiers, where columns represent the 
words of the first identifier and the lines those of the 
second, Table III. The matrix values are determined 
according to a semantic analysis (WU-PALMER) if the 
two words exist in the Word-net, if not, by using a 
syntactic analysis (Jaro-Winkler). 

 Calculate the degree of similarity between the 
identifiers, by calculating the average of maximum 
scores (the Hungarian method). 

TABLE III. SIMILARITY BETWEEN TWO IDENTIFIERS 

Identifier1 
                   

Identifier2                                                             

Word1 Word2 Word 3 

Word’1 

WU-Palmer 

/ Jaro-

Winkler 

WU-Palmer / 
Jaro-Winkler 

WU-Palmer / 
Jaro-Winkler 

Word’2 

WU-Palmer 

/ Jaro-

Winkler 

WU-Palmer / 
Jaro-Winkler 

WU-Palmer / 
Jaro-Winkler 

iii) The similarity between types 

The type T of an identifier is: Integer, Real, String, Date or 
Boolean. In [12] and [14], authors propose Table IV, which 
determines the similarity between the different possible types: 

TABLE IV. SIMILARITY BETWEEN TYPES [12] 

 Integer Real String Date Boolean 

Integer 1.0 0.5 0.3 0.1 0.1 

Real 1.0 1.0 0.1 0.0 0.1 

String 0.7 0.7 1.0 0.8 0.3 

Date 0.1 0.0 0.1 1.0 0.0 

Boolean 0.1 0.0 0.1 0.0 1.0 

The similarity between two given types of parameters is 
calculated with the following formula: 

Sim_Types = min [Sim (T1, T2), Sim (T2, T1)]. 

Where, 

T1 is the type of the first parameter and T2 is the type of 
the other. 

4) Constitute groups of similar operations using the K-

means algorithm 

a) Concept of distance between operations 

The distance between two objects is defined by their 
convergence or divergence from each other. 

In this work, the distance between two operations is defined 
by their degree of similarity. this degree is between [0, 1] 

where 0 means dissimilarity and 1 means similarity of 
operations, as long as we tend to 1, as long as they become 
more and more similar. For this, a threshold was defined from 
which we consider that the compared operations are very 
similar (very close to each other). This has been defined by 
experts, who concluded that from a threshold of 0.7, the 
operations can be considered very similar. 

b) Cluster’s Center 

The K-means algorithm consists of determining for each 
cluster Ci, a center Mi, so an object O (operation) will be 
assigned to the cluster whose distance (Mi, O) is minimal. In 
our case, the cluster's center is represented by an operation 
called the representative operation, by default, is the first 
operation assigned to the cluster Ci, so an operation  Oj will be 
assigned to the cluster Ci if, and only if, the distance (Mi, Oj)> 
= Threshold. 

c) Application of K -Means algorithm 

K-means algorithm mentioned previously group similar 
objects into a single group. The major disadvantage of this 
algorithm is the number of classes K which must be fixed at 
the beginning, also the random selection of the objects forming 
centers’. So to remedy this, the following solution has been 
proposed: 

  Choose a number K forming K clusters. 

     For i =1 to n (Total number of operations) do 

     Choose a random operation. Let Oi. 
          While: Oi is not assigned yet, do: 

Study the distance between Oi and the 

representative operations of the clusters (at the 

beginning, all the clusters are empty). 

    If it is similar, assign it to its cluster, return 

to 1. 

    Else: 

            If there are empty clusters, assigned to 

one of these clusters, it becomes its representative element, return to 1. 
     Else (if there is no empty cluster): 

 Increase the k, create a new 

cluster. 
 Assign this operation to this new 

cluster; it becomes its representative 

element, return to 1. 

            End while. 

     End for 
 Count the number of empty clusters, delete them and decrement the K. 

d) Stop criteria 

All operations are assigned to their clusters. 

e) Temporal complexity 

The complexity of the worst case is n * m. such as: 

 n: represents the total number of operations. 

 m: the number of non-empty clusters 

IV. EXPERIMENT RESULTS 

A. The WSDLs Files Used 

The experiment has been carried out on real web services 
belonging to different fields: transport, address, location, 
weather. 
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B. The WSDLs Files Used 

The approach has been applied on an Intel processor 
machine (I3-3110M CPU2.40GHZ) with 4GB RAM and 
Windows 07 as the operating system. 

C. Results and Assessment 

The tool has been experimented with 15, 30, 49 WSDLs 
samples successively with a number of operation, 36, 150, 300 
and a number of parameters in the same order 137, 627,860. 

