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A New Approach for Solving
Nonlinear Equations Systems

Crina Grosan and Ajith Abraham, Senior Member, IEEE

Abstract—This paper proposes a new perspective for solving
systems of complex nonlinear equations by simply viewing them
as a multiobjective optimization problem. Every equation in the
system represents an objective function whose goal is to minimize
the difference between the right and left terms of the correspond-
ing equation. An evolutionary computation technique is applied
to solve the problem obtained by transforming the system into
a multiobjective optimization problem. The results obtained are
compared with a very new technique that is considered as efficient
and is also compared with some of the standard techniques that are
used for solving nonlinear equations systems. Several well-known
and difficult applications (such as interval arithmetic benchmark,
kinematic application, neuropsychology application, combustion
application, and chemical equilibrium application) are considered
for testing the performance of the new approach. Empirical results
reveal that the proposed approach is able to deal with high-
dimensional equations systems.

Index Terms—Computational intelligence, evolutionary
multiobjective optimization, metaheuristics, nonlinear equation
systems.

I. INTRODUCTION

SYSTEMS of nonlinear equations arise in many domains
of practical importance such as engineering, mechanics,

medicine, chemistry, and robotics. Solving such a system in-
volves finding all the solutions (there are situations when more
than one solution exists) of the polynomial equations contained
in the mentioned system. The problem is nondeterministic
polynomial-time hard, and it is having very high computa-
tional complexity due to several numerical issues [27]. There
are several approaches for solving these types of problems.
Van Hentenryck et al. [27] divided these approaches into two
main categories:

1) interval methods that are generally robust but tend to
be slow;

2) continuation methods that are effective for problems for
which the total degree is not too high [27].

The limitations of Newton’s method are pointed out in
the aforementioned works. Bader [5] mentioned that standard
direct methods, such as Newton’s method, are impractical
for large-scale problems because of their high linear algebra
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costs and large memory requirements. Bader proposed a tensor
method using Krylov subspace methods for solving large-
scale systems of linear equations. There is a condition to be
fulfilled—the equations must be continuously differentiable at
least once. Bader’s paper also provides a good review of similar
research for solving systems of equations.

Krylov subspace methods based on moment matching are
also used by Salimbahrami and Lohmann [44]. Effati and
Nazemi [18] proposed a very efficient approach for solving
nonlinear systems of equations. Although there are several
existing approaches for solving systems of nonlinear equations,
there are still limitations of the existing techniques, and, still,
more research is to be done.

There is a class of methods for the numerical solutions of the
above system, which arise from iterative procedures used for
systems of linear equations [39], [43]. These methods use re-
duction to simpler 1-D nonlinear equations for the components
f1, f2, . . . , fn [26]. In a strategy based on trust regions [30], at
each iteration, a convex quadratic function is minimized to de-
termine the next feasible point to step to. The convex quadratic
function is the squared norm of the original system plus a linear
function multiplied by the Jacobian matrix. There is also the
approach of homotopy methods, which are sometimes referred
to as continuation methods [28], [30], [38]. This approach be-
gins with a “starting” system of equations (not the true system)
whose solution is known. This starting system is gradually
transformed to the original system. At each stage, the current
system is solved to find a starting solution for the next stage
system. The idea is that as the system changes, the solutions
trace out a path from a solution of the starting system to a solu-
tion of the original system. At each stage, the current system is
normally solved by a Newton-type method [28]. The dimension
reducing method, the modified reducing dimension method,
and the perturbed dimension reducing method [21]–[25] are
also methods for numerical solutions of systems of nonlinear
equations, which incorporate Newton and nonlinear successive
overrelaxation algorithms [39] and use reduction to simpler 1-D
nonlinear equations (but they quadratically converge).

In the approach proposed in [36], the system of equations
is transformed into a constraint optimization problem. At each
step, some equations that are satisfied at the current point are
treated as constraints and the other ones as objective functions.
The set {1, 2, . . . , n} is divided into two parts, i.e., S1 and S2,
where S2 denotes the complement {1, 2, . . . , n} \ S1. Then, the
problem is given by

minimize
∑

i∈S1

f2
i (x)

subject to fj(x) = 0, j ∈ S2.
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The equations system is reduced to the same form in the
approach used in [37].

