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ABSTRACT

This paper looks at issues involved in attempting to
provide Quality of Service (QoS) support in a dynamic
environment. We focus on a resource reservation based
approach, which we believe is attractive for military
applications, but becomes especially difficult in a dynamic
network environment. This is because available resources
reserved for a particular flow may contract after they have
been "committed" to the flow, causing the reservation to be
dropped.   Our approach is to expand the semantics of the
reservation, so that instead of being a single value
indicating the level of service needed by an application, it
becomes a range of service levels in which the application
can operate, together with the current reserved value
within that range.  This provides the network flexibility so
that reservations can be maintained as network conditions
change. Rather than forcing the network to make a binary
"admit/fail" decision for each flow, the network provides
feedback to applications on the current reservation level.
Based on this feedback, applications can adapt their
behavior to what the network can support. We have
developed a prototype implementation of this concept,
running as an extension to the Reservation Setup Protocol
(RSVP) protocol.  We are currently evaluating the
implementation in a testbed network where we can vary
link bandwidth. The testbed also includes several adaptive
applications (audio, video, data transfer) running over the
User Datagram Protocol (UDP). The paper discusses our
approach, testbed, experiences to date, and current plans.

1.  INTRODUCTION

Quality-of-Service (QoS) support in a network implies that
the network is capable of providing different services that
are appropriate for different applications or users.  Two
complementary approaches have been proposed for
providing this support within the network layer.  One is
based on reserving resources for individual data flows end-
to-end over heterogeneous links, based on signaling by the
applications (an Integrated Services or "intserv" approach

[1]). The Resource Reservation Setup Protocol (RSVP) is
a signaling protocol typically associated with this approach
that applications can use to request resources from the
network [2].  It conveys information to nodes along the
path between flow endpoints, so that the nodes may
provide the resources and services the flows need to meet
their specification.  The second approach is based on the
treatment of individual IP data packets at a node according
to how the packets are marked in the IP header (a
Differentiated Service or "diffserv" approach [3]).  When
an IP packet arrives at a node, it is classified into one of a
(small) number of classes, based on the value of the
Differentiated Services Code Point (DSCP) in its IP
header, and then subject to a Per Hop Behavior (PHB)
associated with that code point.

Both approaches have been implemented and are being
studied in relatively traditional and static environments,
where nodes rarely move and are connected by wired
links.  One concern mentioned with the intserv approach is
scalability, since per flow state and processing is required
at each node to support end-to-end QoS per flow. A
primary benefit of diffserv is scaling, since it eliminates
per flow state and processing. However, intserv provides
an end-to-end QoS solution, which diffserv does not
(currently).

A dynamic network environment, with potentially moving
nodes connected by wireless links, presents additional
challenges to providing QoS support in the network. These
network dynamics can be attributed to variable link
characteristics, node movement, and/or variable
application demand. We believe that QoS support should
adapt to these changes.  In the next section we present a
brief discussion of these dynamics and some proposed
methods to address them.  In section 3, we describe our
approach for providing QoS in a dynamic network
environment, which is reservation-based and falls within
the intserv framework. We have implemented this
approach as an extension to the RSVP. In section 4, we
briefly discuss our testbed, adaptive applications, and
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evaluation plans. Finally, section 5 presents some final
comments.

2. DYNAMIC NETWORK ENVIRONMENT

In static networks, traditionally-wired links generally have
a stable transmission quality.  In contrast, wireless links
are subject to variations in transmission quality due to
factors such as interference and fading.  (In military
networks, the possibility of jamming must also be
considered.).  There are different ways to deal with these
problems at different layers of the protocol stack.
Assuming that changes in transmission quality are not
handled by the physical layer (for example by increasing
transmit power), the result observed by the link layer will
be changes in the bit error rate.  The effect observed by the
network layer depends on whether the link layer
mechanisms in use recognize and respond to these
changes.

