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A New Approach for Nonlinear Distortion
Correction in Endoscopic Images

Based on Least Squares Estimation
K. Vijayan Asari, Member, IEEE,Sanjiv Kumar, and D. Radhakrishnan,*Member, IEEE

Abstract—Images captured with a typical endoscope show
spatial distortion, which necessitates distortion correction for
subsequent analysis. In this paper, a new methodology based
on least squares estimation is proposed to correct the nonlin-
ear distortion in the endoscopic images. A mathematical model
based on polynomial mapping is used to map the images from
distorted image space onto the corrected image space. The model
parameters include the polynomial coefficients, distortion center,
and corrected center. The proposed method utilizes a line search
approach of global convergence for the iterative procedure to
obtain the optimum expansion coefficients. A new technique
to find the distortion center of the image based on curvature
criterion is presented. A dual-step approach comprising token
matching and integrated neighborhood search is also proposed
for accurate extraction of the centers of the dots contained in a
rectangular grid, used for the model parameter estimation. The
model parameters were verified with different grid patterns. The
distortion-correction model is applied to several gastrointestinal
images and the results are presented. The proposed technique
provides high-speed response and forms a key step toward online
camera calibration, which is required for accurate quantitative
analysis of the images.

Index Terms—Camera calibration, distortion correction, en-
doscopy, expansion polynomial.

I. INTRODUCTION

M INIMALLY invasive therapy (MIT) is increasingly
becoming popular because of the use of natural or

artificial orifices of the body for surgical procedures, which
minimizes the destruction of healthy organs and tissues. Elec-
tronic videoendoscopy has become one of the commonly
accepted forms of diagnostic and therapeutic procedures, due
to the advent of miniature CCD cameras and associated
microelectronics. Videoendoscopes facilitate observation, doc-
umentation, and electrical manipulation of the images of
the internal structure of the gastrointestinal tract. In these
endoscopes, cameras with a wide viewing angle lens (fish-eye
lens) are used to enhance the imaging capability, which permits
the capturing of larger field in a single image [1]. However, it
has been noted that the images obtained from electronic endo-
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scopes show barrel-type spatial distortion, due to wide-angle
configuration of the camera lens. Barrel distortion introduces
nonlinear changes in the image, due to which, image areas
near the distortion center are compressed less, while areas
farther from the center are compressed more. Because of this,
the outer areas of the image look significantly smaller than
their actual size. This inhomogeneous image compression in-
troduces significant errors in the results obtained during feature
extraction. Continuous estimation of quantitative parameters,
such as area and perimeter, is of considerable importance
while performing clinical endoscopy. Unless the distortion
is corrected, estimation errors could be very large [2]–[4].
In addition, the distortion causes complications while using
token matching techniques for pattern recognition. Distortion
correction is also a prerequisite for the camera calibration to
obtain extrinsic and intrinsic camera parameters [5], [6].

Several researchers have presented various mathematical
models of the image distortion and techniques to find the
model parameters to complete the distortion-correction proce-
dure. Tsai [7] proposed a radial lens distortion model which de-
scribes a two-dimensional (2-D) image-correction technique. A
prism-distortion model was used in [8] to correct the tangential
distortion in an image. Nomuraet al.[9] presented a calibration
technique for high-distortion TV camera lenses. However,
this method requires precise placement of the calibration
chart. Thus, a small shift of the chart prompts considerable
errors in distortion correction. Weng [10] has explained radial,
decentering, and thin prism-types of distortions and techniques
to model them mathematically. All the above models give
reasonable results for images obtained from cameras with
normal viewing objective lenses, but these models are not
effective for electronic endoscopes which use wide-angle
lens cameras. Smithet al. [11] gave a formulation in which
distortion was assumed to be purely radial, and orthogonal
Chebyshev polynomials were used to determine the model
parameters. Hideakiet al. [12] presented a different method
for estimation of the model parameters, in which a moment
matrix was obtained from a set of image points, and distorted
grid lines in the image were straightened on the basis of the
smallest characteristic root of the moment matrix.

