
A New Approach for Processing Ranked Subsequence
Matching Based on Ranked Union

Wook-Shin Han
Kyungpook National

University, Korea
wshan@knu.ac.kr

Jinsoo Lee
Kyungpook National

University, Korea
jslee@www-db.knu.ac.kr

Yang-Sae Moon
Kangwon National University,

Korea
ysmoon@kangwoon.ac.kr

Seung-won Hwang
POSTECH, Korea

swhwang@postech.ac.kr

Hwanjo Yu
POSTECH, Korea

hwanjoyu@postech.ac.kr

ABSTRACT
Ranked subsequence matching finds top-k subsequences most sim-
ilar to a given query sequence from data sequences. Recently, Han
et al. [12] proposed a solution (referred to here as HLMJ) to this
problem by using the concept of the minimum distance matching
window pair (MDMWP) and a global priority queue. By using the
concept of MDMWP, HLMJ can prune many unnecessary accesses
to data subsequences using a lower bound distance. However, we
notice that HLMJ may incur serious performance overhead for im-
portant types of queries. In this paper, we propose a novel sys-
tematic framework to solve this problem by viewing ranked subse-
quence matching as ranked union. Specifically, we propose a no-
tion of the matching subsequence equivalence class (MSEQ) and a
novel lower bound called the MSEQ-distance. To completely elim-
inate the performance problem of HLMJ, we also propose a cost-
aware density-based scheduling technique, where we consider both
the density and cost of the priority queue. Extensive experimental
results with many real datasets show that the proposed algorithm
outperforms HLMJ and the adapted PSM [22], a state-of-the-art
index-based merge algorithm supporting non-monotonic distance
functions, by up to two to three orders of magnitude, respectively.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Analysis and
Indexing—Indexing methods; H.3.3 [Information storage and re-
trieval]: Information Search and Retrieval—Search process

General Terms
Algorithm, Performance

Keywords
Time-series data, Ranked subsequence matching, Ranked union

1. INTRODUCTION
Time-series data are of growing importance in data mining and

data warehousing [14, 19]. A time-series is a sequence of real num-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

bers representing values at specific points in time. Typical exam-
ples include music data, stock prices and network traffic data. The
time-series data stored in a database are called data sequences.

Various similarity models have been studied in similar sequence
matching (finding data sequences from a database which are sim-
ilar to a given query sequence). In this paper, we use the simi-
larity model based on the dynamic time warping (DTW) distance
[4]. The DTW distance is one of the most robust and widely used
measures for various applications such as query by humming [24],
image searching [3], and speech recognition [18].

In this paper, we study ranked subsequence matching, identify-
ing top-k subsequences in the database that are similar to a query
sequence by using DTW. The state-of-the-art solution to this prob-
lem is by Han et al. [12] (referred to here as HLMJ). However,
we notice that HLMJ may incur serious performance overhead for
important types of queries. We briefly illustrate HLMJ below to
depict the problems which motivate our solution.

In the index building process, HLMJ divides each data sequence
into disjoint windows, transforms each window into a lower-dimen-
sional data point (say, an f -dimensional point), and stores it as a
leaf entry in the R*-tree. In the ranked subsequence matching pro-
cess, HLMJ first divides a query sequence into sliding windows
and transforms each query window into an f -dimensional query
point. HLMJ maintains a global priority queue to store pairs of
f -dimensional query and data points with their distances. Next,
HLMJ pops a query/data point pair from the priority queue where
their distance is the minimum, then computes a lower bound dis-
tance using those points. If this lower bound distance is greater
than the DTW distance between the query sequence and the top
k-th data subsequence obtained thus far, that pair is pruned. Oth-
erwise the corresponding data subsequence for the data point is ac-
cessed to compute the DTW distance. HLMJ repeats this process
until it finds top-k subsequences. Figure 1 illustrates how HLMJ
works. A data sequence S is divided into disjoint windows (s1,
s2, · · ·), and these windows are transformed into 2D points and
stored in the R*-tree. In query processing, HLMJ divides a query
sequence Q into eight sliding windows (q1 ∼ q8) and transforms
these windows into 2D points. After that, HLMJ pops a pair (q1,
s5) from the global priority queue, retrieves a data subsequence for
s5, and computes the DTW distance.

As a lower bound distance for pruning, HLMJ exploits the minimum-
distance matching-window pair (MDMWP) distance. The MDMWP
for a query sequence and a data subsequence is a matching win-
dow pair, where the distance between the two windows in the pair
is the minimum among all matching window pairs. If there are
r matching windows pairs for a query sequence and a data sub-

457

s1

Data sequence
S

disjoint windows

s2 s3 s4 s5 s6

R1

R2
s1

s2

s3

s4

s5

s6

Query sequence
Q q1

low dimensional transformation

q2

q8

…

sliding
windows

q1

q2

<q1, s3, 2.0>

<q1, s4, 1.2>

<q2, s6, 1.6>
<q1, s2, 1.9>

<q1, s5, 0.2>

<q1, s1, 1.5>

…

(b) Global priority queue

top

(a) f(=2)-dimensional space in R*-tree

s1

Data sequence
S

disjoint windows

s2 s3 s4 s5 s6

R1

R2
s1

s2

s3

s4

s5

s6R1

R2R1

R2
s1

s2

s3

s4

s5

s6s1

s2

s1

s2

s3

s4

s5

s3

s4

s5

s6s6

Query sequence
Q q1

low dimensional transformation

q2

q8

…

sliding
windows

q1

q2

<q1, s3, 2.0>

<q1, s4, 1.2>

<q2, s6, 1.6>
<q1, s2, 1.9>

<q1, s5, 0.2>

<q1, s1, 1.5>

…

(b) Global priority queue

top

(a) f(=2)-dimensional space in R*-tree

Figure 1: An example of HLMJ.

sequence, and (qm, rm) is the MDMWP, then the MDMWP dis-
tance is p

√
r × d(qm, sm)p [12]. In Figure 1 for example, after

popping the next entry (q1, s4) from the global priority queue,
HLMJ computes the MDMWP distance for this entry. Since the
popped entry is (q1, s4), the other matching window pair becomes
(q5, s5), and thus, its distance must be ≥ 1.2 according to the def-
inition of MDMWP. Thus, the MDMWP distance for this pair is
p
√

d(q1, s5)p × 2 = p
√
1.2p × 2. If p = 2, the MDMWP distance

is nearly 1.7. Assume that the DTW distance computed for the first
entry (q1, s5), i.e, the DTW distance between the query sequence
and the top first data subsequence obtained thus far, is 1.5. Thus,
if we want to find only the top-1 data subsequence, the entry (q1,
s4) is pruned without accessing its corresponding data subsequence
since its lower bound distance is greater than 1.5.

However, in HLMJ using MDMWP-based scheduling and a global
priority queue, we observe the following serious performance degra-
dation, which occurs in real datasets as we will see in Section 6.
Figure 2 illustrates one such example, where a query point q5 is
placed in a sparse region while q1 is placed in a dense region. In the
global queue, all matching pairs MP1 of q1 and the data points in
the dense region are placed in the upper part of the queue whereas
such pairs for q5 and the data points in the sparse region are placed
below MP1. Since it pops iteratively from the top of queue, HLMJ
cannot reach MP5 until it finishes the processing of all pairs in
the entire MP1. Meanwhile, accessing MP5 first is highly ef-
fective in quickly increasing a lower bound. For example, when
〈q1, s4〉 is popped, its MDMWP distance is p

√
d(q1, s4)p × 2. In-

stead, if we first access 〈q5, s1〉, its lower bound can grow up to
p
√

d(q1, s4)p + d(q5, s1)p such that d(q5, s1) � d(q1, s4) � 0,
since the matching window pairs for q1 and q5 are s4 and s1, re-
spectively. However, since there can be as many query points as
there are sliding windows, it is non-trivial to extend HLMJ to 1)
optimize the access order of query points and 2) derive a tight lower
bound. Furthermore, since it is highly likely to grow very slowly as
well, the MDMWP-distance can be of little use for pruning in this
example. In the worst case, even if the selectivity of a query is very
low, the algorithm might end up accessing too many candidates,
incurring even higher cost than sequential scan.

Alternatively, one may consider applying a general ranked re-
trieval algorithm, such as TA-family algorithms [5, 6, 9, 20]. How-
ever, unlike these algorithms which assume that ranking functions
are monotonic, the scoring function DTW and its lower bound
function LBPAA [24] are non-monotonic. Furthermore, only lower
bound distances are computed at the index level since lower-dimen-
sional data points are stored in the R*-tree. Thus, the corresponding
data subsequences must be accessed additionally to calculate exact

=4

Query sequence Q

sliding
windows

q5

q1

MP1

MP5

low dimensional
transformation

tops1

(a) Sliding windows of a query

(b) Query windows in
low-dimensional space.

(c) Global priority queue.

s2
s3

s4
s5

s40

…

<q5,s1>
<q5,s2>
<q5,s3>

<q1,s4>
<q1,s5>

<q1,s40>

…
…

…
q1

q5

q2

…

…

=4

Query sequence Q

sliding
windows

q5

q1

MP1

MP5

low dimensional
transformation

tops1

(a) Sliding windows of a query

(b) Query windows in
low-dimensional space.

(c) Global priority queue.

s2
s3

s4
s5

s40

…

<q5,s1>
<q5,s2>
<q5,s3>

<q1,s4>
<q1,s5>

<q1,s40>

…
…

…
q1

q5

q2

…

…

q1

q5

q2

…

…

Figure 2: Example of the MDMWP-based scheduling problem.

distances. More recently, algorithms for supporting non-monotonic
ranking functions have been studied [22]. We adopt the best algo-
rithm of [22] as another baseline approach. However, as we will see
in Experiment 6, this method suffers from bad performance when-
ever the number of disjoint query windows > 3.