The optimization problem obtained in [28] by transforming
the systems of equations is similar to the one proposed in
[36] and considers the equation given by the sum of squared
components f1, f2, . . . , fn.

In this paper, we propose a novel approach that transforms
a system of nonlinear equations into a multiobjective opti-
mization problem. The new obtained problem is solved using
the standard Pareto dominance relationship between solutions
and an iterative strategy that evolves some random solutions
in the search for optimal solutions. The technique uses prin-
ciples from the evolutionary computation field and is able
to approximate the solutions even for large-scale systems of
equations. Moreover, no additional constraints involving extra
problem knowledge (such as the condition that equations must
be differentiable) are required.

The successful application of the multiobjective optimization
approaches is well known, and there is a huge amount of
work in this field reporting applications in different domains
in science and engineering [1], [11].

Abido [2] developed Pareto-based multiobjective evolution-
ary algorithms for solving a real-world power system mul-
tiobjective nonlinear optimization problem. Specifically, the
nondominated sorting genetic algorithm (NSGA), the niched
Pareto genetic algorithm, and the strength Pareto evolution-
ary algorithm were developed and successfully applied to an
environmental/economic electric power dispatch problem.

Benedetti et al. [6] illustrated that when dealing with the
multiobjective optimization of the tire suspension system of
a racing car, a large number of design variables and a large
number of objectives have to be taken into account. Two
different models have been used, which are both validated on
data coming from an instrumented car—a differential equation-
based model and a neural network model. Up to 23 objective
functions have been defined, and at least 14 of which were in
strict conflict of each other. Benedetti et al. provided a fuzzy
definition of optima, being a generalization of Pareto optimal-
ity, and the result of such an approach is that subsets of Pareto
optimal solutions can be properly selected as a consequence
of input from the designer. The obtained optimal solutions
were compared with the reference vehicle and with the optima
previously obtained with the design of experiment techniques
and different multiobjective optimization strategies.

Tan et al. [49] developed a cooperative coevolutionary algo-
rithm (CCEA) for multiobjective optimization, which applies
the divide-and-conquer approach to decompose decision vec-
tors into smaller components and evolves multiple solutions in
the form of cooperative subpopulation. Incorporated with vari-
ous features like archiving, dynamic sharing, and an extending
operator, the CCEA is capable of maintaining archive diversity
in the evolution and uniformly distributing the solutions along
the Pareto front. Exploiting the inherent parallelism of coopera-
tive coevolution, the CCEA can be formulated into a distributed
CCEA that is suitable for concurrent processing that allows
the intercommunication of subpopulation residing in networked
computers and, hence, expedites the computational speed by
sharing the workload among multiple computers.

Deb et al. [12] used the NSGA II for the optimization of the
epoxy polymerization process. The problem is a well-known

chemical engineering problem and involves the optimization
of three conflicting objectives and 20 variables. A modified
differential evolution is used by Babu et al. [4] and Angira
and Babu [3] for solving practical multiobjective optimization
problems from chemistry.

Medaglia et al. [31] proposed an evolutionary method for
project selection problems with partially funded projects, mul-
tiple (stochastic) objectives, project interdependence (in the
objectives), and a linear structure for resource constraints. The
method is based on the posterior articulation of preferences
and is able to approximate the efficient frontier composed of
stochastically nondominated solutions.

Chen et al. [9] developed an efficient macroevolutionary
multiobjective genetic algorithm (MMGA) for optimizing the
rule curves of a multipurpose reservoir system in Taiwan.
Macroevolution is a new kind of high-level species evolution
that can avoid premature convergence that may arise during
the selection process of conventional genetic algorithms. The
MMGA enriches the capabilities of genetic algorithms to han-
dle multiobjective problems by diversifying the solution set.

Monitoring complex environmental systems is extremely
challenging because it requires environmental professionals
to capture impacted systems’ governing processes, elucidate
human and ecologic risks, limit monitoring costs, and satisfy
the interests of multiple stakeholders (e.g., site owners, regu-
lators, and public advocates). Reed et al. [42] illustrated how
evolutionary multiobjective optimization has tremendous po-
tential to help resolve these issues by providing environmental
stakeholders with a direct understanding of their monitoring
tradeoffs. Reed et al. used dominance archiving and automatic
parameterization techniques to significantly improve the ease of
use and efficiency of multiobjective optimization algorithms.

