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A New Approach For Regularized

Image Interpolation

Abstract

This paper presents a non-iterative regularized

inverse solution to  the image interpolation problem.  This

solution is based on the segmentation of the image to be

interpolated into overlapping blocks and the interpolation

of each block, separately. The purpose of  the overlapping

blocks is to avoid edge effects.  A global regularization

parameter is used in interpolating each block. In this

solution, a single matrix inversion process of moderate

dimensions is required in the whole interpolation process.

Thus, it avoids the large computational cost due to the

matrices of large dimensions involved in the interpolation

process. The performance of this approach is compared to

the standard iterative regularized interpolation scheme and

to polynomial based  interpolation schemes   such as the

bicubic and cubic spline techniques. A comparison of the

suggested approach with some algorithms implemented in

the commercial ACDSee software has been performend in

the paper. The obtained results reveal that the suggested

solution has a better performance as compared to other

algorithms from the MSE and the edges preservation points

of view. Its computation time is relatively large as compared

to traditional algorithms but this is acceptable when image

quality is the main concern.

Keywords: Image Interpolation, Regularized

Interpolation, Cubic Spline, Bicubic, Laplacian.

1. INTRODUCTION

Image interpolation is the process by which a high
resolution (HR) image is obtained from a low resolution (LR)
one. Image interpolation has a wide range of applications in
numerous fields such as medical image processing, military
applications, space imagery, image decompression and digital
HDTV.

The image interpolation problem has been intensively
treated in the literature [1-12]. Conventional interpolation
algorithms such as the bicubic and cubic spline algorithms
have been widely used in image interpolation [1-12]. These
conventional algorithms are space invariant algorithms based
on the appropriate choice of a basis function. They don’t
consider the spatial activities of the image to be interpolated.
This means that the variations in pixel values of the LR image
are not considered. They also don’t consider the mathematical
model by which the imaging sensors capture the image.

Spatially adaptive variants of the above mentioned
algorithms have also been developed [13-15]. Although these
adaptive algorithms improve the quality of the interpolated
image especially near edges, they still don’t consider the
mathematical model by which the image capturing devices
operate. El-Khamy et al. have proposed a unified approach for
adaptive polynomial based image interpolation [16,17]. This
approach is based on the optimization of the image interpolation
formula using a single controlling parameter to preserve edges
through the interpolation process. Better results are expected
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if the pre-requisites of the modern sampling theory are
considered in the interpolation process [18].

In fact, most image capturing devices are composed of
charge-coupled devices (CCD’s). In CCD imaging, there is an
interaction between the adjacent points in the object to be
imaged to form a pixel in the obtained image [19-22]. If this
model of interaction is considered in image interpolation, the
interpolation process will be similar to a process of imaging
with an HR imaging device to a great extent and better results
are expected to occur.

Some image interpolation algorithms have been
introduced considering this interaction process [19-22]. The
linear minimum mean square error (LMMSE) image
interpolation algorithm is one of them [19,21]. Another one is
the regularized image interpolation algorithm. This regularized
interpolation algorithm has been previously solved in a
successive approximation manner to avoid the matrix inversion
process [20].

In this paper, we suggest a new implementation of   the
regularized image interpolation algorithm. In this suggested
implementation, we solve the problem using a non-iterative
inverse solution. This implementation requires a single matrix
inversion of moderate dimensions if a global regularization
parameter is used.

2. LR IMAGE DEGRADATION MODEL

In the imaging process, when a scene is imaged by
an HR imaging device, the captured HR image can be named
f(n

1
,n

2
) where n

1
, n

2
=0,1,2,….N-1. If the same scene is

imaged by an LR imaging device, the resulting image can be
named g(m
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=0,1,2,….M-1. Here M=N/R,

where R is the ratio between the sizes of f(n
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)  and

g(m
1
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2
) .  The relationship between the LR image and the

HR image can be represented by the following mathematical
model [19-22]:

vDfg +=                                                               (1)

where f , g and v are lexicographically ordered vectors of the
unknown HR image, the measured LR image and additive noise
values, respectively. These lexicographically ordered vectors
are obtained by rearranging the image into a single column.
The matrix D represents the filtering and down sampling
process, which transforms the HR image to the LR image. The
model of filtering and down sampling is illustrated in Figure 1.
The LPF in the figure refers to the averaging process of two
adjacent pixels.

The vector f is of size N2×1 and the vectors g and v
are of size M2×1. The matrix  D is of size M2×N2 which can be

written as [19-22]:

D = D1  �  D1                                                              (2)

where � represents the Kronecker product, and the N/2 × N

matrix D1 represents the one dimensional (1-D) low pass filtering
and down sampling . For M=N/2, we have:

                                                                                       (3)

From the above model, it is clear that the process of
obtaining an HR image from an LR image is an inverse problem,
which requires inverting the operator D. It is clear that, the
matrix D is not a square matrix, so its direct inversion is not
possible.