In this paper, we use a similar distortion-correction formu-
lation, based on polynomial mapping as used by Hideaki. We
propose a new technique based on least squares estimation
to obtain the coefficients of the correction polynomial. This
approach is simpler and faster than the one used by Hideaki.
Furthermore, a method for accurate determination of the crit-
ical points of calibration grid, based on a dual-step approach
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is also presented. The proposed technique is independent of
the orientation of the calibration chart. Thus, it does not
require precise placement of the chart and the placement
errors in distortion-correction formulation can be avoided. The
performance of the proposed distortion-correction algorithm is
validated with grid patterns of different orientations. For the
precise correction of images, the distances of the object points
from the camera in three-dimensional (3-D) space must be
included in the distortion-correction procedure. However, the
method proposed here forms a key step toward the precise
distortion correction of the endoscopic images.

II. THEORETICAL MODEL

The distortion-correction technique presented here assumes
that the distortion is radial about the distortion center. Al-
though nonlinear magnification of the distorted endoscopic
image in two dimensions is needed to correct the barrel
distortion, the assumption precludes the loss of generality
as a typical endoscope lens is circularly symmetric within
narrow precision limits [11]. This assumption simplifies the
model by converting a 2-D distortion problem into a one-
dimensional (1-D) problem. Let the distorted and corrected
(or undistorted) image spaces are represented by and

respectively, and the distortion center and the corrected
center by and . The distortion center is
a point in the distorted image space such that the straight lines
in the object space passing through it remain straight in the
image space. The corrected center is a point in the
corrected image space about which the expansion of distorted
image gives a final corrected image. In the distorted image
space, magnitude of a vector from the distortion center
to any pixel location and the angle made by this
vector from the horizontal -axis are given by

(1)

Let the same pixel be assigned to a new location in the
corrected image space and the magnitudeand argument of
the corresponding vector drawn from the corrected center
to the new pixel location are

(2)

The objective of the mathematical model is to obtain a relation
between the vectors and . An expansion polynomial of
degree is defined to relate the magnitudes of the two vectors
in distorted and corrected images as

(3)

where ’s are the expansion coefficients. As the distortion
has been assumed to be purely radial, there will be no change
in the arguments of the corresponding vectorsand , i.e.,

. After obtaining the magnitude of the new vector,
the new pixel location in the corrected image space can be
calculated as

(4)

Fig. 1. Distorted image of the experimental grid of dots (diameter�1 mm,
center distance� 2.5 mm) fixed at a distance of 10 mm from the endoscope
camera.

To map each pixel from the distorted image space onto the
corrected image space, there are unknowns, viz.,
expansion coefficients ’s), distortion center , and
corrected center . The estimation of the distortion
center and the corrected center is explained in Section II-C.

A. Estimation of Expansion Coefficients

The expansion coefficients are estimated on the basis of
the degree of straightness of the points, which lie on a straight
line before imaging. These are estimated in the distorted image
space by straightening the grid lines of a distorted grid image.
For this purpose, an experimental grid is used which contains
test dots arranged in horizontal and vertical grid lines. A
typical distorted image of the grid is shown in Fig. 1. A new
dual-step technique for accurate computation of the test dot
centers is explained in Section III. Let denote the center
of a test dot lying in theth row and th column of the grid
with its coordinates at . Let there be columns of test
dots in the grid image with dot centers in theth column.
A set , consisting of test dot centers of theth column is
defined as

for (5)

To obtain a best fit polynomial curve for each set a
polynomial of degree is defined as

(6)

To estimate the coefficients ’s, least squares estimation is
used which provides sufficient emphasis on all those points
which are far from the approximation, without allowing them
to dominate [13]. The unknowns ’s are chosen to minimize
the function which is defined as

(7)

Hence, ’s can be calculated from

for (8)

For every set from (6) simultaneous equations are
obtained, which can be represented in a matrix form as

(9)
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where

for

To find the best linear fit for the set of points in th column
of the test dots, a first-degree polynomial is obtained from (6).
Hence, two optimum polynomial coefficients are computed
using (9). A normalized error function is defined as the
normalized sum of magnitudes of the perpendiculars drawn
from each of the points on the best linear fit ofth column
as

(10)

The total error for the whole grid image is obtained by

(11)

In the ideal condition, when there is no distortion in the image,
the total error is zero since all grid lines will be imaged
as straight lines. However, due to image distortion,has a
positive value which decreases monotonously as the distortion
reduces. The main objective of the mathematical model is to
find the expansion coefficients ’s to minimize the total error