Heavy industry maintenance facilities at aircraft service cen-
ters or railroad yards must contend with scheduling preventive
maintenance tasks to ensure that critical equipment remains
available. All preventive maintenance tasks should be com-
pleted as quickly as possible to make the equipment available.
This means that the completion time should be also minimized.
A cost-effective schedule should strike some balance between a
minimum schedule and a minimum size workforce. Quan et al.

[41] used evolutionary algorithms to solve this multiobjective
problem. Rather than conducting a conventional dominance-
based Pareto search, Quan et al. introduced a form of utility
theory to find the Pareto optimal solutions. The advantage of
this method is that the user can target specific subsets of the
Pareto front by merely ranking a small set of initial solutions.

The performance of the proposed approach is evaluated
for several well-known benchmark problems from kinematics,
chemistry, combustion, and medicine. Numerical results reveal
the efficiency of the proposed approach and its flexibility to
solve large-scale systems of equations.

II. BASIC CONCEPTS

A nonlinear system of equations is defined as

f(x) =









f1(x)
f2(x)

...

fn(x)
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Fig. 1. Example of a solution for two nonlinear equations systems represented
by f1 and f2.

where x = (x1, x2, . . . , xn) refers to n equations and n vari-

ables, and f1, . . . , fn are nonlinear functions in the space of all

real valued continuous functions on Ω =
∏n

i=1
[ai, bi] ⊂ ℜn.

Some of the equations can be linear, but not all of them. Finding

a solution for a nonlinear system of equations f(x) involves

finding a solution such that every equation in the nonlinear

system is 0, i.e.,

(P )



















f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0.

(1)

In Fig. 1, the solution for a system having two nonlinear

equations is depicted.

There are also situations when a system of equations is

having multiple solutions. For instance, the system



















f1(x1, x2, x3, x4) = x2
1 + 2x2

2 + cos(x3) − x2
4 = 0

f2(x1, x2, x3, x4) = 3x2
1 + x2

2 + sin2(x3) − x2
4 = 0

f3(x1, x2, x3, x4) = −2x2
1 − x2

2 − cos(x3) + x2
4 = 0

f4(x1, x2, x3, x4) = −x2
1 − x2

2 − cos2(x3) + x2
4 = 0

has two solutions: (1, −1, 0, 2) and (−1, 1, 0, −2). The

assumption is that a zero, or root, of the system exists. The

solutions we are interested in are those points (if any) that

are common to the zero contours of fi, i = 1, . . . , n. There

are several ways to solve nonlinear equations systems [7],

[13]–[17], [39]. Probably the most popular techniques are the

Newton-type techniques. Some other techniques are as follows:

• trust-region method [10];

• Broyden method [8];

• secant method [16];

• Halley method [39].

The quasi-Newton methods are similar to the conjugate gra-

dient methods. The goal is to accumulate information from

successive line minimizations so that N such line minimiza-

tions lead to the exact minimum of a quadratic form in

N dimensions [40].

1) Newton’s Method: We can approximate f by the first-

order Taylor expansion in a neighborhood of a point xk ∈ ℜn.

Fig. 2. Example of the secant method.

Fig. 3. Illustrative example.

TABLE I
PARAMETERS USED BY THE EVOLUTIONARY APPROACH

The Jacobian matrix J(xk) ⊂ ℜn×n for f(x) evaluated at xk

is given by

J =









δf1

δx1

. . . δf1

δxn

...
...

δfn

δx1

. . . δfn

δxn









.

Then, we have

f(xk + t) = f(xk) + J(xk)t + O
(

‖p‖2
)

.

By setting the right side of the equation to zero and neglect-

ing terms of order higher than the first [O(‖p‖2)], we obtain

J(xk)t = −f(xk).

Then, the Newton algorithm is described as follows:

Algorithm 1 Newton algorithm.

Set k = 0.

Guess an approximate solution x0.
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TABLE II
PARETO FRONT OBTAINED BY THE EVOLUTIONARY APPROACH

Fig. 4. Pareto front obtained by the evolutionary approach.

Fig. 5. Sum of the absolute values of the nondominated solutions obtained.