The target of the image interpolation process is the
estimation of the vector f given the vector g. According to the
modern sampling theory, this process requires a correction
pre-filtering step in the reconstruction process [18]. This
correction filter is obtained as the inverse of the cross correlation
sequence between the acquisition model filter and the
reconstruction filter [18]. Unfortunately, the estimation of this
correction filter in our case is difficult or even impossible. This
is because our problem represented by equation (1) is an ill-
posed inverse problem [19-22]. The treatment of ill-posed inverse
problem in the presence of noise is performed using different
techniques such as regularization techniques and Wiener
filtering techniques [18]. In this paper, we present an efficient
regularized solution to the problem of image interpolation.

3. POLYNOMIAL BASED IMAGE INTERPOLATION

The process of image interpolation aims at estimating
intermediate pixels between the known pixel values as shown
in Figure 2. To estimate the intermediate pixel at position x , the
neighboring pixels and the distance s are incorporated into the
estimation process.

For equally spaced 1-D sampled data,                   , many
interpolation techniques can be used. The value to be
interpolated,             , can, in general, be written in the form

[1-12]:

Figure 1: Down sampling process from the N×N HR image to the (N/2) × N/2) LR image.
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(4)

where  is the corresponding interpolated
function,  is the interpolation kernel , and x and x

k

represent continuous and discrete spatial distance, respectively.
The values of  c

k
 represent the interpolation coefficients, which

need to be estimated prior to the interpolation process.

From the classical Sampling theory, if f(x) is band limited

to (-   ,   ) , then [4,6]:

(5)

This is known as the ideal interpolation. From the
numerical computations point of view, the ideal
interpolation formula is not practical due to the slow rate
of decay of the interpolation kernel sinc(x).  So,
approximations such as the bicubic and cubic spline
interpolation techniques are used as alternatives [1-13].

As shown in Figure 2, we define the distance
between x, x

k
 and x

k+1
 as [6,13,22]:

(6)

For the Bicubic and Cubic spline image

interpolation algorithms we have [6,13,22]:

i- Bicubic

(7)

ii- Cubic Spline

(8)

For the case of bicubic interpolation, the sample values
are used as the interpolation coefficients. On the other hand,
cubic spline interpolation requires the estimation of the
interpolation coefficients using a digital filtering step prior to
the interpolation process [1-13]. In image interpolation, these
techniques are performed row-by-row then column-by-column.

4. REGULARIZED IMAGE INTERPOLATION

In section II, we have concluded that the image
interpolation problem for CCD captured images is an inverse
problem. An inverse problem is characterized as ill- posed
when there is no guarantee for the existence, uniqueness and
stability of the solution based on direct inversion. The
solution of the inverse problem is not guaranteed to be stable
if a small perturbation of the data can produce a large effect in
the solution. Image interpolation belongs to a general class
of problems that were rigorously classified as ill-posed
problems. Regularization theory, which was basically
introduced by Tikhonov and Miller, provides a formal basis
for the development of regularized solutions for ill-posed
problems [23,24]. The stabilizing function approach is one of
the basic methodologies for the development of regularized
solutions. According to this approach, an ill-posed problem
can be formulated as the constrained minimization of a certain
function, called stabilizing function [23,24]. The specific
constraints imposed by the stabilizing function approach on
the solution depend on the form and the properties of the
stabilizing function used.   From the nature of the problem,
these constraints are necessarily related to the a priori
information regarding the expected regularized solution.

According to the regularization approach, the
solution of equation (1) is obtained by the minimization of
the cost function [24]:

(9)

where C is the regularization operator and    is the
regularization parameter .

This minimization is accomplished by taking the derivative
of the cost function yielding:

            (10)

The superscript ‘t’ refers to matrix transpose.

Solving equation (10) for that    that provides the
minimum of the cost function yields:

Figure 2: 1-D signal interpolation. The Pixel at position x is estimated using its neighborhood pixels and the distances.
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(11)

where                                                                     (12)

The rule of the regularization operator C is to move
the small eigenvalues of D away from zero while leaving
the large eigenvalues unchanged. It also incorporates prior
knowledge about the required degree of smoothness of f
into the interpolation process.