Minimization of is carried out by an iterative procedure
in which the new coordinates of the test dot centers in the
distorted grid image are calculated by using a new set of
expansion coefficients. The recursive relationship to find the
new set of expansion coefficients is derived from the line
search method of guaranteed convergence [14]. This method is
based on a globalization strategy to select the new coefficients.
The search direction in this strategy is different from that
derived from the Taylor series, as the Taylor series provides
local approximation of a function. The global convergence
ensures convergence of a series from any starting point to
a stationary point. Line search methods are widely used for
the purpose of global convergence. On the basis of this
method, the expansion coefficients can be obtained by using
the following recursive relationship:

for (12)

where is the convergence rate parameter,is the expansion
index, and is the error gradient. Here, is chosen to
ensure that for every th iteration, If

is large, the decrease in total errorpredicted by the linear
approximation may greatly differ from the actual decrease, and
the global convergence could be violated. On the other hand, if

is too small, the time taken for convergence may be too long.
The value of controls the overall expansion of the distorted
image and facilitates the generation of the weights for each
of the coefficients. The iterative relationship given in (12)
also conforms with the principle of diminishing convergence,
which ensures fast convergence at the initial phase of the
correction procedure when is significantly large. The error
gradient for every th iteration can be computed using (13),
shown at the bottom of this page. To obtain and

and are obtained from (9) as

(14)

where denotes . The derivatives and
can be calculated as

(15)

(13)
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(16)

In (15) and (16), and are calculated as

(17)

where and are the new magnitude and argument of
the vector drawn from the distortion center to the new center of
the test dot after th iteration. can be computed as

(18)

and can be obtained from (17) and (18) as

(19)

The iterative procedure ends when the total error becomes
smaller than a prespecified limit, i.e., . In the
process of distortion correction decreases as the grid lines
get straightened, and it reaches a minimum value when
the most optimally straightened grid is obtained. If the image
is expanded further, starts increasing. Thus, if is chosen
less than , the diverging trend in total error is avoided
by stopping the iterations further when .
The overall procedure for the estimation of the expansion
coefficients is given in Fig. 2.

B. Estimation of Back Mapping Polynomial Coefficients

Once the expansion coefficients are computed, all the pixels
contained in the distorted image space are mapped onto the
corrected image space. It can be observed that a number of
pixel locations are left vacant in the corrected image space, due
to the inhomogeneous expansion of the distorted image. The
expanded image in the corrected image space with vacant pixel
positions is shown in Fig. 3. To obtain the correct intensity
information of these vacant pixels, a back-mapping polynomial
is derived which maps every pixel from the corrected image
space onto the distorted image space. This polynomial is

Fig. 2. Flow chart to estimate the expansion coefficients.

Fig. 3. Corrected image corresponding to Fig. 1 before back mapping.

defined in a way similar to the expansion polynomial of
(3), and the coefficients are calculated by using nonlinear
regression analysis employing least squares for a finite number
of points in the distorted image [15]. For every pixel in the
corrected image, the corresponding location in the distorted
image is obtained and the information contained in that pixel
location is assigned to the corrected image pixel. In case the
pixel positions calculated using the back-mapping polynomial
are nonintegers, a linear interpolation on the surrounding pixels
is used to get the approximate pixel information.
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Fig. 4. Best fit polynomial curves of adjacent rows and columns of opposite
curvatures.

C. Estimation of Distortion Center and Corrected Center

A reasonably correct estimation of the distortion center is
essential for effective determination of the expansion coeffi-
cients. The distortion center is a fixed point for a particular
camera and, once calculated, can be used for all the images
obtained from that camera. From Fig. 1, it can be noted that the
curvature of columns decreases from the first to the seventh
column and then increases from the eighth to the thirteenth
column, but the sign of the curvature changes. The same
observation holds true for the rows also. Thus, the lines
which remain straight after imaging must lie between the
adjacent rows and columns of opposite curvatures. The rows
and columns of opposite curvatures are given in Fig. 4. The
intersection of such straight lines gives the distortion center
of the image. In the proposed method of distortion center
estimation, two polynomials, each of degree, passing through
a set of grid dots of the adjacent rows of opposite curvatures
are defined as

for (20)

The best fit polynomial coefficients are obtained using
an equation similar to (9). The curvature of th row is
computed at the stationary point on a curve, shown
in Fig. 4 as

for

(21)

Similar polynomials for are also defined for
the adjacent columns and the column curvatures for the
th column at the stationary point are obtained.