Repeat

Compute J(xk) and f(xk).
Solve the linear system J(xk)t = −f(xk).
Set xk+1 = xk + t.
Set t = t + 1.

Until converge to the solution

The index k is an iteration index, and xk is the vector x after

k iterations. The idea of the method is to start with a value that

is reasonably close to the true zero, then replace the function

by its tangent, and compute the zero of this tangent. This zero

of the tangent will typically be a better approximation to the

function’s zero, and the method can be iterated.

Remarks:

1) This algorithm is also known as the Newton–Raphson

method. There are also several other Newton methods.

2) The algorithm converges fast to the solution.

3) It is very important to have a good starting value (the

success of the algorithm depends on this).

TABLE III
VALUES OF THE PARAMETERS USED IN THE EXPERIMENTS

BY THE EVOLUTIONARY APPROACH

TABLE IV
RESULTS FOR THE FIRST EXAMPLE

TABLE V
RESULTS FOR THE SECOND EXAMPLE

TABLE VI
BENCHMARKS USED IN THE EXPERIMENTS

TABLE VII
PARAMETERS USED BY THE EVOLUTIONARY APPROACH

FOR THE INTERVAL ARITHMETIC I1 BENCHMARK

4) The Jacobian matrix is needed; however, in many prob-

lems, analytic derivatives are unavailable.

5) If function evaluation is expensive, then the cost of

finite-difference determination of the Jacobian can be

prohibitive.

2) Broyden’s Method: Let us denote [40] the approximate

Jacobian by B and let

δx = −J−1f.



702 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 3, MAY 2008

TABLE VIII
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED FOR THE INTERVAL ARITHMETIC I1 BENCHMARK

Then, the ith quasi-Newton step δxi is the solution of

Biδxi = −fi

where

δxi = xi+1xi.

The quasi-Newton or secant condition is that Bi+1 satisfies

Bi+1δxi = δfi

where

δfi = fi+1 − fi.

This is the generalization of the 1-D secant approximation to
the derivative δf/δx. Many different auxiliary conditions to pin
down Bi+1 have been explored; however, the best-performing
algorithm in practice results from Broyden’s formula. This
formula is based on the idea of getting Bi+1 by making the
least change to Bi consistent with the secant equation. Broyden
illustrated that the resulting formula is given by

Bi+1 = Bi +
(δfi − Biδxi) ⊗ δxi

(δxi)2
.
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3) Secant Method: The secant method [40] is a root-finding

algorithm that uses a succession of roots of secant lines to better

approximate a root of a function. The secant method is defined

by the recurrence relation

xn+1 = xn − xn − xn−1

f(xn) − f(xn−1)
f(xn).

As evident from the recurrence relation, the secant method

requires two initial values, i.e., x0 and x1, which should ideally

be chosen to lie close to the root. Referring to Fig. 2, two points

a and b are initially considered. Then, the secant of the chord of

the graph of function f through the points (a, f(a)), (b, f(b))
is defined as

y − f(b) =
f(b) − f(a)

b − a
(x − b).

The point c is chosen to be the root of this line such that

f(b) +
f(b) − f(a)

b − a
(c − b) = 0.

Solving this equation gives the recurrence relation for the

secant method. The new value c is equal to xn+1, and b and

a are xn and xn−1, respectively.

4) Effati and Nazemi Method: Effati and Nazemi [18] pro-

posed a new method for solving systems of nonlinear equations.

The method proposed in [18] is shortly presented below.

The following notations are used:

xi(k + 1) = fi (x1(k), x2(k), . . . , xn(k))

f(xk) = (f1(xk), f2(xk), . . . , fn(xk))

i = 1, 2 . . . , n and xi : N → ℜ.

If there exists a t such that x(t) = 0, then fi(x(t − 1)) = 0,

i = 1, . . . , n. This involves that x(t − 1) is an exact solution for

the given system of equations.

Let us define

u(k) = (u1(k), u2(k), . . . , un(k))

x(k + 1) =u(k).

Define f0 : Ω × U → ℜ (Ω and U are compact subsets of

ℜn) as follows:

f0 (x(k), u(k)) = ‖u(k) − f (x(k))‖2

2
.