In this paper, we propose the first systematic framework which
viewes a ranked subsequence matching query as a ranked union
query over ω ranked subqueries, where ω is the size of a sliding
window, and ranked union merges the results from the subqueries
and returns top-k results. Specifically, we propose the novel notion
of matching subsequence equivalence class (MSEQ), with which
we partition the query points into ω MSEQs so that each MSEQ
consists of only disjoint query windows. If we regard each query
point as an f -dimensional attribute, then each equivalence class
MSEQi corresponds to a ranked subquery having |MSEQi| f -
dimensional attributes. Instead of maintaining one global queue,
we allocate a priority queue for each query point, so that each
f -dimensional attribute has a dynamically generated and sorted
list. This novel interpretation enables us to carefully control the
scheduling order for the consumption of the priority queues for
each subquery, i.e., sophisticated scheduling over the priority queues.

This interpretation, however, presents several challenging ques-
tions. 1) How can we derive a lower bound for ranked union? 2)
What is the optimal access order for selecting subqueries? 3) If a
certain subquery is selected, which priority queue should be pro-
cessed? More specifically, how can we avoid the MDMWP-based
scheduling problem? To answer the first two questions, we propose
an execution model for ranked union and derive a new lower bound
called MSEQ-distance under this execution model. We propose a
cost-aware, density-based scheduling to approach the third ques-
tion. This way, query points having relatively lower density can be
processed quickly. The reason we consider cost-awareness is that it
would be better to select a priority queue PQ1 if the disk I/O cost
of accessing the subsequences corresponding to the entries of PQ1

is much lower than other priority queues.
Our contributions are as follows: 1) We propose the first frame-

work to view ranked subsequence matching as ranked union us-
ing (a) a novel notion of matching subsequence equivalence class
(MSEQ) and (b) a new lower bound distance, the MSEQ-distance;
This can also be viewed as a generalized framework for ranked
subsequence matching. 2) By doing so, we show that the state-of-
the-art solution, HLMJ using MDMWP-based scheduling with a

458

global priority queue [12] may lead to severe performance degrada-
tion. 3) To remedy this problem, we propose a cost-aware density-
based scheduling technique. 4) Extensive experimental results with
many real datasets show that the proposed algorithm outperforms
(a) HLMJ and (b) the adapted PSM [22], a state-of-the-art index-
based merge algorithm supporting non-monotonic distance func-
tions, by up to two to three orders of magnitude.

The rest of this paper is organized as follows. Section 2 reviews
DTW and HLMJ. Section 3 presents translation of the ranked sub-
sequence matching query into the ranked union query. In Section
4, we present a cost-aware density-based scheduling method that
avoids the MDMWP-based scheduling problem by minimizing the
cost of accessing entries from priority queues. Section 5 presents
an overview of related work, and Section 6 presents the results of
performance evaluations. Section 7 summarizes and concludes the
paper.

2. BACKGROUND
Table 1: Summary of notation.

Symbols Definitions

Ssid A sequence whose identifier is sid

Len(S) Length of sequence S

S[i] The i-th entry of sequence S (1≤i≤Len(S))
S[i : j] A subsequence including entries from the i-th one to the j-th

ω Length of the sliding/disjoint window
si The i-th disjoint window of sequence S

〈〉 empty sequence
Rest(S) A subsequence of S, including entries from the second

We first define the DTW distance, which is recursively defined
as follows. Given two sequences S and Q of the same length,
there exist three cases in computing the minimal cost of possible
matches of postfixes of S and Q: 1) matching postfixes of S and Q
(=DTWρ(Rest(S),Rest(Q))); 2) matching Q with the postfix of
S (=DTWρ(Rest(S),Q)); or 3) matching S with the postfix of Q
(=DTWρ(S,Rest(Q))) [1].

DTWρ(S,Q) = p

√√√√√D(S[1], Q[1]) +min

⎧⎨
⎩
DTWρ(Rest(S), Rest(Q))p

DTWρ(Rest(S), Q)p

DTWρ(S,Rest(Q))p

DTWρ(〈〉, 〈〉) = 0, DTWρ(S, 〈〉) = DTWρ(〈〉, Q) = ∞
D(S[i],Q[j]) =

{ |S[i]−Q[j]|p if |i− j| ≤ ρ
∞ otherwise

(1)

Given two sequences S and Q of the same length, DTW enables
“nonlinear” alignments between S and Q. Figure 3(a) illustrates
the strength of DTW. Specifically, in Figure 3(b), a cell (i, j) in the
matrix represents an alignment between a query point Q[i] and a
data point S[j]. The goal is to find such a path with minimal warp-
ing cost, i.e., the warping path. Here, the warping path consists of
dark cells in the matrix. In order to prevent pathological warpings
where a small portion of one sequence matches with a large por-
tion of another sequence [13], we limit the scope of the warping
path using the warping width ρ [1, 12, 13, 24], which is known
as the Sakoe-Chiba band constraint, where matrix entry (i, j) be-
comes ∞ if |i − j| > ρ. Thus, only shaded cells in the matrix in
Figure 3(b) are computed. Note that, the DTW distance becomes
the Lp distance when ρ = 0.

In computing DTWρ, an element S[i] can match one of Q[i−ρ :
i+ρ]. Thus, for each element in Q, we store the maximum and the

Q

(a) DTW alignments.

Q

ρ

(b) Matrix for DTW.

Figure 3: Illustration of DTW.
minimum values from Q[i − ρ : i + ρ] and thus compute a lower
bound distance using pairwise computation without using expen-
sive dynamic programming. Since we have two values for each
query element Q[i], these sequences are called envelopes [13]. Fig-
ure 4 illustrates the lower and upper envelopes of Q. The shaded
area shows the lower-bound distance between Q and S. The con-
cepts of the query envelope and the lower bound distance are for-
mally described in subsequent paragraphs.

Query
sequence

Q

Data
sequence

S

Upper envelope U

Lower envelope L

: LBKeogh

Query
sequence

Q

Data
sequence

S

Upper envelope U

Lower envelope L

: LBKeogh

Figure 4: Example of envelopes and LBKeogh.

We now define the notion of query envelope [24], which can be
formally defined as below:

Definition 1. The query envelope of a query Q, E(Q) consists
of the upper and lower envelopes of Q and represents the region
defined between the upper envelope U and the lower envelope L.
The i-th element (L[i], U [i]) in E(Q) is defined as follows:

L[i] = min
−ρ≤r≤ρ

(Q[i+ r]), U [i] = max
−ρ≤r≤ρ

(Q[i+ r])

The tightest lower bound of DTW, between a query envelope
E(Q) and a data sequence S, is known as LBKeogh [13] below.

LBKeogh(E(Q), S) = p

√√√√√
N∑
i=1

⎧⎨
⎩

|S[i]− U [i]|p if S[i] > U [i]
|S[i]− L[i]|p if S[i] < L[i]

0 otherwise

We now discuss piecewise aggregate approximation (PAA) [13,
23], a technique to reduce the dimensionality of a data sequence
S of length N down to f (f
N), by dividing the sequence of
length N into f equal sized segments then storing the mean values.
We notate PAA of such S, P(S), as a time-series [S[1],...,S[f]] of
length f , where

S[i] = f
N

N
f

i∑
j=N

f
(i−1)+1

S[j].

Similarly, the PAA of the query envelope E(Q)can be computed,
by applying PAA to the upper and lower query envelopes. That is,
the i (1 ≤ i ≤ f)-th element (L[i], U [i]) in P(E(Q)) is:

L[i] = f
N

N
f

i∑
j=N

f
(i−1)+1

L[j], U [i] = f
N

N
f

i∑
j=N

f
(i−1)+1

U [j].

459

As a lower bound that can be used at the index level, LBPAA

[24] is defined as Eq. (2), which is the distance between the query
envelope P(E(Q)) and the PAA of the data sequence P(S). Figure
5 illustrates the PAAs of a query envelope and the a data sequence
and LBPAA.

p

√√√√√ f∑
i=1

N
f

⎧⎨
⎩

|S[i]− U [i]|p if S[i] > U [i]

|S[i]− L[i]|p if S[i] < L[i]
0 otherwise

(2)

PAA of the upper
envelope U (P(U))

PAA of the lower
envelope L (P(L))

P(S)

: LBPAA

PAA of the upper
envelope U (P(U))

PAA of the lower
envelope L (P(L))

P(S)

: LBPAA

Figure 5: Illustration of LBPAA

To guarantee no false dismissal under DTW, we have the follow-
ing lemma [24].

Lemma 1. Given two sequences Q and S of the same length
and a warping width ρ, the following equation holds:

DTWρ(Q,S) ≥ LBKeogh(E(Q), S) ≥ LBPAA(P(E(Q)),P(S))

Now, we define the MDMWP-distance in Definition 2 which
can be used for pruning during ranked subsequence matching, and
Lemma 2 shows the lower boundness of the MDMWP-distance.

Definition 2. [12] Given a query envelope E(Q)and a data sub-
sequence S[i : j], if MDMWP of P(E(Q))and P(S[i : j]) is (P(E
(qm)), P(sm)), then the MDMWP-distance of P(E(Q))and P(S[i
: j]) is defined as p

√
r× LBPAA(P(E(qm)),P(sm)) where r =

�(Len(Q) +1)/ω − 1. That is, r is the minimum number of dis-
joint windows in S[i : j] regardless of the starting offset i.

Lemma 2. [12] Given a query envelope E(Q) and a data sub-
sequence S[i : j], the following Eq. (3) holds:

DTWρ(Q,S[i : j]) ≥ MDMWP−distance(P(E(Q)),P(S[i : j])) (3)

3. RANKED UNION QUERY PROCESSING
FRAMEWORK

We propose a systematic framework for ranked union. We first
give a formal definition of our problem below. As in [12], in order
to match data subsequences of length l �= |Q|, one can scale Q
with reasonable scale factors.