The generality of the linear operator C allows the
development of a variety of constraints that can be
incorporated into the interpolation operation. For instance:

a: C=I. In this case the regularized solution reduces to the
regularized inverse filter solution, which is named the
pseudo inverse filter solution, and it is represented as [24]:

                                           (13)

b:  C = [finite difference matrix]. In this case, the operator
C is chosen to minimize the second order (or higher order)
difference energy of the estimated image [24]. The 2-D
Laplacian illustrated in Figure 3 is preferred for minimizing
the second order difference energy. The 2-D Laplacian is
the most popular regularization operator. It is the used

operator in the paper

Figure 3:  The 2-D Laplacian operator.

c-   C =[eye model]. If the interpolated image is required to
be appealing to the human eye from a perceptual viewpoint,
the operator C is chosen as a block circulant matrix whose
properties in the Fourier domain match the spatial frequency
response of the human visual system [24]. The regularization
parameter     controls the trade-off between fidelity to the
data and the smoothness of the solution.

One of the possible previously suggested solutions
to this problem is to use a successive approximation for
the solution, which can be implemented using the following
equation  [20]:

(14)

where f
i
 is the obtained HR image at iteration i and  is

a convergence parameter. This method is a good solution that
avoids the large computational complexity involved in the matrix
inversion process in equation (11). The drawback of this method
is the computational time where a large number of iterations is
required to get a good HR image.

In this paper, we suggest another solution to the
regularized image interpolation problem. This solution is
implemented by the segmentation of the LR image into
overlapping segments and the interpolation of each segment
separately using equation (11) as an inversion process. It is
clear that, if a global regularization parameter is used a single
matrix inversion   process for a matrix of moderate dimensions
is required because the term                                         is independent
on the image to be interpolated. Thus the suggested solution

is efficient from the point of view of computational cost.

5. EXPERIMENTAL RESULTS

In this section, several experiments have been carried

out to test the performance of the suggested inverse regularized

interpolation algorithm and compare it with traditional

interpolation algorithms. The images used in these experiments

are first down sampled and then contaminated by additive white

gaussian noise to simulate the LR image degradation model

given by equation (1). The LR images are then interpolated to

their original size and the MSE is estimated between the obtained

image and the original image. We use two measures for

performance evaluation of every image interpolation algorithm

implemented. These measures are the MSE and the correlation

coefficient a
e
 for edge pixels between the original image and the

interpolated image. In applying the correlation coefficient

measure, a Sobel edge detection operator is applied to both the

original and the interpolated images to extract edge pixels. The

correlation coefficient is estimated between edge pixels in both

images. The higher the correlation coefficient, the larger the ability

of the image interpolation algorithm to preserve edges through

the interpolation process.

Figure 4: Lenna  Image: (a) Original Image (128 × 128).

  (b) LR image.  (64 × 64). SNR=25 dB.

In the first experiment, a 128 × 128 Lenna image has been

down sampled by 2 in each direction and contaminated by additive

white Gaussian noise to give an LR image of SNR=25 dB. The
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original and the LR images are illustrated in Figure 4.  The LR

image is then interpolated using bicubic, cubic spline, iterative

regularized and inverse regularized interpolation techniques. The

results of this experiment are given in Figure 5.

Figure 5: Interpolation Results of Lenna Image:

 (a) Bicubic. MSE=339, a
e
=0.56. CPU=0.7 s.

(b) Cubic Spline. MSE= 342, a
e
=0.57. CPU=1.1 s.

(c) Iterative Regularized (100 iterations). MSE= 313, a
e
=0.66.

CPU=8.6 s.

 (d) Inverse Regularized. MSE=223, a
e
=0.78. CPU= 17.2 s.

Figure 6:  Error Patterns For Lenna Image Interpolation.

(a) Bicubic. (b) Cubic Spline. (c) Iterative Regularized.

 (d) Inverse Regularized

An error image is also estimated between the original

image and each of the interpolated  images. If  the

interpolation is  ideal, all  the pixel values of this error image

must be zero. In this experiment, the error images are inverted

and displayed in Figure 6. These error images reveal the

ability of the suggested inverse regularized interpolation

algorithm to preserve edges. It is clear from these results

that the suggested algorithm gives better results than

traditional techniques. The values of the MSE, the edge

pixels correlation coefficient and the computation time using

a 1 GHz processor are included with the figures for each

interpolation technique. Several other experiments have been

carried and the results are given in Figures 7 to 15.

Figure 7:  Building  Image: (a) Original Image (128×128)

(b) LR image.  (64×64). SNR=25 dB.

Figure 8: Interpolation Results of Building Image

(a) Bicubic. MSE=1234, a
e
=0.22. CPU=0.7 s

(b) Cubic Spline. MSE=1304 , a
e
=0.39. CPU=1.1 s

(c) Iterative Regularized (100 iterations). MSE=878 , a
e
=0.5.