The error function E is defined as follows:

E[xt, ut] =

t−1
∑

k=0

f0 (x(k), u(k)) .

xt = (x(1), x(2), . . . , x(t − 1), 0)

ut = (u(1), u(2), . . . , u(t − 1), 0) .

Consider the following problem:

(P1)















minimize E[xt, ut] =
∑t−1

k=0
f0 (x(k), u(k))

subject to

x(k + 1) = u(k)
x(0) = 0, x(t) = 0 (x0 is known).

Fig. 6. Nondominated solutions obtained for i1 example. (a) Solutions whose
sum of the absolute values of the objective functions is less than or equal
to 2.5. (b) Sum of the absolute values of the objective functions for all the
nondominated solutions obtained.

TABLE IX
PARAMETERS USED BY THE EVOLUTIONARY APPROACH

FOR THE NEUROPHYSIOLOGY APPLICATION

As illustrated in [18], if there is an optimal solution for the

problem (P1) such that the value of E will be zero, then this is

also a solution (an exact solution) for the system of equations

to be solved. The problem is transformed to a measure theory

problem. By solving the transformed problem, ut is firstly

constructed, and from there, xt is obtained. The reader is

advised to consult [18] for more details. The measure theory

method is improved in [18]. The interval [1, t] is divided into

the subintervals S1 = [1, t − 1] and S2 = [t − 1, t]. Problem

(P1) is solved in both subintervals, and errors E1 and E2 are

obtained, respectively. This way, an upper bound for the total

error is found. If this upper bound is estimated to be zero, then

an approximate solution for the problem is found.

III. TRANSFORMATION INTO A MULTIOBJECTIVE

OPTIMIZATION PROBLEM

Some basic definitions of a multiobjective optimization prob-

lem and the optimality concept of the solutions [48] are pre-

sented in this section.
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TABLE X
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED FOR THE NEUROPHYSIOLOGY APPLICATION

Let Ω be the search space. Consider n objective functions f1,

f2, . . . , fn, i.e.,

fi : Ω → ℜ, i = 1, 2, . . . , n

where Ω ⊂ ℜm.

The multiobjective optimization problem is defined as

{

optimize f(x) = (f1(x), . . . , fn(x))
subject to x = (x1, x2, . . . xm) ∈ Ω.

For deciding whether a solution is better than another solu-

tion or not, the following relationship between solutions might

be used.

Definition 1—Pareto Dominance: Consider a maximization

problem. Let x and y be two decision vectors (solutions)

from Ω.

Solution x dominates y (also written as x ≻ y) if and only if

the following conditions are fulfilled.

1) fi(x) ≥ fi(y), ∀i = 1, 2, . . . , n.

2) ∃j ∈ {1, 2, . . . , n}: fj(x) > fj(y).

That is, a feasible vector x is Pareto optimal if no feasible vector

y can increase some criterion without causing a simultaneous

decrease in at least one other criterion. In the literature, other

terms have also been used instead of the Pareto optimal or

minimal solutions, including words such as nondominated,

noninferior, efficient, and functional-efficient solutions. The

solution x0 is ideal if all objectives have their optimum in a

common point x0.

Definition 2—Pareto Front: The images of the Pareto opti-

mum points in the criterion space are called the Pareto front.

The system of equations (P ) can be transformed into a multiob-

jective optimization problem. Each equation can be considered

as an objective function. The goal of this optimization function



GROSAN AND ABRAHAM: NEW APPROACH FOR SOLVING NONLINEAR EQUATIONS SYSTEMS 705

is to minimize the difference (in absolute value) between the

left side and the right side of the equation. Since the right term

is zero, the objective function is to be given by the absolute

value of the left term.

The system (P ) is then equivalent to

(P )















f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0
...

fn(x1, x2, . . . , xn) = 0

⇔ (P ′)















minimize abs (f1(x1, x2, . . . , xn))
minimize abs (f2(x1, x2, . . . , xn))
...

minimize abs (fn(x1, x2, . . . , xn)) .

IV. EVOLUTIONARY NONLINEAR EQUATIONS SYSTEM

Evolutionary algorithms are ubiquitous nowadays, having

been successfully applied to numerous problems from dif-

ferent domains, including optimization, automatic program-

ming, machine learning, operations research, bioinformatics,

and social systems. In many cases, the mathematical function

that describes the problem is not known, and the values at

certain parameters are obtained from simulations. In contrast to

many other optimization techniques, an important advantage of

evolutionary algorithms is that they can cope with multimodal

functions.