The distortion center is estimated by interpolating the
four curvatures and as

(22)

The corrected image center is needed for back mapping, as
all the vectors in the corrected image are obtained with
respect to this center. To find this center a pixel location
is computed in the distorted image which, after distortion
correction, corresponds to the corrected image center. This
pixel location is found based on the criterion that in the
corrected image, pixel distances between the dot centers should
be the same for all the grid lines in the horizontal and the
vertical directions. The corrected image center is estimated by
applying the expansion polynomial to this pixel location in the
distorted image, which is obtained by iteratively minimizing
the variation in distances between the test dot centers in the
corrected image.

III. EXTRACTION PROCEDURE TOOBTAIN

DOT CENTERS OF THEEXPERIMENTAL GRID

Qualitative results of the distortion-correction procedure
depend upon the accurate estimation of centers of the grid
dots in the distorted image, because the mathematical model
uses these dot centers as its input. It has been observed
that deviation in dot centers, even by a fraction of a pixel,
introduces considerable errors during the computation of the
expansion coefficients. To find the actual center for each dot
lying in the th row and th column of the test grid, a new dual-
step technique is proposed in which, at first, a pseudocenter
is estimated by token matching, and then the actual center is
calculated using integrated neighborhood search.

A. Pseudocenter Estimation by Token Matching

In this method, the darker regions representing the test
dots in the grid image are segmented by identifying an
appropriate threshold, using the dynamic histogram thresh-
olding technique, and the image is binarized. The dynamic
histogram thresholding is implemented by using the hill-
clustering approach to find a suitable valley as a threshold
[16].

The pseudocenter is estimated as follows.
1) Define a token window of size such that the in-

tensity of the window pixel at location
. An odd number is assigned to to

ensure symmetry for token matching and is selected in
accordance with the maximum dot size to allow full
superposition of the dots by the window

2) For the captured image of size for all the pixels
belonging to the image region

, the window is
superposed on each pixel such that its center matches
with the location .

3) Compute choice value for each pixel as

(23)

where is the intensity of the pixel of the grid
image.
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TABLE I
DEVIATION OF ACTUAL CENTERS OF THETEST DOTS COMPUTED BY AN INTEGRATED

NEIGHBORHOOD SEARCH FROM THE PSEUDOCENTERSOBTAINED BY TOKEN MATCHING

4) Arrange in descending order in a choice
queue.

5) For the maximum eliminate all the choice values
from the choice queue for which and

where is a limiting number. is chosen
in accordance with the size of dots and the distance
between them to ensure that all the neighbor pixels
belong to the same test dot. In case one or more neighbor
pixels contain the same choice value as that of pixel,
a spatial average of all these pixels is used as the pixel
location for in the choice queue instead of

6) Take the next maximum value from the remaining choice
queue and repeat step 5.

7) Repeat step 6 until there is no neighbor pixel for all the
pixels in the choice queue.

The locations of the pixels corresponding to the choice values
in the final choice queue give the pseudocenters of the test
dots.

B. Region Identification by Integrated Neighborhood Search

Once the pseudocenter for each of the test dots in the
binarized image is obtained, the exact center is calculated
by an integrated neighborhood search. In this procedure, the
pseudocenter is used as a seed to identify all the pixels in
the neighborhood region belonging to that particular test dot.
Further, a search is performed on the eight pixels surrounding
the pseudocenter. The black pixels are stored in an array called
the neighborhood pixel array (NPA) while the white pixels
are excluded from it. For each pixel contained in NPA, the
surrounding pixels are checked and the pixels which are found
black in the new search are again stored in NPA if they are
not already present in it. This sequence is continued until all
the pixels in the neighborhood region of the pseudocenter are
exhausted. After identifying the full neighborhood region, the
spatial center , representing the actual dot center, is
calculated by using all the pixels contained in NPA as

(24)

where is the location of the th pixel in the
NPA of the dot in the th row and th column of the test grid

and is the size of the NPA. Likewise, the actual centers
of all the test dots in the grid image are calculated.