Problem Definition 1. [12] Given n data sequences S1, ..., Sn

of variable lengths, a query sequence Q, a number k, and a warp-
ing width ρ, find k-nearest data subsequences for Q by using DTWρ.

We first give an insight into our framework. We notice that we
can partition sliding query windows into several groups since 1)
query windows in the same group match the same correspond-
ing subsequences, and 2) query windows in different groups do
not. Consider the sliding windows in Figure 6. Sliding windows
P(E(q2)) and P(E(q6)) match the same corresponding data sub-
sequences, but P(E(q1)) and P(E(q2)) do not match. That is, if
P(E(q2)) matches a disjoint window S[i + 1 : i + 4], P(E(q6))
matches a disjoint window S[i + 5 : i + 8]. Both match the same
subsequence S[i : i + 10]. For each group, we can find top-k
matching data subsequences for the query windows in this group.

Thus, if we select top-k results from the results of all groups, these
results become the answer to the ranked subsequence matching.
Furthermore, if we can derive a lower bound for each group during
execution, we can provide a tighter lower bound than MDMWP.
We present formal concepts in the next subsections where such
the group is formalized using the concept of the equivalence class,
since any two windows in the same group are equivalent to each
other in that both match the same data subsequence.

S[i+1:i+4]

S[i:i+10]

Query sequence Q

Data sequence S

P(E(q1))

P(E(q2))

P(E(q6))

(Len(Q)=11)

S[i+5:i+8]

=4

sliding
windows

…

…

S[i+1:i+4]

S[i:i+10]

Query sequence Q

Data sequence S

P(E(q1))

P(E(q2))

P(E(q6))

(Len(Q)=11)

S[i+5:i+8]

=4

sliding
windows

…

…

Figure 6: Matching window pairs and their corresponding data
subsequences.

3.1 Translating into Ranked Union Queries
Our framework uses the windowing scheme proposed from Dual-

Match [17]– This scheme divides data sequences into disjoint win-
dows of the same size ω. Data windows are then transformed into
lower-dimensional data points and indexed to an R*-tree. To sup-
port DTW, we first construct the query envelope E(Q) for a query
sequence Q, divide the query envelope into sliding windows E(qi)
of size ω, and transform each query window E(qi) into a lower-
dimensional window P(E(qi)). In the remainder of this paper, we
will use the terms “window,” “enveloped window,” and “point” in-
terchangeably unless necessary for clarity.

Our framework views a ranked subsequence matching query as
a ranked union query of subqueries, where each subquery contains
only disjoint windows. This enables us to formally analyze the per-
formance issues of HLMJ and develop new techniques for solving
these performance issues. Definition 3 provides a formal definition
of the ranked union query.

Definition 3. Given a query sequence Q, a ranked union query
over ranked subsequence subqueries merges results from all sub-
queries and returns k-nearest data subsequences for Q.

Definition 4. Let QS be the set of all sliding windows for a
query envelope P(E(Q)). Let ∼= be an equivalence relation over
QS such that P(E(Q[i : i+ ω − 1]))∼= P(E(Q[j : j + ω − 1]))
if and only if |i− j| mod ω = 0.

The equivalence class of P(E(Q[i : i+ ω − 1]))is a set of query
windows which are equivalent to (i.e., ∼=) P(E(Q[i : i + ω −
1])). This class is called a matching subsequence equivalence class
(MSEQ) since all windows in an MSEQ match the same data sub-
sequences. For convenience of notation, we use MSEQi (1 ≤
i ≤ ω) to denote the equivalence class of P(E(Q[i : i+ ω − 1])).
MSEQi,j denotes a query window P(E(Q[(i + (j − 1) × ω) :
(i + (j − 1) × ω) + ω − 1])). Consider a query sequence Q
in Figure 2. The length of the query sequence is 11, and ω is
set to 4. The equivalence class of P(E(Q[1 : ω])), denoted as
[P(E(Q[1 : ω]))]∼=, consists of two windows, {P(E(Q[1 : ω])),
P(E(Q[5 : ω]))}. In this example, there exist four equivalence
classes under ∼=, and each class has two windows.

In the proposed framework, we try to evaluate a ranked sub-
sequence matching query using the corresponding ranked union

460

query. To do this, we need to show that both queries produce the
same result, that is, their query results are equivalent to each other.
The following lemma shows this equivalence.

Lemma 3. The evaluation result of a ranked subsequence match-
ing query using sliding windows of size ω is equivalent to that of
the ranked union query over ω ranked subsequence matching sub-
queries, where each subquery corresponds to an MSEQ.

PROOF: To evaluate a ranked subsequence matching query cor-
rectly, we need to find k-nearest data subsequences by considering
all possible data subsequences. Also, to guarantee that a ranked
union query of Definition 3 produces the same result by the ranked
subsequence matching query, we need to show that the results of
subqueries of MSEQs cover all possible data subsequences. We
thus prove every data subsequence is a result of one subquery (i.e.,
an MSEQ) of the ranked union query.

We prove it using Figure 7. We first denote the nth sliding win-
dow of a query Q by qn and the mth disjoint window of a data
sequence S by sm. As illustrated in Figure 7, suppose that the jth

query window MSEQi,j of MSEQi matches with the mth data
disjoint window sm. We note here that MSEQi,j corresponds
to the swn(i, j)th sliding window qswn(i,j) , where swn(i, j) =
(j−1)×ω+ i, and swn stands for sliding window number. Then,
the starting offset of the subsequence corresponding to this match-
ing window pair is smaller by swn(i, j) compared to the offset of
sm. That is, the start offset of the matching data subsequence is (m-
1)×ω-(swn(i, j)-1)+1, and the subsequence itself is S[(m-1)×ω-
(swn(i, j)-1)+1:(m-1)×ω-(swn(i, j)-1)+Len(Q)]. According to
Definition 4, we have ω MSEQs, i.e., 1 ≤ i ≤ ω. Thus, every sub-
sequence of S with Len(Q) is a result of MSEQi (1 ≤ i ≤ ω).
This completes the proof. �

P(sm)

S[(m-1)�ω–(swn(i,j)–1)+1:(m–1)�ω–(swn(i,j)–1)+Len(Q)]

MSEQi,j

P(sm+1)

MSEQi,j+1

swn(i, j)

Data
Sequence S

Query sequence Q

Figure 7: Matching window pairs.

3.2 Processing of Ranked Union Query
With our problem translated into a ranked union query problem,

we now discuss an efficient execution model.

3.2.1 Extended Iterator Model
To process a ranked union query, we generate a query execu-

tion plan (QEP) using physical operators. Algorithms for execut-
ing such a plan can be constructed using the iterator model [8] com-
monly used in query processors of commercial DBMSs. In the iter-
ator model, the operators composing the QEP receive a tuple from
the child operators, which is then passed on to their parent operator
if necessary. To obtain one tuple at a time from each operator, the
operator provides the GetNext() function as the interface. Each
operator also provides the Start() and End() functions to initial-
ize and finalize the operator. In our framework, a subsequence is
modeled as a tuple.

In processing a ranked query, the scheduling order for consum-
ing the priority queues from child nodes significantly affects the
overall performance. Thus, we need to carefully control the schedul-
ing of the priority queue selection, which motivates us to extend
the iterator model. For such optimization, whenever each operator

consumes an entry from a priority queue, it returns a lower bound
as a “scheduling hint” even when no subsequence is ready to be
returned. This enables finer granular scheduling.

Definition 5. Each operator in the extended iterator model re-
turns a pair of 〈status, obj〉. Status is one of the following values:

• TUPLE: obj contains the next result tuple.

• LB: The next result tuple is yet to be found, and obj contains
the lower bound of the next result tuple instead.

• EOR: all tuples of the child operator are consumed.

3.2.2 Execution Model of Ranked Union
Our execution model provides two novel operators which follow

the extended iterator model: 1) multi-way ranked union operator
denoted as ∪r and 2) ranked subsequence matching subquery op-
erator denoted as Φ. ∪r merges the results from ω subqueries and
returns top-k subsequences. ∪r maintains the current top-k subse-
quences obtained thus far along with the current lower bounds for
the subqueries. Thus, ∪r stops the processing of subqueries when-
ever the distance of the top k-th subsequence obtained so far ≤ all
the current lower bounds of the subqueries. Φi (corresponding to
the i-th subquery) allocates a priority queue PQi,j for each query
window MSEQi,j in MSEQi, which maintains matching pairs
of MSEQi,j with data points or MBRs in distance order.

Figure 8 shows an example of how the ranked subsequence query
Q in Figure 2 is executed using ranked union. Since there are four
MSEQs for Q, ∪r has four child operators, each of which cor-
responds to an MSEQ. Φ1 has two priority queues, PQ1,1 and
PQ1,2. ∪r selects one child operator Φi, and Φi then selects a
priority queue PQi,j to find a matching window pair of MSEQi,j

with a data point or an MBR. If the matching window pair con-
tains a data point, Φi computes a lower bound distance called the
MSEQ-distance. If this lower bound distance is greater than the
DTW distance between the query sequence and the top k-th data
subsequence obtained thus far, that pair is pruned. Otherwise the
corresponding data subsequence for the data point is accessed to
compute the DTW distance. We repeatedly call ∪r until it finds
top-k subsequences.

More specifically, the main algorithm invokes ∪r .GetNext() to
retrieve top-k subsequences one at a time. ∪r.GetNext() chooses
one of the subqueries and invokes Φi.GetNext(). InΦi.GetNext(),
we choose one of its priority queues, based on a scheduling strat-
egy we will discuss later. Entries in the chosen queue are then
consumed to return either a new tuple or a new lower bound.