An evolutionary algorithm approach is proposed for solving

the multiobjective optimization problem obtained by transform-

ing the system of equations. The following steps may be used.

Initialization: Some starting points (initial solutions) are

generated based on the problem domain of definition (which

can be approximated for each particular problem). A real

representation of solution is considered. Each solution is a

vector whose length is equal to the number of variables for the

considered system of equations.

Evolution Phase: The current available solution is evolved

in an iterative manner. Genetic operators (such as crossover

and mutation) are used. By applying crossover between two

solutions, two new solutions are obtained, which are convex

combinations of the initial two solutions. The mutation operator

produces modification of the solution over which it is applied.

This consists of generating a new solution with Gaussian dis-

tribution (or any other distribution) starting from the initial

considered solution (the one that is mutated). More details

about several existing forms of these operators can be found

in [1], [19], [20], and [45]–[47].

To compare two solutions, the Pareto dominance relationship

is used. An external set is used where all the nondominated

solutions found during the iteration process are stored. The

size of this external set is fixed and depends on the number of

nondominated solutions to be obtained at the end of the search

process. At each iteration, this set is updated by introducing all

the nondominated solutions obtained at the respective step and

by removing from the external set all solutions that will become

dominated. When the size of this set is overloaded, some of the

solutions are removed.

Fig. 7. Nondominated solutions obtained for the neurophysiology application.
(a) Solutions whose sum of the absolute values of the objective functions is less
than or equal to 1. (b) Sum of the absolute values of the objective functions for
all the nondominated solutions obtained.

TABLE XI
PARAMETERS USED BY THE EVOLUTIONARY APPROACH

FOR THE CHEMICAL EQUILIBRIUM APPLICATION

There are several criteria that must be taken into account

while comparing two nondominated solutions in order to select

one of them. One of the conditions that can be used in our case

for comparing solutions that are nondominated is to consider

as being the best solution among the two solutions the one for

which the sum of all absolute values of the objectives is closer

to zero. This means that, overall, the value of each objective is

close to zero, or there is good balance between objectives hav-

ing a lower value (desired) and objectives having a higher value

(undesired). In other words, let us consider two n-dimensional

solutions x and y (which means that the considered system is

having n variables and n equations) and the equivalent system

of equations as given by P ′. One way to compare the solutions

is to consider that the solution x is better than the solution y if

n
∑

i=1

|fi(x)| <

n
∑

i=1

|fi(y)| .

The aforementioned principle is used to select which solu-

tions to be kept into the external set for the next iteration as well
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TABLE XII
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED BY THE EVOLUTIONARY APPROACH FOR THE CHEMICAL EQUILIBRIUM APPLICATION

as whenever we wish to choose between two nondominated

solutions (for instance, after applying crossover while choosing

between parents and offspring and/or after applying mutation).

Several other criteria can be taken into account. For instance,

we wish to obtain a very low value (very close to zero) for

some of the objectives, and then we can accordingly choose

our solution. However, this requires detailed knowledge about

the objectives.

We consider as the current population of the next iteration

the population obtained by unifying the current population of

the previous iteration and the external set. The main steps of the

evolutionary approach used are presented in Algorithm 2. The

termination criteria of Algorithm 2 refer to a specified number

of iterations.

Algorithm 2 The iterative evolutionary steps proposed for

solving nonlinear equations systems.

Step 1.

Set t = 0.

Randomly generate starting solutions P (t) on a given

domain.

Select all the nondominated solutions from P (t) and store

them into the external set E containing the nondominated

solutions found so far.

If the cardinal of E exceeds the maximum allowed size,

reduce the number of solutions with respect to the sum of

the absolute values of the objectives.

Step 2.

Step 2.1. Apply crossover (with a given probability) on

P (t) ∪ E until a number of new individuals equal to the

size of P (t) are obtained.

Let Q(t) be the set obtained from the best between the so-

lutions that are combined and the solutions obtained after

recombination (Pareto domination relation is applied).