To evaluate our results (the formed groups), we compared 
our results with those obtained of experts experience on the 
same sample and we calculate the precision and recall. The 
result is shown in Table V. 

TABLE V. RECALL AND PRECISION MEASUREMENT 

 15 WSDLs 15 WSDLs 15 WSDLs 

Precision 1.0 1.0 0.98 

Recall 1.0 0.97 0.94 

D. Discussion of Results 

Table V shows the results obtained which are described by 
two measures: precision and recall. 

1) Precision: This measures the proportion of software 

results that are considered relevant or correct, and it is the ratio 

of the number of relevant items found by the total number of 

items found. 

2) Recall: This measures the proportion of all the correct 

results that a software might theoretically find, and is the ratio 

of the number of relevant elements found by the total number 

of relevant elements. 

According to Table V, the results obtained (precision & 
recall) are very satisfying, which means that the groups formed 
by our software which implement our method, are very close to 
those obtained of experts experience on the same sample, this 
indicates that our method is very close to the human 
evaluation, and confirms the effectiveness and the reliability of 
our approach. 

V. CONCLUSION AND FUTURE WORK 

In this work, our goal has been, as a first step, to focus on 
the study of similarity between operations of web services, and 
thus constituting groups of (Services, Common Operations). 

In this work, we rely on the outputs, as two operations are 
considered functionally similar if, and only if, they produce the 
same outputs (same results). We used semantic and syntactic 

methods considered as better; also we arranged the K-means 
method to group the similar operations. 

Our future work consists of proposing a research approach 
adapted to this new space while proving that this 
reorganization of the Web services space as discussed 
previously in this article, improves search time and facilitate 
the discovery compared to the different existing approaches. 

REFERENCES 

[1] Natalia Kokash, “A Comparaison of Web Service Interface Similarity 
Measures”, STAIRS, p.220-231, 2006. 

[2] Chantal Cherifi,Vincent Labatut, Jean-François Santucci “Topological 
Properties of Web Services Similarity Netweorks”, Journal of Strategic 
Advantage of Computing Information Systems in Enterprise 
Management, ATINER, pp. 105-117,2010. 

[3] Y. Taher, D. Benslimane, M.-C. Fauvet, and Z.Maamar,” Towards an 
Approach for Web Services Substitution”, in 10 th International 
Database Engineering and Applications Symposium,2006,pp.166-173. 

[4] Dong, X., Halevy, A., Madhaven, J., Nemes, E. and Zhang, 
J.2004.Similiraty Seaurche for Web Services.in Proceedings of the 30th 
VLDB conference, Toronto, Canada, August 2004,372-383. 

[5] Okba Tibermacine, Chouki Tibermacine, Foudil Cherif, “A Practical 
Approach to the Measurement of Similarity between WSDL-based Web 
Services”, in proceedings of the frensh-speaking conference on software 
Architecture (CAL’2014),France,2014 

[6] Konduri, A.&C. Chan. “Clustering of web Services based on WordNet 
semantic similarity”, 2008. 

[7] Wael H. Gomaa, Aly A. Fahmy, “A Survey of Text Similarity 
Approaches,” International Journal of Computer Applications, pp. 13-
18, 2013 

[8] T Rachad,J Boutahar,S.El ghazi , “A New Efficient Method for 
Calculating Similarity Between Web Services”, Journal of Advanced 
Computer Science and Applications,vol.5, no 08, p. 60-67, 2014. 

[9] Cohen, W., Ravikumar, P. and Fienberg, S., “A comparison of string 
metrics for matching names and records”, Proceedings of the 
International Conference on Information Integration on the Web (2003) 
Pages 73-78. 

[10] Sonia Lajmi, “Annotation et recherche contextuelle des docuents 
multimédias, Allemagne : éditions universitaires europeennes 2012, 
276 p. 

[11] Atul Gupta, Dharamveer kr. Yadav “Semantic similarity measure using 
information content approach with depth for similarity calculation”, 
International journal of scientific & technology research, Volume 3, 
February 2014. 

[12] Pierluigi Plebniurbe, BarbaraPernin: URBE: Web Service Retrieval 
Based on Similarity Evaluation” IEEE Transactions on Knowledge and 
Data Engineering, Vol. 21, Nov. 2009. 

[13] Kona, S., A.Bansal, L.Simon, A.Mallya,G. Gupta and T.Hite. “USDL: A 
Service-Semantics Dsecription Language for Automatic Servic 
Discovery and Composition”, 2006. 

[14] Stroulia, E.and Y.Wang: “Structural and Semantic matching for 
assessing web service similarity”, International journal of Cooperative 
Information System14, 407-437. 