=4
Query

sequence
Q

(a) MESQs of a query

<P(E(q1)), P(s4)>

…
…

MSEQ1,1

(=P(E(q1)))
MSEQ1,2

(=P(E(q5)))

…

PQ1,1 PQ1,2

r

Φ1 Φ2 Φ3 Φ4

(b) Operator tree composed of r

and Φis.

MSEQ1

MSEQ2

MSEQ3

MSEQ4

<P(E(q1)), P(s5)>

<P(E(q1)), P(s40)>

<P(E(q5)), P(s1)>
<P(E(q5)), P(s2)>
<P(E(q5)), P(s3)>

MSEQ2,1

(=P(E(q2)))
MSEQ2,2

(=P(E(q6)))

MSEQ3,1

(=P(E(q3)))
MSEQ3,2

(=P(E(q7)))

MSEQ4,1

(=P(E(q4)))
MSEQ4,2

(=P(E(q8)))

=4
Query

sequence
Q

(a) MESQs of a query

<P(E(q1)), P(s4)>

…
…

MSEQ1,1

(=P(E(q1)))
MSEQ1,2

(=P(E(q5)))

…

PQ1,1 PQ1,2

r

Φ1 Φ2 Φ3 Φ4

(b) Operator tree composed of r

and Φis.

MSEQ1MSEQ1

MSEQ2MSEQ2

MSEQ3MSEQ3

MSEQ4MSEQ4

<P(E(q1)), P(s5)>

<P(E(q1)), P(s40)>

<P(E(q5)), P(s1)>
<P(E(q5)), P(s2)>
<P(E(q5)), P(s3)>

MSEQ2,1

(=P(E(q2)))
MSEQ2,2

(=P(E(q6)))

MSEQ3,1

(=P(E(q3)))
MSEQ3,2

(=P(E(q7)))

MSEQ4,1

(=P(E(q4)))
MSEQ4,2

(=P(E(q8)))

Figure 8: Illustration of the execution model.

Our execution model, together with the concept of the MSEQ,
enables us to significantly prune the index search space of ranked
union. SincePQi,j of Φi maintains all matching pairs to be popped
in the order of distances, we can then compute a lower bound of the
distance between the query sequence and the corresponding subse-
quence in advance. To further illustrate this concept, we provide
Definition 6 and Lemma 4.

461

Definition 6. Suppose that the current top entry of a priority
queue PQi,j of Φi contains a matching pair of MSEQi,j and
objj . MINDIST is a lower bounding distance between an MBR and
a transformed window [12]. Then, the MSEQ-distance between

MSEQi,j and objj is p

√∑|MSEQi|
j=1 D(MSEQi,j , objj)

p,

where D =

{
MINDIST , if objj is an MBR
LBPAA , if objj is a leaf entry.

Lemma 4. Suppose a matching pair mp is to be popped from
a priority queue PQi,j of Φi such that mp contains a leaf entry,
and its corresponding subsequence S[a : b] has not been retrieved
yet. Then, DTWρ(Q,S[a : b]) ≥ MSEQ-distance(mp).

PROOF: By Lemma 2, we have the following inequality.

DTWρ(Q, S) ≥ LBPAA(P(E(Q)),P(S[a : b]))

Since the data subsequence S[a : b] matches MSEQi, S[a : b]
must include |MSEQi| disjoint windows, (possibly null) subse-
quences sh (at the head), and st (at the tail). Thus, S[a : b] can be
represented as shs1...s|MSEQi|st. Similarly, E(Q) can be repre-
sented as E

(
qhqi...q(i+|MSEQi|−1)qt

)
. Thus, we have

LBPAA(P(E(Q)),P(S[a : b])) =

LBPAA(P(
E
(
qhqi...q(i+|MSEQi|−1)qt

))
,P(

shs1...s|MSEQi|st
)
)

Here, if we omit the two matching subsequence pairs, (E(qh), sh)
and (E(qt), st), from the above equation, we have the following
inequality, since LBPAA is a monotonic increasing function of the
sequence length:

≥ LBPAA(P(
E
(
qi . . . q(i+|MSEQi|−1)

))
,P(

s1 . . . s|MSEQi|
)
)

=
p

√√√√|MSEQi|∑
k=1

LBPAA(MSEQi,k,P(sk))
p

Since S[a : b] has not been retrieved yet, the distance of the top
entry of PQi,k, (= D(MSEQi,k, objk)) ≤ LBPAA(MSEQi,k

,P(sk)), where k �= j. Then, the following equations hold:

≥ p

√√√√|MSEQi|∑
k=1

{D(MSEQi,k, objk))
p , if k �= j

LBPAA (mp)p , if k = j

= MSEQ-distance(mp) �

The following Lemma 5 shows that the MSEQ-distance is at
least as tight as the MDMWP-distance when MDMWP-based schedul-
ing is used for our ranked union framework.

Lemma 5. Suppose that MDMWP-based scheduling is used,
and that a matching pair (MSEQi,j ,P(sk)) is to be popped from
a priority queue PQi,j of Φi where its corresponding subsequence
S[a : b] has not been retrieved yet. Then, MSEQ-distance (MSEQi,j ,
P(sk)) ≥ MDMWP-distance(MSEQi,j ,P(sk)).
PROOF: The MDMWP-distance of a matching pair (MSEQi,j ,P(sk))

is defined as p
√�(Len(Q) + 1)/ω − 1×LBPAA(MSEQi,j ,P(sk)).

First, |MSEQi| ≥ �(Len(Q)+1)/ω−1. Next, since MDMWP-
based scheduling is used, LBPAA(MSEQi,j , P(sk)) is less than
or equal to the distance of the current top entry in PQi,k.Thus,
MSEQ-distance(MSEQi,j ,P(sk))≥ MDMWP-distance(MSEQi,j ,
P(sk)). �

Now, we explain how to select one of the subqueries of Φi. To
minimize the cost of the ranked union execution model, any unnec-
essary Φi.GetNext() invocations must be avoided. We have the
following Lemma 6 for this purpose.

Lemma 6. Let CLBi be a current lower bound for Φi. To
minimize the total number of Φ.GetNext() invocations, ∪r must
choose Φj such that j = argminω

i=1(CLBi).

PROOF: Let δcur represent the DTWρ distance between the query
sequence and the top k-th data subsequence obtained so far. Until
δcur converges to the distance between the query sequence and the
actual top-kth subsequence, the termination condition minω

i=1 CLBi

≥ δcur does not hold. This condition cannot be reached without se-
lecting Φj such that j = argminω

i=1(CLBi). �

Algorithm for ∪r .Start(): ∪r maintains three global variables:
δcur, candMinQ∪r , and CLBs. δcur represents the DTW dis-
tance between Q and the top k-th subsequence obtained so far.
candMinQ∪r is implemented as a minimum priority queue whose
entry is a candidate subsequence. CLBs is a set of current lower
bounds of subqueries. Initially, since there is no candidate obtained
so far, δcur is set to ∞, candMinQ∪r is set to empty, and each
CLBi is set to zero. We then call Start() of each child Φi of ∪r .
Algorithm for Φi.Start(): In order to find the nearest leaf en-
tries (i.e., f -dimensional points) for each window MSEQi,j , Φi

allocates a minimum priority queue PQi,j for each query window
in Φi. An entry in PQi,j is in the form of a triple 〈MSEQi,j ,
obj, dist〉. Here, MSEQi,j and obj are a matching pair where
obj is either a subsequence, a leaf entry, a leaf node, or a non-leaf
node; dist is the distance between the matching pair. Φi also main-
tains a local minimum priority queue candMinQΦi to store top-k
candidates for Φi. Φi.Start() pushes each pair of MSEQi,j and
the root node MBR annotated with their MINDIST distances.
Algorithm for ∪r.GetNext() : If the distance of the top en-
try in candMinQ∪r≤ all CLBi (1 ≤ i ≤ ω), we return a sub-
sequence as a tuple by popping the top entry of candMinQ∪r .
Next, we select a subquery Φi according to Lemma 6. Then, we
invoke Φi.GetNext(). If Φi generates a subsequence (i.e., status
is equal to TUPLE), we update the lower bound of CLB i.dist
with obj.dist and push the subsequence into the candMinQ∪r

if obj.dist ≤ δcur. If Φi generates a new lower bound, we up-
date the lower bound of CLB i.dist with obj.dist. If Φi returns
EOR, we remove CLB i from CLBs since Φi will return no more
candidates. (A detailed algorithm is in the Appendix in [11]).
Algorithm for Φi.GetNext(): We denote as MSEQ-distnext,
the MSEQ-distance for the entry to be popped next from a PQi,j

in Φi, i.e, the lower bound distance for the entry to be popped
next. If candMinQΦi .Top().dist (=the distance of the top entry
of candMinQΦi) > δcur and so is MSEQ-distnext, we can guar-
antee that Φi does not contribute in generating top-k candidates. If
candMinQΦi .Top().dist ≤ MSEQ-distnext, we pop an entry from
candMinQΦi and return it as a tuple; otherwise, we pop an entry
from one of the priority queues using SelectPriorityQueue().
Here, an entry contains either a node or a leaf entry. We then per-
form one of the following actions depending on the type of the pair:
• matching pair with a leaf/non-leaf node: Retrieve the entries in

the node and push the pairs of these entries along with the query
windows annotated with their MSEQ-dist distances into the prior-
ity queue. Here, pairs whose MSEQ-dist > δcur are prunned.
• matching pair with a leaf entry: Retrieve the matching subse-

quence and compute the LBKeogh and DTWρ distances. If both
distances ≤ δcur, push back to the priority queue.
Lastly, we compute MSEQ-distnext and return a new lower bound
value to ∪r. (A detailed algorithm is in the Appendix in [11]).
Example: Figure 9 illustrates how our rank union framework oper-
ates using an example, where a data sequence S of length 27 and a
query sequence Q of length 11 are divided into disjoint and sliding
windows of size ω = 4. Suppose that k is set to 1. As illustrated in
Figure 9(a), S is divided into six disjoint windows {s1, · · · , s6},

462

ppp

PQ1,1

< P(E(q1)), RN, 0.0>

< P(E(q5)), RN, 0.0>

PQ1,2

< P(E(q5)), R2, 0.0>

< P(E(q5)), R1, 3.0>

< P(E(q5)), P(s6), 1.6>

< P(E(q5)), R1, 3.0>

< P(E(q5)), P(s5), 3.3>

< P(E(q5)), P(s4), 3.4>

<S’, 2.2><S’, 2.2>

1. after 1 pop

δcur = ∞

< P(E(q5)), R1, 3.0>

< P(E(q5)), P(s5), 3.3>

< P(E(q5)), P(s4), 3.4>

√3.0 p + 0.0 p

candMinQΦ1

√0.0 p + 0.0 p

2. after 1 pop

δcur = ∞

√1.6 p + 0.0 p

3. after 1 pop

δcur = 2.2

4. after 1 pop from candMinQΦ1,
return <S’, 2.2> to r

candMinQΦ1.Top().dist < MSEQ-distnext

candMinQΦ1.Top().dist = 2.2

(c) Changes to PQ1,j and candMinQΦ1 over time.