Step 2.2. Mutate (with a given probability) all the indivi-

duals from Q(t).
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Fig. 8. Nondominated solutions obtained for the chemical equilibrium appli-
cation. (a) Solutions whose sum of the absolute values of the objective functions
is less than or equal to 1. (b) Sum of the absolute values of the objective
functions for all the nondominated solutions obtained.

Step 2.3. Update E with the nondominated individuals

from P (t)
⋃

Q(t) and apply the reduction procedure if the

allowed size of E is exceeded.

Step 2.4. Set t = t + 1.

P (t) = Q(t).
Step 3.

If the termination criteria are reached, go to step 4.

Otherwise, go to step 2.

Step 4.

Print E.

V. EXPERIMENTS AND RESULTS

This section reports several experiments and comparisons

using the proposed approach. Some well-known applications

are also considered in the subsequent section.

A. Illustrative Example

In this example, a simple equations system (two equations) is

used, which is having more than one solution, and the ability of

the proposed approach is illustrated to detect several solutions

in a single run. The following equations system is considered:

{

x2 − y2 = 0
1 − |x − y| = 0.

The two functions corresponding to the transformed problem
into a multiobjective optimization problem are depicted in
Fig. 3.

TABLE XIII
COEFFICIENTS aki FOR THE KINEMATIC EXAMPLE KIN2

TABLE XIV
PARAMETERS USED BY THE EVOLUTIONARY APPROACH

FOR THE KINEMATIC APPLICATION

The parameter values used by the evolutionary approach are
given in Table I.

After applying the evolutionary approach, several nondom-
inated solutions are obtained. Some of the solutions are pre-
sented in Table II, and the Pareto curve is depicted in Fig. 4.

The sum of the absolute values of the objectives is plotted
in Fig. 5.

B. Numerical Comparisons

1) Two Equations Systems: We considered the same prob-
lems (Examples 1 and 2) used by Effati and Nazemi [18]. The
algorithm proposed by Effati and Nazemi is compared with
Newton’s method, the secant method, and Broyden’s method.
Only systems of two equations were considered by Effati and
Nazemi. The parameters used by the evolutionary approach for
Examples 1 and 2 are given in Table III.

Example 1: Consider the following nonlinear system:

{

f1(x1, x2) = cos(2x1) − cos(2x2) − 0.4 = 0
f2(x1, x2) = 2(x2 − x1) + sin(2x2) − sin(2x1) − 1.2 = 0.

The results obtained by applying Newton, secant, Broyden,

and Effati methods and the proposed method are presented in

Table IV.

Example 2: The following system is considered:

{

f1(x1, x2) = ex1 + x1x2 − 1 = 0
f2(x1, x2) = sin(x1x2) + x1 + x2 − 1 = 0.

The results obtained by Effati and Nazemi’s method and by
the evolutionary approach are given in Table V.
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TABLE XV
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED FOR THE KINEMATIC APPLICATION KIN2

C. Systems Having More Than Two Equations

As evident from the above experiment results, the pro-

posed approach has obtained better results as compared to the

other established techniques. It is to be noted that Effati and

Nazemi’s technique was only applied for two equations sys-

tems. Since our approach was promising as compared to Effati

and Nazemi’s technique (which, in turn, was outperforming

some other standard known techniques), we decided to extend

our approach for more complex equations systems. The exam-

ples considered in the following section are listed in Table VI

and are well-known difficult benchmarks for numerical analysis

researchers.

1) Interval Arithmetic Benchmark: We consider one bench-

mark problem proposed from interval arithmetic [29], [33] (see

also [27]). The benchmark consists of the following system of

equations:







































































0 = x1 − 0.25428722 − 0.18324757x4x3x9

0 = x2 − 0.37842197 − 0.16275449x1x10x6

0 = x3 − 0.27162577 − 0.16955071x1x2x10

0 = x4 − 0.19807914 − 0.15585316x7x1x6

0 = x5 − 0.44166728 − 0.19950920x7x6x3

0 = x6 − 0.14654113 − 0.18922793x8x5x10

0 = x7 − 0.42937161 − 0.21180486x2x5x8

0 = x8 − 0.07056438 − 0.17081208x1x7x6

0 = x9 − 0.34504906 − 0.19612740x10x6x8

0 = x10 − 0.42651102 − 0.21466544x4x8x1.
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Fig. 9. Nondominated solutions obtained for the kinematic application kin2.
(a) Solutions whose sum of the absolute values of the objective functions is less
than or equal to 3.5. (b) Sum of the absolute values of the objective functions
for all the nondominated solutions obtained.