CPU=8.6 s

(d) Inverse Regularized. MSE=971, a
e
=0.47. CPU= 17.2 s
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Figure 9: Error Patterns For Building Image Interpolation.

(a) Bicubic. (b) Cubic Spline. (c) Iterative Regularized.

(d) Inverse Regularized.

In our experiments, the inverse regularized image

interpolation approach is tested on the available LR images

with a global regularization parameter      =0.001. The LR image

is segmented into overlapping blocks of size 12×12 pixels each.

Each block is interpolated separately to the size of 24× 24 pixels

and 8 pixels are removed from the four sides of each block to

yield a small block of size 8×8 in order to avoid the edge effects.

By the process of segmentation and the usage of a global

regularization parameter, this technique requires a single matrix

inversion of size 576×576 which is a moderate size. We have

found that the size of 12×12 is the best choice. If we choose

blocks of smaller dimensions, we will not be able to remove

edge pixels to avoid edge effects. If we use blocks of larger

dimensions the matrix required to be inverted will be of

dimensions larger than 576×576 which will be difficult and time

consuming. The size of the matrix to be inverted is fixed

regardless of the size of the LR image. For the case of iterative

regularized image interpolation, we use a regularization

parameter      =0.001 and a convergence parameter      =0.125.

For interpolating an image of size 64×64 to size 128×128,

the matrix                                      will be of dimensions 4096×4096.

If the LR image is of dimensions 128×128, the same matrix

will be of dimensions 16384×16384. It is clear that the

computational cost for iterative regularized image

interpolation increases largely if the LR image dimensions

increase, while that for inverse regularized interpolation

approach will remain linearly proportional to the LR image

dimensions.

The effect of the choice of the global regularization

parameter     in both iterative and inverse regularized image

interpolation approaches is studied for the different used

Figure 10:  Plane  Image: (a) Original Image (256×256).  (b) LR image.  (128×128). SNR=25 dB.

images and the results are given in Figures 16 and 17. It is
clear that the effect of      on MSE is small for    in the range
of 10-5 to 10-2 for the iterative solution and in the range of
10-5 to 1 for the inverse solution.  The performance of the

implemented image interpolation techniques are studied

for different signal to noise ratios on the different used

images and the results are given in Figures 18 to  21. It is

clear that the inverse regularized interpolation approach

has the least MSE in most cases. Some experiments have

been carried out to compare the performance of the

commercially available ACDSee software [25] to the

suggested interpolation approach. In this software there

are different implemented interpolation algorithms such
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as the Lanczos and the Mitchell algorithms.  Results of

these experiments are tabulated in tables (1) and (2). These

results reveal the superiority of the suggested inverse

regularized image interpolation approach to the

commercially available techniques.

6. CONCLUSION

This paper suggests an efficient implementation of the
regularized image interpolation problem as an inverse problem.
The suggested implementation reduces the computational cost
of the image interpolation problem to a single matrix inversion
problem of moderate dimensions. The obtained results using
the suggested regularized image interpolation algorithm is
compared to the results using the iterative regularized image
interpolation algorithm and the traditional polynomial based
image interpolation algorithms. The suggested implementation
of regularized image interpolation has proved to be superior to
polynomial based image interpolation techniques from the MSE
point of view and from the visual quality point of view.  It has
also proved to be superior to the iterative regularized image

interpolation from the computational time point of view when
the dimensions of the image to be interpolated are large. The
suggested implementation has higher edge preservation ability

than other interpolation algorithms.
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Figure 14:  Interpolation Results of  Test Pattern Image. (a) Bicubic. MSE=315, a
e
=0.47. CPU=2.6 s.

(b) Cubic Spline. MSE=312, a
e
=0.46. CPU=4.2 s. (c) Iterative Regularized (100 iterations). MSE=324, a

e
=0.6. CPU=138 s.  (d) Inverse

Regularized. MSE=68, 
e
=0.89. CPU= 62 s.
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Figure 15:  Error Patterns For Test Pattern Image Interpolation.

(a) Bicubic.  (b) Cubic Spline. (c) Iterative Regularized.  (d) Inverse Regularized.
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 Figure 16:  Effect of regularization parameter on iterative regularized image interpolation

Figure 17: Effect of regularization parameter on inverse regularized image interpolation.
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Figure 18:  MSE vs. SNR for the Lenna Image.

Figure 19:  MSE vs. SNR for the Building Image.
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Figure 20:  MSE vs. SNR for the Plane Image.

Figure 21:  MSE vs. SNR for the Test Pattern Image.
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Table 1:  Interpolation results for different noise free images.

Table 2:   Interpolation results for different noisy  images SNR=20 dB.