If the link layer does not detect or respond to changes in
bit error rate, the network layer sees an increase in lost or
corrupted packets.  This makes it difficult to apply network
layer QoS mechanisms, which are designed to deal mainly
with congestion loss and network layer queueing effects,
rather  than packet loss due to link errors.  Therefore we
believe that it is best to deal with transmission dynamics
within the link layer.

The link layer can react to the change in transmission
quality in several ways.  For example, if the link layer
protocol includes automatic repeat-request (ARQ), then, as
transmission quality decreases, the number of
retransmissions will increase.  The main affect on the
network layer will be a decrease in the effective
throughput of the link.  A sophisticated link layer could
also employ an adaptive error correction mechanism to
increase or decrease the amount of error correction coding
in response to changes in transmission quality. The affect
on the network layer will be variation in effective delay or
throughput, depending on the coding algorithm.  The link
layer could also react by changing its modulation
technique, which again would be observed at the network
layer as a change in effective bandwidth.

Thus, assuming that the link layer is responding to changes
in transmission quality, the network layer will receive
varying link throughput. Therefore, in order to
appropriately perform admission control, allocate
resources, and other functions necessary for providing
QoS, the network layer needs updated information from
the link layer on the effective data rate of each interface, as
well as possibly other parameters such as latency.  An
example of how this can be done is found in the DARPA

funded Global Mobile (GloMo) effort, for which a general
framework for internet devices operating over wireless
links was developed.  This framework [4] defines
interfaces between different layers or components, and
includes the ability of the network layer to obtain
information on current conditions observed by the link
layer, including current link speed. In addition to providing
current conditions to the network layer, the link layer
should also include QoS aware channel access, to make
sure that the QoS requirements for each node of a given
channel are fulfilled [5].

Another source of variation in dynamic networks is node
movement, which has several consequences.  First, it
exacerbates the problem of variable link characteristics, as
nodes move in and out of areas of good signal strength.
Second, nodes may have to switch to different media as
they move in and out of coverage. A “vertical handoff”
approach has been described [6] in which seamless
connectivity to mobile nodes is maintained by handing off
between small cells with high bandwidth and wide area
cells with lower bandwidth.  Again, this illustrates the
need for QoS mechanisms to deal with variable bandwidth.

Node movement also means that the network topology will
likely change.  In the simple case, this consists of the
movement of end systems through a fixed network
infrastructure.  Mobile end systems are “handed off”
between fixed access points.  However, in a more general
case of a mobile ad hoc network, intermediate systems
(routers) also move, possibly causing relatively rapid
routing changes. Clearly, this has a major impact on a
resource reservation-based QoS approach, as resources
that were available and reserved to support a reservation
along one route may not be available on the new route.
Various approaches have proposed using “pre-reservation”
(in the simpler “handoff” case), or “standby routes” (in the
more complex mobile ad hoc network case) to allow the
network to make a QoS commitment that can be honored
even when movement (and topology change) occurs (e.g.,
[7], [8], [9], [10]). The notion of treating resource
reservations as ranges and adaptively adjusting QoS within
this range has also been put forth to accommodate
fluctuations in available network bandwidth (e.g., [9], [11],
[12]). Still others have investigated how to support QoS
routing in the mobile ad-hoc network environment (e.g.,
[13]).

Finally, another source of dynamics is one that is common
to both dynamic and fixed environments.  That is: variable
demand on network resources by end-system applications.
The conventional response to variable application demand
is based on admission control.  That is, some end users
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may be denied access in order to preserve QoS for those
that have been admitted.  This results in some users being
granted the requested QoS, and others being denied service
or forced to use a lower grade service-model, for example
reverting to best-effort.  Admission control may be
performed on a “first come, first served” basis, or it may
include priority and preemption mechanisms, to implement
some desired policy.

Admission control is a valuable tool for dealing with
variable application demand for QoS, because it is
generally better to deny service to some users in order to
grant service to others, rather than providing an
unacceptable QoS to all users.  The limitation with this
approach, however, is that it traditionally provides an “all
or nothing” service, which may be less than optimal.  For
example, in many cases it may be desirable to provide a
reduced level of QoS to a larger number of users.  In order
to do this, the network and applications need some way to
communicate on what levels of QoS would be acceptable
and can currently be supported.