MSEQ-distnext =

R1 R2

(a) An R*-tree and its search space.

matching pair dist. matching pair dist.
<P(E(q1)), RN> 0.0 <P(E(q5)), RN> 0.0
<P(E(q1)), R1> 0.0 <P(E(q5)) , R1> 3.0
<P(E(q1)), R2> 0.0 <P(E(q5)) , R2> 0.0
<P(E(q1)), P(s1)> 1.5 <P(E(q5)) , P(s1)> 4.6
<P(E(q1)), P(s2)> 1.9 <P(E(q5)) , P(s2)> 4.8
<P(E(q1)), P(s3)> 2.0 <P(E(q5)) , P(s3)> 3.6
<P(E(q1)), P(s4)> 1.2 <P(E(q5)) , P(s4)> 3.4
<P(E(q1)), P(s5)> 0.2 <P(E(q5)) , P(s5)> 3.3
<P(E(q1)), P(s6)> 3.9 <P(E(q5)) , P(s6)> 1.6

matching pair dist. matching pair dist.
<P(E(q1)), RN> 0.0 <P(E(q5)), RN> 0.0
<P(E(q1)), R1> 0.0 <P(E(q5)) , R1> 3.0
<P(E(q1)), R2> 0.0 <P(E(q5)) , R2> 0.0
<P(E(q1)), P(s1)> 1.5 <P(E(q5)) , P(s1)> 4.6
<P(E(q1)), P(s2)> 1.9 <P(E(q5)) , P(s2)> 4.8
<P(E(q1)), P(s3)> 2.0 <P(E(q5)) , P(s3)> 3.6
<P(E(q1)), P(s4)> 1.2 <P(E(q5)) , P(s4)> 3.4
<P(E(q1)), P(s5)> 0.2 <P(E(q5)) , P(s5)> 3.3
<P(E(q1)), P(s6)> 3.9 <P(E(q5)) , P(s6)> 1.6

(b) Matching pair distances.

LBPAA

MINDIST

R1 R2

P(s1)

RN R1

R2R1

R2

P(s2) P(s3) P(s4) P(s5) P(s6)

P(s1)

P(s2)

P(s3)

P(s4)

P(s5)

P(s6)

P(E(q1))
P(E(q5))

Figure 9: An example of the ranked union framework.

and each window of size 4 is transformed into a lower-dimensional
data point (say, a 2D point). The points are indexed in an R*-tree
with two MBRs– MBR R1 with {P(s1),P(s2),P(s3)} and MBR
R2 with {P(s4),P(s5), P(s6)}. The root node RN consists of
these two MBRs. Figure 9(c) describes the changes in PQ1,j and
candMinQΦ1 over time. We illustrate two query points, q1 and
q5, and assume SelectPriorityQueue() always chooses PQ1,2.
Since ω = 4, MSEQ1,1 = P(E(q1)) and MSEQ1,2 = P(E(q5)),
as shown in Figure 8. Note that the ranked union framework can
terminate the processing much earlier than HLMJ, i.e., after only 4
pops as opposed to 12 pops required by HLMJ!

• initial state: PQ1,1 and PQ1,2 are initialized with the pairs of
RN withP(E(q1))and P(E(q5)), annotated with their MINDISTs.
That is, 〈P(E(q1)), RN, 0.0〉 and 〈P(E(q5)), RN, 0.0〉 are inserted
into PQ1,1 and PQ1,2. Initially, candMinQΦ1 is empty.

• after 1 pop: After 〈P(E(q5)), RN, 0.0〉 is popped, it is expanded
into P(E(q5))× {R1, R2}, which are inserted back into PQ1,2.

• after 2 more pops: After 〈P(E(q5)), R2, 0.0〉 is popped, it is ex-
panded into {P(E(q5))}}×{{P(s4),P(s5),P(s6)}, which are in-
serted back into PQ1,2. Next, 〈P(E(q5)),P(s6), 1.6〉 is popped.
Since P(s6) is a leaf entry, we retrieve the corresponding subse-
quence S′ from the database, which then is inserted into candMinQΦ1 .

• after 1 more pop: Since candMinQΦ1 .Top().dist< MSEQ-distnext
(i.e., 2.2 < p

√
3p), we pop an entry from candMinQΦ1 and return

it to ∪r as a tuple. �

Now, we explain how to select a priority queue using SelectPri-
orityQueue(). Although DTW and LBPAA distances themselves
are not monotonic, our proposed translation to the ranked union
framework enables the adoption of scheduling strategies developed
for ranking queries, such as the scheduling heuristics of [10]. We
thus adopt one such strategy for choosing a priority queue PQi,j

where the difference in the distances between the last top entry and
the current top entry is the maximum.

Meanwhile, implementing MDMWP-based scheduling may in-
cur serious performance degradation when some query points are

placed in dense regions while other points are placed in sparse re-
gions, as explained in Section 1. This observation motivates us to
develop a density-based scheduling method, which we describe in
the next section.

4. COST-AWARE DENSITY-BASED SCHE-
DULING WITH SELECTIVE EXPANSION

We propose a novel priority queue selection strategy called RU-COST,
exploiting cost-aware scheduling with selective expansion. This
method avoids the MDMWP-based scheduling problem by mini-
mizing the cost of accessing entries from priority queues. Unlike
scheduling problems explored for TA-family algorithms, this prob-
lem poses two additional challenges: 1) the list for each query win-
dow is dynamically generated; and 2) the cost of generating one
leaf entry from the priority queue varies significantly, depending
on how many MBRs must be expanded to reach the leaf entry.

Intuitively, a good scheduling algorithm will identify a queue
whose top-h leaf entries are sparsely populated near the query point,
as noted in Section 1. For example, consider the ranked union ex-
ecution framework in Figure 8. Clearly, selecting PQ1,2 rather
than PQ1,1 would quickly grow the MSEQ-distance for Φ1. How-
ever, if the disk I/O cost of accessing the corresponding data sub-
sequences for the top-h leaf entries in PQ1,1 is much cheaper than
that of PQ1,2, selecting PQ1,1 would seem to be more beneficial.
To solve this challenging problem, We propose a novel concept of
cost-aware density. We formally define this concept in Definition
7.

Definition 7. Let the most recently popped leaf entry from PQi,j

be lep. Let the next top-h leaf entries to be popped from PQi,j be
le1, le2, · · ·, leh. Then, the cost-aware density CDens(PQi,j) is
defined as follows. NUM_IO returns the number of I/Os when
accessing the subsequences corresponding to le1, le2, · · ·, leh.

α×NUM_IO(le1, le2, · · ·, leh) + β × h

LBPAA(MSEQi,j , leh)− LBPAA(MSEQi,j , lep)
,

where α and β are user-specified constant values.

463

Note that, the denominator of CDens(PQi,j) (or “volume” in
the density) is the difference in LBPAA between the last popped
entry lep and the top hth entry leh, as leaf entries are sorted in
one-dimensional distance space using LBPAA. The numerator of
CDens(PQi,j) (or “mass” in the density) is the cost for leaf en-
tries, which is a combination of the cost of disk I/Os NUM_IO
and the cost of computing distances. As disk I/Os are dominant in
performance of ranked union, we set α to 1 and β to 0. Finding
more accurate values of α and β will be our future work. Note also
that, when there is a need to choose among queues with zero den-
sity, we choose the one with the smallest denominator. For efficient
computation of NUM_IO, we allocate a bitmap for pages, where
each bit is set to 1 when the corresponding page is in the buffer.
Thus, we can accurately count entries whose corresponding subse-
quences are not in the buffer. The memory overhead for the bitmap
is marginal, as it requires only 8KBytes for a 256MBytes database.

However, two challenges still remain: First is the question of the
optimal lookahead h. If h is too small, the estimated value cannot
reflect the overall density. Meanwhile, if it is too large, scheduling
does not adapt well to changes in densities, leading to suboptimal
performance. To address this challenge, we considered an adaptive
approach setting h = 1 and increasing it dynamically. However,
in our extensive experiments with many real datasets, if h is set to
the blocking factor of index pages, the overall performance is very
stable regardless of datasets. We therefore set h as the blocking
factor.

The second challenge is how to efficiently compute CDens(PQi,j).
One naive way is to obtain the next top-h leaf entries from all pri-
ority queues of Φi and compute exact densities. However, this may
impose serious performance overhead if a query point is placed in
a dense region, in which case, all index pages in the dense region
need to be accessed to obtain the top-h leaf entries.