IV. EXPERIMENTAL RESULTS

For the proposed distortion-correction procedure, an experi-
mental grid containing a rectangular array of dots of 1-mm
diameter was used. The distance between the dot centers
was chosen as 2.5 mm in horizontal as well as vertical
directions. The small distance between the dots was used in
order to facilitate imaging of a large number of dots from
the endoscope. This is preferred to enhance the accuracy
of the model parameter estimation. An electronic videoen-
doscopy system (Fujinon), which utilizes a CCD camera with
200 000-pixel resolution and three light sources, red, green,
and blue, was used for capturing the images. The captured
images were digitized by a frame grabber and stored in an im-
age buffer. The grid was attached to a copy-stand platform and
the camera of the endoscope was oriented perpendicular to the
grid surface at a distance of 10 mm. After imaging, as shown
in Fig. 1, it was observed that the distance between the test
dot centers decreases as they move away from the distortion
center. This implies that the distortion-correction procedure
must produce an image in which distances between grid dot
centers away from the distortion center are approximately
equal to those which are close to the center.

The digitized image of size 144 110 pixels was binarized
using the histogram thresholding approach by considering the
second valley of the histogram as the threshold point. A total
of 58 dots were extracted for the distortion-correction model
formulation. To estimate the pseudocenters of the test dots
by token matching, a window of size 5 5 pixels was
used. The limiting number was chosen as six, as it conforms
with the dot size and the distance between the dot centers.
The actual centers were calculated by using an integrated
neighborhood search. The deviation of the actual center from
the corresponding pseudocenter for seven test dots is shown in
Table I. It can be observed that the deviation is less than two
pixels. It was found that this error was enough to introduce
significant degradations in the distortion-correction results.

Before computing the expansion polynomial it is necessary
to compute the distortion center of the endoscopic image. The
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Fig. 5. Variation in least total error(Emin) with respect to the order of
expansion polynomial.

distortion center was estimated by using curvature criterion
and was found to be (69, 62) while the coordinate system was
fixed at the bottom left corner of the image. To compensate
for unavoidable errors, a small region (a window of size 55
pixels) around the estimated distortion center was selected, and
a pixel lying within that window was chosen as the distortion
center for which the total error is minimum. To obtain the
expansion polynomial, first of all the degree of polynomial
was ascertained. For this purpose, the relationship between
the degree of polynomial and the least total error Emin was
examined experimentally, and it was found that the variation
in error was negligible for the polynomial of order more
than three, as shown in Fig. 5. We have chosen the order of
expansion polynomial as four. The four expansion coefficients
were obtained by using (9)–(19). The expansion coefficients
were computed from the iterative relation given in (12) for
different values of the convergence rate parameter. The
value of the expansion index was found to be optimum
at 2.3, which decides the weight of theth coefficient. The
rate of convergence of total error for two different values of

is shown in Fig. 6. It can be observed that asincreases,
convergence becomes faster. The number of iterations required
for convergence and the corresponding for different
values of are given in Table II. As decreases, re-
duces while the number of iterations required for convergence
increases. But does not decrease significantly after a
particular value of though the number of iterations
required for convergence increases exponentially. Hence, to
restrict the computation time to make it suitable for online
camera calibration, the value of was chosen as a tradeoff
between the accuracy and the computation time. In the present
experimental setup, was chosen as 0.005. For the set
of expansion coefficients obtained, the relationship between
the distorted radius and the corresponding corrected radius is
shown in Fig. 7. It can be observed that the outer areas of the
distorted image having large radii expand more after distortion
correction. The mean error, representing deviation of the dot
centers from the best fit straight line before and after distortion
correction for typical dot columns in the grid image shown in
Fig. 1, is given in Table III.

The back-mapping coefficients are found by using a finite
number of image dots. For back mapping, the pixel location in
the distorted image corresponding to the corrected center was
found as (74, 45). The corrected image is shown in Fig. 8. It
can be seen that the image gets magnified after correction and
the grid is straightened within practical limits. The magnifi-
cation preserves the information around the distortion center.
In the corrected image the dot centers deviate slightly from
the theoretical straight line because of the initial assumption
of purely radial distortion. Minor errors in the estimation of
the dot centers and the interpolation of neighborhood pixels to
find the information contained in the noninteger pixel locations
also affect the quality of the corrected image. According to
the implementation of the proposed method on a PC (Pentium
166 MHz), it is found that with and the
algorithm converged in 22 iterations (5.95 s). At the same time,
the implementation of the Hideaki’s method [12] on the same
platform with the most appropriate selected set of coefficients

for a polynomial
of order four needed 116 iterations (28.17 s) for
convergence. Hence, it can be seen that there is a considerable
improvement in the computational speed for the distortion-
correction procedure by using the proposed technique.