3. DYNAMIC QOS APPROACH

Our approach, which we call “Dynamic QoS”, is resource
reservation based, similar to that associated with the
intserv architecture, except that we use an expanded notion
of the meaning of a “reservation”.  With “Dynamic QoS,”
a resource reservation request specifies a range of values,
and the network makes a commitment to provide service at
a specified point within this range.   Applications request
QoS by specifying the minimum level of service they are
willing to accept and the maximum level of service they
are able to utilize, and then adapt to the specified point
within this range that the network commits to provide,
which may change with time.  Changes in allocation are
signaled to the application, which adapts its behavior to
match what is available.  If the allocation drops below the
minimum level of service specified, the reservation is
dropped.  Treating reservations as ranges, and providing a
mechanism for the network to signal the current allocation
within the range, provides the flexibility needed for
operation in a dynamic environment in which network
conditions are changing.

There are several points to note about our approach. One is
that we assume the link layer deals with errors, can
provide information on resulting effective link bandwidth,
and can provide QoS support in a shared media network
environment.  Secondly, our QoS approach is decoupled
from routing.  We assume access to a forwarding table, but
do not make any assumptions on what routing protocol is
building this table. Last, our approach uses “soft-state” to

establish QoS along the new route when a change occurs.
(This decoupling was also made in another approach [11]).

The Dynamic QoS approach can be divided into three
parts: 1) additions to RSVP to support reservation ranges
and bottleneck link discovery, 2) the bandwidth allocation
algorithm, and 3) the application interface.  These are each
briefly discussed below.

3.1 Dynamic RSVP Protocol (dRSVP)

We made several additions to the standard RSVP protocol
to support a reservation range.  We also made some
additions to support bottleneck link discovery for a given
flow, in order to determine the bandwidth available on a
flow’s end-to-end path1. We refer to the resulting protocol
as “Dynamic RSVP” (dRSVP). These additions are listed
below, with the assumption that the reader is familiar with
the basic structure and functionality of RSVP [2].
Message processing rules were also added and/or modified
to deal with these additions (but are not discussed here).

 To describe ranges of traffic flows, an additional flow
specification (flowspec) was added to Resv messages,
and an additional traffic specification (tspec) was
added to Path messages.

 To allow nodes to learn about “downstream” resource
bottlenecks, we added a “measurement specification”
(mspec) to the Resv messages.

 To allow nodes to learn about “upstream” resource
bottlenecks, we created a new reservation notification
(ResvNotify) message, which carries a “sender
measurement specification” (smspec) information.

 Admission control processing was changed to deal
with bandwidth ranges.

 We added a bandwidth allocation algorithm that
divides up available bandwidth among admitted flows,
taking into account the desired range for each flow as
well as any upstream or downstream bottlenecks for
each flow.

 We extended the API to deal with bandwidth ranges.

The process of discovering the bottleneck link on a flow’s
path is illustrated in figure 1 for a simple network in which
node S sends data to node R through intermediate nodes
N1, N2, N3, and N4.  The nodes are connected by links,
shown in the figure as wide bars, with the width of the bar

                                                            
1 Here, we define a flow to be a user packet stream resulting
from a single user activity that has the same QoS requirements
[1].
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corresponding to the bandwidth available on the link.  The
adaptive application running on node S can generate data
at rates within the range from sl to sh.  These values are
communicated in Path messages, which flow through the
network hop by hop, following the same route as the data
messages, to the receiver R.  Upon receipt of the Path
messages, the receiving application on R requests a
reservation for this flow, with QoS range (sl, sh).  The
request is carried through the network in Resv messages,
which is the reverse of the route followed by the Path
messages (assuming bi-directional, symmetric links).