To address the second challenge, we propose a novel selective ex-
pansion technique of priority queues, which consists of two steps:
1) we select one priority queue as a pivot and obtain the top-h
leaf entries from this pivot queue only to compute its exact den-
sity CDens(PQi,pivot). 2) For the remaining queues, we se-
lectively expand them, by choosing only the queue PQi,j such
that LBCDens (PQi,j) < CDens(PQi,pivot); that is, we stop
expanding priority queues whose LBCDens≥ the CDens of the
pivot priority queue. After expanding MBRs in PQi,j , if CDens(PQi,j)
< CDens(PQi,pivot), PQi,j becomes the pivot. We iterate this
selective expansion process until CDens(PQi,pivot)≤LBCDens

(PQi,j) or CDens(PQi,j) for any j �= pivot.
Now, we define LBCDens(PQi,j) in the following definition.

Definition 8. Let the most recently popped leaf entry from PQi,j

be lep. Let le′1, le
′
2, · · · , le′m−1,MBR1, · · · , le′m, · · · , le′h be the

entries in the priority queue ordered by their distances where le′h is
the top-hth leaf entry in the priority queue. Then, LBCDens(PQi,j)
is defined as following :

α×NUM_IO(le′1, le
′
2, · · · , le′m−1) + β × h

LBPAA(MSEQi,j, le′h)− LBPAA(MSEQi,j , lep)

Lemma 7. LBCDens(PQi,j) ≤ CDens(PQi,j)

PROOF: Let lep denote the last popped leaf entry from PQi,j and
le1, · · · , leh denote the real top-h leaf entries in order of distance.
When le′h is the hth leaf entry in the current queue, and its preced-
ing entries are le′1, · · · , le′m−1,MBR1, · · · , le′m, · · · , since MBR1

must be extended to find real top-h leaf entries, LBPAA(MSEQi,j

, leh) ≤ LBPAA(MSEQi,j , le′h). However, as such expansion
cannot affect the ordering of the preceding entries le′1, · · · , le′m−1,
we can conclude that (le1, · · · , lem−1) are equivalent to (le′1, · · ·

, le′m−1). That is, NUM_IO (le1, · · · , leh)≥ NUM_IO (le′1, · · · ,
le′m−1). Therefore, we can conclude that LBCDens(PQi,j) ≤
CDens(PQi,j). �

For this selective expansion to be effective, we must avoid se-
lecting an initial pivot with a very high density. To efficiently ap-
proximate density for pivot selection, we first access a set of leaf-
node MBRs by accessing only the parent non-leaf nodes of the leaf
nodes. For each query window P(E(q)), we can then determine
the distance range [d1, d2] for each leaf-node MBR by comput-
ing MINDIST and MAXDIST. Here, MINDIST and MAXDIST
are the minimum and maximum distances between an MBR and a
query window, respectively. For simplicity, we assume that the dis-
tances between leaf entries and the query envelope are uniformly
distributed in the range [d1, d2]. After computing the distance
range for each leaf MBR, we merge all distance ranges into a global
range. Thus, we can estimate the distance range of the top-h entries
of the priority queue using this global range.

Figure 10 illustrates how our proposed selective expansion tech-
nique works to find real top-4 leaf entries (i.e., h = 4). In the
figure, the distances of the last popped leaf entries lep from PQi,1

and PQi,2 are 4.0 and 3.0 respectively. Leaf entries incurring I/O
costs are shaded. The first step of the selective expansion tech-
nique is to find a pivot queue, from which we find top-4 entries.
In this figure, PQi,1 is chosen, and four leaf entries (le1, · · · , le4)
are accessed. In this case, based on Definition 7, CDens(PQi,1)
is computed as 2

9.0−4.0
(when α = 1 and β = 0). In the sec-

ond step, we compute LBCDens(PQi,j) to selectively expand an-
other queue PQi,2. Observe from this example that PQi,2 has en-
tries (le′1, le

′
2,MBR1,MBR2, · · · , le′3, le′4) with distance values

(3.1, 3.2, 3.3, 3.4, · · · , 7.0, 9.0). In this queue, LBCDens(PQi,2),
stated in Definition 8, is computed as 2

9.0−3.0
. SinceCDens(PQi,1)

> LBCDens(PQi,2), we expand MBR1, after which a leaf entry
with distance 3.3 is inserted into the queue. This updates the queue
entries to (le′1, le

′
2, le

′
3, MBR2, · · · , le′4) with distances (3.1, 3.2,

3.3, 3.4, · · · , 7.0) and also updates LBCDens(PQi,2) to 2
7.0−3.0

.
As CDens(PQi,1)<LBCDens(PQi,2), we can stop expanding
PQi,2.

<le’
3, 3.3>

<MBR3, 3.5>

<le’
3, 7.0>

<MBR2, 3.4> <MBR2, 3.4>

<le’
4, 7.0><le’

4, 9.0>

<le3, 7.0>
<le4, 9.0>

<le2, 6.0>

Step 1: selecting a seed

PQi,1

pivot

<le1, 5.0>

CDens(PQi,1) 9.0 – 4.0
2

=

real top-4
leaf entries

Step 2: selective expansion

:a queue entry incurring I/O costs

PQi,2 one more
expansion

<lep, 4.0>
<MBR1, 3.3>

<le’
2, 3.2>

<le’
1, 3.1>

<lep, 3.0>

LBCDens(PQi,2) 9.0 – 3.0
2

=

<le’
2, 3.2>

<le’
1, 3.1>

...

LBCDens(PQi,2) 7.0 – 3.0
2

=

<lep, 3.0>

PQi,2

...

...
...

<le’
3, 3.3>

<MBR3, 3.5>

<le’
3, 7.0>

<MBR2, 3.4> <MBR2, 3.4>

<le’
4, 7.0><le’

4, 9.0>

<le3, 7.0>
<le4, 9.0>

<le2, 6.0>

Step 1: selecting a seed

PQi,1

pivot

<le1, 5.0>

CDens(PQi,1) 9.0 – 4.0
2

=
9.0 – 4.0

2
=

real top-4
leaf entries

Step 2: selective expansion

:a queue entry incurring I/O costs:a queue entry incurring I/O costs

PQi,2 one more
expansion

<lep, 4.0>
<MBR1, 3.3>

<le’
2, 3.2>

<le’
1, 3.1>

<lep, 3.0>

LBCDens(PQi,2) 9.0 – 3.0
2

=
9.0 – 3.0

2
=

<le’
2, 3.2>

<le’
1, 3.1>

...

LBCDens(PQi,2) 7.0 – 3.0
2

=
7.0 – 3.0

2
=

<lep, 3.0>

PQi,2

...

...
...

Figure 10: An example of the selective expansion technique.

5. RELATED WORK
Range subsequence matching and its solution under the Euclidean

distance were first proposed by Faloutsos et al. [7] (FRM). FRM
exploits the window construction mechanism of dividing data se-
quences into sliding windows and a query sequence into disjoint
windows. FRM uses an R∗-tree with the lower-dimensional trans-
formation to store the sliding windows of data sequences and to
find candidate subsequences from the disjoint windows of a query

464

sequence. DualMatch [17] and GeneralMatch [16], improve this
subsequence matching performance by using window construction
methods which differ that of FRM. DualMatch divides the data se-
quences into disjoint windows and the query sequence into sliding
windows; GeneralMatch generalizes the sliding and disjoint win-
dows. The approach proposed here is quite different from these
solutions: 1) we deal with the ranked subsequence matching rather
than the range subsequence matching; and 2) we use the DTW dis-
tance.

Regarding the DTW distance, [21] proposed a range subsequence
matching solution based on FRM. However, their method cannot
be used for the ranked subsequence matching due to a loose lower
bound and dimensionality curse on long queries [12]. [1] proposed
a technique called anticipatory DTW to speed up DTW calcula-
tions by progressively computing DTW matrix cells. This tech-
nique is orthogonal to index-based ranked subsequence matching
[1]. [2] proposed an approximate subsequence matching using em-
bedding. Unlike our solution, this approximate method allows false
dismissals, which cannot be used for many important time-series
applications, such as electrocardiogram and gas pipeline inspec-
tion. [12] proposed an exact solution by introducing two tight lower
bounds, the mdmwp-distance and the window-group distance. If
the data points are uniformly distributed in the indexing space, this
solution works well; if not, however, it shows bad performance due
to the MDMWP-scheduling problem.

Top-k processing in other applications has been actively stud-
ied lately.Pioneering algorithms for the efficient processing of such
queries are known as TA-family algorithms [6], followed by more
algorithms [5, 9, 20] which consider a wide range of access sce-
narios. However, these algorithms cannot be readily applied to our
proposed problem, as they assume the ranking function is mono-
tonic over attribute values.

Using rank-awareness, Li et al. [15] extended the original se-
mantics of relational operators including the union operator. How-
ever, our framework is significantly different from this framework:
1) they assume the ranking function is monotonic; 2) as opposed to
their ranked union operator which first obtains top-k results for each
relational subquery and then returns global top-k results (coarse-
level scheduling), our ranked union framework provides a tailored
execution model for subsequence matching subqueries by exploit-
ing finer granular scheduling; 3) For fast subsequence matching,
our framework presents a novel subsequence matching operator Φ
and its lower bound MSEQ-distance. Thus, our underlying pro-
cessing mechanism is completely different from their framework
which is based on relational operators.