In the present model, calculation of the model parameters
is independent of the orientation of the test grid. To verify
the proposed model, a grid image captured by tilting the
experimental grid both in the horizontal as well as vertical
planes, as shown in Fig. 9, is corrected using the same ex-
pansion polynomial. The corrected image is shown in Fig. 10.
It can be seen from the corrected image that the computed
polynomial is capable of correcting the distortion in the image
captured in any orientation. The same expansion polynomial
can be used for distortion correction of the images taken by the
videoendoscope until the time the camera lens is not changed
or relocated from the CCD array. According to the physics
of endoscopic imaging, as the distance between the grid and
the camera increases, the image distortion decreases. Typical
endoscopic images are taken within a range of less than 20
mm during clinical procedures. The same distortion-correction
polynomial was applied to several test images captured within
a viewing range of 20 mm, and it was observed that the
corrected images were acceptable for further analysis.

V. DISCUSSION

While performing endoscopy it is important for the en-
doscopist to know the approximate size of the ulcers and
abnormal growths. It is necessary not only for identifica-
tion of the status of the gastrointestinal tract but also to
know the severity of the probable disease. Due to nonlinear
distortion, the outer areas of captured endoscopic images
are compressed more than the inner areas, thus seriously
undermining the inferential capability of an endoscopist to
determine the probable size of the region of interest. While
analyzing the endoscopic images automatically, by employing
software algorithms based on artificial intelligence, distortion
becomes a bottleneck for the spatial quantitative parameter
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Fig. 6. Rate of convergence of the total error for different values of�.

TABLE II
NUMBER OF ITERATIONS REQUIRED FORCONVERGENCE AND THERESPECTIVELEAST TOTAL ERRORS FORDIFFERENT VALUES OF �

Fig. 7. Relationship between the vector magnitudes before and after distor-
tion correction.

extraction. That is why a corrective procedure to eliminate the
distortion of the endoscopic image is absolutely essential.

To demonstrate the effects of the proposed distortion-
correction technique, several gastrointestinal images were
captured and corrected by using the same expansion
polynomial. A typical gastrointestinal image is shown in
Fig. 11 and the corresponding corrected image is shown in
Fig. 12. Similarly, a second distorted image and its corrected
version are given in Figs. 13 and 14, respectively. It can
be noted that the original images were magnified and outer
areas expanded considerably due to the distortion correction.
The corrected images were seen by the expert endoscopists
and the opinions expressed were quite favorable for the visual
observation of the internal structure of the tract. In addition, the
quantitative parameters extracted from the corrected images
were suitable for predicting the status of the gastrointestinal
region, by using artificial intelligence.

VI. CONCLUSION

A novel method for correcting the nonlinear distortion
in endoscopic images has been proposed. The new method
requires a simple procedure, as it is independent of the
orientation of the test grid. The expansion coefficients were
obtained by using least squares estimation and were applied
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TABLE III
MEAN ERROR (DEVIATION OF THE DOT CENTERS FROM THEBEST FIT STRAIGHT LINE IN PIXELS) FOR TYPICAL DOT

COLUMNS IN THE GRID IMAGE SHOWN IN FIG. 1

Fig. 8. Corrected image corresponding to Fig. 1 after back mapping.

Fig. 9. Distorted image of a grid tilted in horizontal as well as vertical
directions.

Fig. 10. Corrected image corresponding to Fig. 9.

to different grid patterns. It was observed that the expansion
polynomial obtained for a particular endoscope camera lens
was capable of correcting the distortion satisfactorily. This
procedure is an essential step for the accurate measurement of

Fig. 11. A typical gastrointestinal image captured by an endoscope.

Fig. 12. Corrected image corresponding to Fig. 11.

Fig. 13. Gastrointestinal image before distortion correction.

the regions of interest in the endoscopic images to facilitate

quantitative parameter extraction for decision making. Further
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Fig. 14. Corrected image corresponding to Fig. 13.

research is in progress to find a relationship between the
expansion coefficients and the distance of the camera lens from
the object. The high-speed response of the proposed algorithm
makes the concept of online camera calibration feasible.
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