Each node, upon receiving the Resv message, performs an
admission control check and computes the bandwidth,
within the range (sl, sh), that it can allocate to the flow.
Assuming the admission control test passes, the Resv
message is propagated upstream towards S.  The Resv
message also contains a “receiver measurement
specification” value, denoted m r. The value of m r  is
initialized at R to sh, but as each node propagates the Resv
message upstream, if the bandwidth allocation that it is
able to give the flow is less than the received mr value, it
reduces the mr value to the allocation. The value of mr

received by each node informs it of any downstream
bottlenecks. S applies similar logic to the Application
Program Interface (API), treating as if it were an upstream
link. In our example, the application receives allocation a,
as shown, indicating the bandwidth that has been reserved
end-to-end through the network.  The application must
adapt to a in order to receive the agreed-upon service
(controlled-load, in our implementation). If the reservation
successfully propagates all the way through the network,
node S initiates a ResvNotify message.  This contains a
“sender measurement specification”, denoted m s . This
propagates toward R, and in a similar fashion each node
limits the value of ms to the bandwidth that it is able to
allocate for the flow.  The value of ms received by each
node informs it of any upstream bottlenecks.  In our
example, node N2 learns that there is a downstream
bottleneck of width adn and an upstream bottleneck of
width aup, as shown in the figure.

The dRSVP protocol supports multicast flows and, as a
result, aggregating information (i.e., flowspecs, mr, ms) for
multiple receivers and/or senders needs to done.
Processing rules have been defined to support different
reservation styles, but are not discussed here (due to space
considerations).

3.2  Bandwidth Allocation Algorithm

When a node receives Resv messages for a new flow, it
must determine whether to accept the given flow, and what
allocation to assign to the flow. This section provides a

high-level overview of the bandwidth allocation algorithm
that is executed by each QoS-capable node in a flow’s
path. The goal of the algorithm is to determine how much
bandwidth on each downstream interface to allocate to
each flow, given knowledge of the upstream and
downstream bottleneck bandwidth values per flow (which
are signaled by dRSVP). We have chosen to support a QoS
approach that does not attempt to guarantee that a fixed
level of QoS will be preserved through topology changes.
(We believe that to fully ensure that a fixed level QoS can
be maintained in a dynamic environment would result in a
significant under-utilization of the network.)  Instead,
when topology changes occur (only bandwidth at the
present time), our approach allows the new level of
available resources to be discovered and allows QoS levels
to be adjusted accordingly. QoS ranges are interpreted here
to be the bounds of what the network could provide for a
given flow. The network provides service at a signaled
QoS allocation point within the range requested in the QoS
reservation request.

As the number of application flows competing for
resources increases, rather than simply refusing to admit
new flows or preempting existing flows, the algorithm
attempts to adjust the allocation for each flow, so that all
flows can be accommodated.  The algorithm attempts to
give each flow the minimum bandwidth requested, plus a
fraction which is proportional to the requested bandwidth
range.  The algorithm uses information collected by
dRSVP on flow bottlenecks, both upstream and
downstream, to determine the amount of bandwidth
available for a given flow.

In order to reduce protocol overhead, we execute the
bandwidth allocation algorithm only when a new Resv
message is received and either a parameter associated with
the flow (i.e., flowspecs, mr, m s) has changed or the
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Figure 1.  Overview of dRSVP
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outbound link’s bandwidth has changed.  If the bandwidth
allocation is invoked, Resv messages will be sent to
upstream senders to refresh reservation state for a given
flow.  Furthermore, even though the algorithm computes
new bandwidth allocations for all flows, to avoid creating
a cascading “storm” of Resv messages, we only send the
Resv upstream for the flow which is being refreshed.  This
keeps overhead low, at the expense of delaying possible
application adaptation.  The sender application will only
learn about reservation allocation changes at most once per
refresh interval.  If the interval is long with respect to the
rate at which the network resources are changing, the
application may over or under utilize the network, possibly
resulting in non-conforming application traffic which
would be subject to policing.