More recently, state-of-the art algorithms for supporting non-
monotonic ranking functions have been studied [22]. These al-
gorithms support non-monotonic functions using an index-merge
framework with B+-trees or R*-trees. Thus, they can be adapted
to ranked subsequence matching using R*-trees. To join multiple
indexes efficiently, they first enumerate candidate join states pro-
gressively by increasing order of their lower bound scores from the
root nodes of the indexes. For each join state, they check the state,
whether it can produce the join results, by computing the join sig-
nature. If the join state cannot produce the join results, they stop
enumerating the join states further. However, as we will see in Sec-
tion 6, computing join signatures requires prohibitive bloom filter
calls if the number of joins is larger than four (i.e., the number of
query windows > 4 in our target problem). More specifically, if
there are n joining indexes whose fan-outs are f , in the worst case,
we need to invoke bloom filters fn times to compute all valid join
signatures from one join state.

6. PERFORMANCE EVALUATION
We evaluate the performance of the state-of-the-art algorithms

against our ranked union algorithms. The algorithms considered
are as follows: (1) SeqScan, a sequential scan algorithm, (2) HLMJ,
(3) PSM, a top-k subsequence matching solution adopted from the
recent index-based merge algorithm [22], (4) RU, the ranked union
with the default scheduling strategy, and (5) RU-COST, the ranked
union with the cost-aware density-based scheduling strategy.

Our main objective is to show that our algorithms 1) consistently
outperform the competing algorithms even for query sets having
no dense windows and 2) significantly outperform the competing
algorithms for query set having dense windows.

6.1 Experiment Setup
We use five real and synthetic data sets as shown in Table 2.

Each data set consists of a long data sequence and has the same
effect as one consisting of multiple data sequences [7, 16]. (Refer
to the Appendix in [11] for the detailed explanation on data sets.)
We use the number of candidates, the number of page accesses, and
the wall clock time as the performance metrics. Table 3 summarizes
parameters and their values. We generate query sequences from the
data sequence by taking subsequences of length Len(Q) starting
from random offsets as in [7, 12, 16]. Regarding the query types of
the PIPE data set, refer to the Appendix in [11]. We measure the
three performance metrics using all query sequences, and use their
averages.

Table 2: Data sets used.
Data set UCR PIPE WALK STOCK MUSIC

Size(×1, 000) 1,056 24,307 1,000 328 2,373

Table 3: Experimental parameters and their values.
Parameter Default Range

k 25 5 ∼ 50
Buffer size 5% 1% ∼ 10%

Len(Q) 384 256, 384, 512
ω(window size) 64 32, 64, 128

We conduct all the experiments on a Linux server with Xeon
Quad Core 1.6GHz CPU and 8 Gbytes RAM. We use LRU as the
buffer replacement algorithm, and set the page size to 4 KBytes.
For each query sequence, we set the warping width to 5% of the
query length. We also performed experiments for varying both the
number of PAA features and the warping width, but the perfor-
mance trends are similar, and thus we omit the results for brevity.

6.2 Experiments and Results
Experiment 1) (effect of k) Figure 11 shows the experimental re-
sults for UCR. We use the same query set consisting of 20 se-
quences that are used in [12]. We call this query set UCR-REGULAR.
Note that PSM does not finish with reasonable times due to exces-
sive bloom filter calls if Len(Q) > 256. Thus, we can show the
performance results of PSM in Experiment 6 when the Len(Q) =
256. In addition, we can use the deferred retrieval mechanism [12]
for HLMJ, RU, and RU-COST. This mechanism delays a set of
subsequence retrieval requests, groups the requests by their corre-
sponding subsequences, and enables batch retrieval, thereby avoid-
ing excessive random disk I/Os. Thus, for each of these three al-
gorithms, we experiment with two different versions: one uses the
deferred retrieval mechanism (denoted as “(D)”); the other does
not. In the deferred retrieval mechanism we allocate memory of
only 0.5% of the database size for storing the delayed requests.

As shown in Figure 11(a), our RU-COST consistently reduces
the number of candidates by up to 1.8 times compared with HLMJ.
This indicates that 1) the MSEQ-distance is tighter than the lower

465

HLMJ

RU

RU-COST

SeqScan

HLMJ(D)

RU(D)

RU-COST(D)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 5 10 15 20 25 30 35 40 45 50

of

 c
an

di
da

te
s

top-k

(a) Number of candidates.

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

of

 p
ag

e
ac

ce
ss

es

top-k

(b) Number of page accesses.

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(c) Wall clock time.

Figure 11: Experimental results with UCR-REGULAR by varying k.

HLMJ(D)

RU(D)

RU-COST(D)

SeqScan

 100

 1000

 10000

 100000

 1e+006

 5 10 15 20 25 30 35 40 45 50

of

 c
an

di
da

te
s

top-k

(a) Number of candidates.

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35 40 45 50

of

 p
ag

e
ac

ce
ss

es

top-k

(b) Number of page accesses.

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(c) Wall clock time.

Figure 12: Experimental results with UCR-DENSE by varying k.

HLMJ(D)

RU(D)

RU-COST(D)

SeqScan

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(a) PIPE-BEND.

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(b) PIPE-VALVE.

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(c) PIPE-TEE.

Figure 13: Wall clock time for different query types on PIPE by varying k.

bound of HLMJ, and 2) cost-aware density scheduling is more ef-
ficient than MDMWP-scheduling. In particular, RU-COST out-
performs RU by up to 1.6 times in the number of candidates. This
means that RU-COST increases the lower bound more rapidly even
for UCR-REGULAR having no very dense windows.

In terms of the number of page accesses, RU-COST(D) provides
significant reduction compared with other algorithms as shown in
Figure 11(b). This outcome is due to two causes: (1) RU-COST
shows the best result in reducing the number of candidates; (2)
the deferred retrieval mechanism groups many random accesses
into a series of sequential accesses. The first reason explains why
RU-COST(D) can reduce the number of page accesses by up to 3.0
and 2.0 times compared with HLMJ(D) and RU(D), respectively, in
Figure 11(b). The second reason explains why RU-COST(D) out-
performs RU-COST as well as RU and HLMJ.

As shown in 11(c), RU-COST(D) reduces the wall clock time
by up to 3.8, 4.7, 260 times compared with RU(D), HLMJ(D),
and SeqScan. In subsequence matching, the wall clock time is
determined by two major factors: 1) the time for accessing disk
pages and 2) the time for computing distances between query and
candidate sequences. This explains why Figure 11(c) looks like a
merged version of Figures 11(a) and 11(b). In Figures 11(a) and
11(b), RU-COST(D) shows the best result in terms of both candi-
dates and page accesses, and therefore it consistently outperforms
any other algorithms in the wall clock time of Figure 11(c).

As in Figures 11(b) and 11(c), a deferred algorithm is always su-
perior to its corresponding non-deferred algorithm. Thus, hereafter
we consider only the deferred algorithms. For brevity, we omit the
non-deferred algorithms from the experimental graphs.

Experiment 2) (effect of the data point density) In this experi-
ment, we show that our ranked union approach clearly overcomes
the MDMWP-based scheduling problem of HLMJ. As shown in
Figure 2, this problem occurs by the density difference of data

points. For this experiment, we construct another query set consist-
ing of 20 query sequences from UCR, called UCR-DENSE, where
each query sequence consists of two types of query points: one in
the dense region, and the other in the sparse region. Thus, UCR-
DENSE incurs the MDMWP-based scheduling problem.

Figure 12 shows the experimental results for UCR with UCR-
DENSE. Comparing Figure 12(a) with Figure 11(a), the differences
between algorithms are much larger in UCR-DENSE. In particu-
lar, the difference between RU-COST(D) and HLMJ(D) in UCR-
DENSE is much larger than that in UCR-REGULAR. In Figure
12(a), RU-COST(D) reduces the number of candidates by up to
50.4 times compared with HLMJ(D). This significant reduction
means that our ranked union approach resolves the MDMWP-based
scheduling problem. Due to this reduction, the difference in the
number of page accesses becomes large, and accordingly, the dif-
ference in the wall clock time also becomes large.

For a clearer comparison of RU-COST(D) and HLMJ(D), we
use PIPE which contains lots of dense regions. Figure 13 shows the
wall clock time for three representative queries sequences, PIPE-
BEND, PIPE-VALVE, and PIPE-TEE. These query sequences are
eventually mapped into dense and sparse regions in a mixed way
and incur the MDMWP-based scheduling problem. Compared with
HLMJ(D) and RU(D), RU-COST(D) significantly improves the
performance by up to 980.9 and 78.3 times! In particular, the im-
provement is remarkable in PIPE-TEE and PIPE-VALVE (see Fig-
ures 13(b) and 13(c)). This is because a query sequence of PIPE-
TEE or PIPE-VALUE contains many irregular patterns, i.e., its slid-
ing windows are mapped into both sparse and dense regions, incur-
ring the MDMWP-based scheduling problem.

Experiment 3) (effect of the buffer size) Figure 14 shows the wall
clock time for UCR by varying the buffer size. As the query set,
we use UCR-REGULAR in Figure 14(a) and UCR-DENSE in Fig-

466

HLMJ(D)

RU(D)

RU-COST(D)

SeqScan

 1000

 10000

 100000

 1e+006

 1e+007

 32 64 128

of

 c
an

di
da

te
s

window size

(a) Number of candidates.

 100

 1000

 10000

 32 64 128

of

 p
ag

e
ac

ce
ss

es

window size

(b) Number of page accesses.

 0.1

 1

 10

 100

 32 64 128

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

window size

(c) Wall clock time.

Figure 15: Experimental results for UCR with UCR-REGULAR by varying the window size.

HLMJ(D)

RU(D)

RU-COST(D)

SeqScan

 10000

 100000

 1e+006

 256 384 512

of

 c
an

di
da

te
s

query length

(a) Number of candidates.

 100

 1000

 10000

 256 384 512

of

 p
ag

e
ac

ce
ss

es

query length

(b) Number of page accesses.

 0.1

 1

 10

 100

 256 384 512

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

query length

(c) Wall clock time.

Figure 16: Experimental results for UCR with UCR-REGULAR by varying the query length.