3.3 Application Interface

For the application to signal its requirements and to adapt
to dynamic network conditions, the API between dRSVP
and the application needed to be modified.  We extended a
current RSVP API to include this capability, which is
called the dRSVP Application Programming Interface
(dSCRAPI).  This API is based on the SCRAPI interface
provided with ISI’s RSVP implementation [14].  The API
allows an application to specify the range of bandwidths
within which it is capable of operating, and to request QoS
support for operation within this range. A “callback”
mechanism is provided to allow the application to learn the
status of a reservation request, and to learn the current
allocated bandwidth within the requested range. The
application can then adapt its transmission rate to the
allocated level, and will receive QoS support for its traffic.

4. IMPLEMENTATION STATUS AND DISCUSSION

We have implemented dRSVP by making additions to
ISI’s version of the RSVP protocol running under
FreeBSD. We run dRSVP on Intel-based PCs with the altq
package installed[15][16].  Class Based Queueing (CBQ)
[17] is configured per interface, with a percentage of the
available bandwidth allocated to the reserved traffic class,
control traffic class, and best-effort traffic class. Our
implementation provides a Controlled Load service [18],
which means that if the application adjusts its transmission
to stay within the current level of service, it will not
experience congestion.  In this regard, our approach could
be considered a form of congestion control with explicit
rate indication. However, our approach could also be
extended to other service models (e.g., Guaranteed QoS).

We have created a testbed in which we can emulate
changing link bandwidths. Currently, the testbed consists
of an internetwork of Ethernet LANs, with a maximum of

2 nodes per LAN; a Control LAN that is connected to all
testbed nodes; a testbed controller process running on the
Control LAN that sends commands to different nodes to
modify interface bandwidths; and a bandwidth manager
process running on all testbed machines that accepts
bandwidth commands from the testbed controller and
informs the dRSVP process. To reflect the change in link
bandwidth for a given interface, the dRSVP process
modifies the corresponding CBQ parameters in the kernel
to reflect the change in bandwidth for a given (outbound)
interface.  In subsequent testing we found these changes
actually resulted in the anticipated bandwidth changes on
the outbound interface. Eventually, we would like to
migrate to a radio environment.

Also part of the testbed are a set of adaptive applications.
We modified a streaming audio application (vat) and video
application (vic) to support bandwidth conditions that
work with the new API.  Also modified were several
RSVP-aware test applications created by the Naval
Research Laboratories, called mgen and drec.  We
implemented the new  API, dSCRAPI, as an extension to
SCRAPI [14].

Tests and demonstrations performed in our testbed
comparing standard and dynamic RSVP have illustrated
the benefits of the adaptive QoS approach in a varying
bandwidth environment. Specifically, we have
demonstrated that dRSVP divides available bandwidth
among several applications, that applications adapt to
variable bandwidth allocations, and that they receive QoS
support under degraded conditions. A quantitative analysis
is currently underway.  Two items in particular we want to
study are the overhead of dRSVP and its impact in the
dynamic network environment, and the impact of dRSVP
on user/application performance. We are also interested in
the stability of protocol when node movement occurs and
the effectiveness of dRSVP under these conditions. Since
dRSVP relies on “soft state” to re-establish QoS along a
new route, when a route does change, there will be a
period during which a flow receives only best-effort
service.

5. CONCLUSION

The problem of supporting QoS in a dynamic network
environment is complex and will require QoS support at
multiple layers of the protocol stack.  The applications
running in this environment will influence the type of
support provided. We believe there is a large class of
applications that can tolerate transient periods of degraded
service, yet benefit from the Dynamic QoS mechanisms
proposed here. To adapt to changing network conditions,
these applications need to be informed of changes.
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This paper has presented an end-to-end approach to
dealing with dynamic network conditions and briefly
discusses an implementation of the approach.  The
Dynamic QoS approach rests on the assumption is that the
link layer has the capability to inform the network layer of
effective bandwidth changes. This approach needs to be
quantitatively evaluated, ideally in a realistic environment.
Evaluations are currently underway to evaluate our
implementation in an emulated dynamic bandwidth
environment, and results should provide some
understanding of its effectiveness.
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