HLMJ(D)

RU(D)

RU-COST(D)

SeqScan

 0.01

 0.1

 1

 10

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(a) WALK.

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(b) STOCK.

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(c) MUSIC.

Figure 17: Wall clock time for WALK, STOCK, and MUSIC by varying k.

ure 14(b). Like the previous experimental results, RU-COST(D)
shows the best result by enlarging the lower bound aggressively.

As shown in Figure 14, SeqScan shows the constant time for all
buffer sizes since it just accesses all subsequences with a small size
buffer sequentially. In contrast, the wall clock time of other buffer-
based algorithms slightly decreases as the buffer size increases.
This is obvious since, as the buffer size increases, the buffer hit-
ratio in accessing candidate subsequences increases. Note that there
is a considerable performance degradation in the wall clock time for
UCR-DENSE. This is because SeqScan exploits LBKeogh before
DTW computations, and LBKeogh is much more effective in UCR-
REGULAR than in UCR-DENSE. We also note that the buffer size
incurs only a small performance difference in all of the buffer-based
algorithms. This is because all these algorithms use the deferred re-
trieval mechanism which accumulates many random subsequence
requests in the group subsequence access list being rescheduled to
a sequential scan [12]. In general, the small buffer size is very cru-
cial for both large (hundreds of gigabytes to terabytes) time-series
data and multi-user environment. As we can see in Figure 14, our
RU-COST(D) and RU(D) require only a small buffer size, and ac-
cordingly, we can say that our algorithms have the most desirable
characteristic in the large database and multi-user environment.

Experiment 4) (Effect of Window Size and Query Length) Fig-
ure 15 shows the experimental results for UCR with UCR-REG-
ULAR by varying the window size. The experimental results of
Figure 15 are summarized as follows. Like the previous experi-
ments, SeqScan shows constant values in all three measures, since
it fully scans the entire database and considers all possible subse-
quences, regardless of the window size. On the other hand, the re-
sults of the other three algorithms are changed according to the win-

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

buffer size

(a) UCR-REGULAR.

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

buffer size

(b) UCR-DENSE.

Figure 14: Wall clock time by varying the buffer size.

dow size, since they use window construction mechanism [7, 12,
16] of subsequence matching. We note that, as the window size in-
creases, all three measures of these three algorithms decrease. This
decreasing trend is well explained by the window size effect [17,
16]. That is, the larger window incurs the smaller number of candi-
dates, and accordingly, the larger window causes the smaller num-
ber of page accesses and the shorter wall clock time. RU-COST(D)
still outperforms the other three algorithms, regardless of the win-
dow size. Compared with SeqScan, HLMJ(D), and RU(D), the
last RU-COST(D) improves matching performance by up to 90.6
times, 3.8 times, and 2.1 times for UCR-REGULAR; and 846.8
times, 80.2 times, and 11.6 times for UCR-DENSE (The figures of
the results for UCR with UCR-DENSE are omitted due to space
limit).

Figure 16 shows the experimental results by varying the query
length. The experimental results of Figure 16 are summarized as
follows. In the case of SeqScan, the number of candidates and the
number of page accesses change only very slightly according to the
query length. Its wall clock time, however, increases according to
the query length, since the longer length requires more operations

467

in computing the DTW distance. With other algorithms including
RU-COST(D), the number of candidates slightly increases accord-
ing to the query length. This increasing trend is also explained by
the window size effect. That is, as the query length increases, the
relative size of the corresponding window decreases, and thus, the
more candidates occur due to the window size effect. Due to the
increase in the number of candidates, the number of page accesses
and the wall clock time also increase for the larger query length.
Like the previous experimental results, RU-COST(D) significantly
improves matching performance compared with other algorithms.

Experiment 5) (Effect of Different Data Sets) Figures 17(a), 17(b),
and 17(c) show the wall clock time for WALK, STOCK, and MU-
SIC, respectively. (We omit the results for candidates and page
accesses since their trends are very similar to that of UCR with
UCR-REGULAR.) As shown in the figures, RU-COST(D) shows
the best performance, and we can say that our ranked union ap-
proach always outperforms the previous algorithms, regardless of
the data set. Because the results in the figures show such a similar
tendency as that of UCR with UCR-REGULAR (compare Figure
17 with Figure 11(c)), we omit the detailed explanation of the per-
formance results.

Experiment 6) (Comparison with PSM(D)) Figure 18 shows the
wall clock times of PSM(D) and RU-COST(D) for UCR by vary-
ing k when the query size is 256. Figures 18(a) and 18(b) show per-
formance results for UCR-REGULAR and UCR-DENSE, respec-
tively. RU-COST(D) significantly outperforms PSM(D) by up to
62.5 and 135.7 times for UCR-REGULAR and UCR-DENSE, re-
spectively. Since PSM exploits all windows using index-merge at
the index level, there are no drastic performance differences for ei-
ther query set. Note that we implemented the best version of PSM.

PSM maintains join signatures using the bloom filter [22], and
computing join signatures requires a lot of bloom filter calls. Thus,
it cannot support more than four-way joins with reasonable times
due to excessive bloom filter calls. In our experiment, we observe
that, on average, more than 4 billion bloom filter calls are per-
formed to compute the join signatures.

We also performed experiments with k=25 and the query length=320.
RU-COST(D) outperforms PSM(D) by up to 2440.5 times and
5352.1 times for UCR-REGULAR and UCR-DENSE, respectively.

RU-COST(D) PSM(D)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(a) UCR-REGULAR.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35 40 45 50

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

top-k

(b) UCR-DENSE.

Figure 18: Wall clock time for PSM(D) and RU-COST(D).

7. CONCLUSIONS
In this paper, we presented a novel framework, ranked union, for

processing ranked subsequence matching in time-series databases.
For this framework, we proposed a notion of the matching subse-
quence equivalence class (MSEQ), formally derived a novel lower
bound MSEQ-distance, and showed its superior pruning power against
the MDMWP-distance. After that, we proposed a novel execution
model for ranked union along with two novel operators: 1) multi-
way ranked union operator and 2) ranked subsequence matching
subquery operator. We then enhanced the basic ranked union with
a novel priority queue selection strategy RU-COST. By exploit-

ing both a novel concept of the cost-aware density and the selec-
tive expansion technique with another lower bound, LBCDens , for
the cost-aware density, RU-COST can completely eliminate the
MDMWP-scheduling problem with immaterial overhead. We also
showed the lower boundness of LBCDens . Through extensive ex-
periments on both real and synthetic datasets, we showed that our
ranked union solutions outperform the state-of-the-art algorithms
by up to two to three orders of magnitude.

8. ACKNOWLEDGMENTS
This paper is based on research supported by the R&D program

of MKE/KEIT (KI10033545). This paper is also supported in part
by MEST/KOSEF (R11-2008-007-03003-0).

9. REFERENCES
[1] I. Assent, M. Wichterich, R. Krieger, H. Kremer, and T. Seidl. Anticipatory dtw

for efficient similarity search in time series databases. PVLDB, 2(1):826–837,
2009.

[2] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and D. Gunopulos.
Approximate embedding-based subsequence matching of time series. In
SIGMOD Conference, pages 365–378, 2008.

[3] I. Bartolini and M. Patella. Warp: Accurate retrieval of shapes using phase of
fourier descriptors and time warping distance. IEEE PAMI., 27(1):142–147,
2005.

[4] D. J. Berndt and J. Clifford. Finding patterns in time series: a dynamic
programming approach. pages 229–248, 1996.

[5] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over
web-accessible databases. In ICDE 2002, 2002.

[6] R. Fagin, A. Lote, and M. Naor. Optimal aggregation algorithms for
middleware. In PODS, 2001.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. In SIGMOD, 1994.

[8] G. Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73–170, 1993.

[9] U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries in
image databases. In VLDB, 2000.

[10] U. Güntzer, W.-T. Balke, and W. Kießling. Towards efficient multi-feature
queries in heterogeneous environments. In ITCC, pages 622–628, 2001.

[11] W. Han, J. Lee, Y. Moon, S. Hwang, and H. Yu. A new approach for processing
ranked subsequence matching based on ranked union.
http://www-db.knu.ac.kr/rankedunion/runion-tr.pdf, 2011.

[12] W. Han, J. Lee, Y. Moon, and H. Jiang. Ranked subsequence matching in
time-series database. In VLDB, 2007.

[13] E. Keogh. Exact indexing of dynamic time warping. In VLDB, 2002.
[14] E. Keogh. A decade of progress in indexing and mining large time series

databases. In VLDB, 2006.
[15] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql: Query algebra and

optimization for relational top-k queries. In SIGMOD Conference, pages
131–142, 2005.

[16] Y. Moon, K. Whang, and W. Han. General match: a subsequence matching
method in time-series databases based on generalized windows. In SIGMOD,
2002.

[17] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. Duality-based subsequence
matching in time-series databases. In ICDE, 2001.

[18] L. Rabiner and B.-H. Juang. Fundamentals of speech recognition.
Prentice-Hall, Inc., 1993.

[19] D. Rafiei and A. O. Mendelzon. Querying time series data based on similarity.
TKDE, 12(5):675–693, 2000.

[20] S. won Hwang and K. C.-C. Chang. Optimizing top-k queries for middleware
access: A unified cost-based approach. ACM Trans. Database Syst., 32(1):5,
2007.

[21] T. S. F. Wong and M. H. Wong. Efficient subsequence matching for sequences
databases under time warping. IDEAS, 2003.

[22] D. Xin, J. Han, and K. C.-C. Chang. Progressive and selective merge:
computing top-k with ad-hoc ranking functions. In SIGMOD, 2007.

[23] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms.
In VLDB, 2000.

[24] Y. Zhu and D. Shasha. Warping indexes with envelope transforms for query by
humming. In SIGMOD, 2003.

468