Parameters used by the evolutionary approach are listed in

Table VII. Some of the nondominated solutions obtained as

well as the function values (which represent the values of the

system’s equations obtained by replacing the variable values)

are presented in Table VIII. The sum of the absolute values

of the objectives for the nondominated solutions obtained is

depicted in Fig. 6. In Fig. 6(a), the nondominated solutions for

which the sum of objectives (in absolute values) is less than or

equal to 2.5 are plotted. In Fig. 6(b), the sum of objectives (in

absolute values) for all the nondominated solutions obtained is

depicted.

2) Neurophysiology Application: We considered the

example proposed in [50], which consisted of the following

equations:































x2
1 + x2

3 = 1
x2

2 + x2
4 = 1

x5x
3
3 + x6x

3
4 = c1

x5x
3
1 + x6x

3
2 = c2

x5x1x
2
3 + x6x

2
4x2 = c3

x5x
2
1x3 + x6x

2
2x4 = c4.

The constants ci can be randomly chosen. In our experi-

ments, we considered ci = 0, i = 1, . . . , 4. In [27], this problem

is used to show the limitations of Newton’s method for which

the running time exponentially increases with the size of the

initial intervals. We considered the following values for the

parameters used by the evolutionary approach as given in

Table IX.

TABLE XVI
PARAMETERS USED BY THE EVOLUTIONARY APPROACH

FOR THE COMBUSTION APPLICATION

Some of the nondominated solutions obtained by our ap-

proach as well as the values of the objective functions for these

values are presented in Table X. The sum of the absolute values

of the objectives for the nondominated solutions obtained is

depicted in Fig. 7. In Fig. 7(a), the nondominated solutions for

which the sum of objectives (in absolute values) is less than or

equal to 1 are plotted. In Fig. 7(b), the sum of the objectives (in

absolute values) for all the nondominated solutions obtained is

depicted.
3) Chemical Equilibrium Application: We consider the

chemical equilibrium system as given by the following [32]
(see also [27]):







































x1x2 + x1 − 3x5 = 0

2x1x2 + x1 + x2x
2
3 + R8x2 − Rx5

+2R10x
2
2 + R7x2x3 + R9x2x4 = 0

2x2x
2
3 + 2R5x

2
3 − 8x5 + R6x3 + R7x2x3 = 0

R9x2x4 + 2x2
4 − 4Rx5 = 0

x1(x2 + 1) + R10x
2
2 + x2x

2
3 + R8x2

+R5x
2
3 + x2

4 − 1 + R6x3 + R7x2x3 + R9x2x4 = 0

where











































R = 10
R5 = 0.193

R6 = 0.002597√
40

R7 = 0.003448√
40

R8 = 0.00001799
40

R9 = 0.0002155√
40

R10 = 0.00003846
40

.

The parameters used by the evolutionary approach are
presented in Table XI. Some of the nondominated solutions
obtained by the evolutionary approach for the chemical equi-
librium application are depicted in Table XII.

The sum of the absolute values of the objectives for the non-
dominated solutions obtained is depicted in Fig. 8. In Fig. 8(a),
the nondominated solutions for which the sum of objectives
(in absolute values) is less than or equal to 1 are plotted. In
Fig. 8(b), the sum of the objectives (in absolute values) for all
the nondominated solutions obtained is depicted.
4) Kinematic Application: We consider the kinematic ap-

plication kin2 as introduced in [34] (see also [27]), which
describes the inverse position problem for a six-revolute-joint
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TABLE XVII
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED FOR THE COMBUSTION APPLICATION

problem in mechanics. The equations describe a denser con-
straint system and are given as follows:































x2
i + x2

i+1 − 1 = 0

a1ix1x3 + a2ix1x4 + a3ix2x3 + a4ix2x4+
a5ix2x7 + a6ix5x8 + a7ix6x7 + a8ix6x8+

a9ix1 + a10ix2 + a11ix3 + a12ix4 + a13ix5 + a14ix6+

a15ix7 + a16ix8 + a17i = 0

1 ≤ i ≤ 4.

The coefficients aki, 1 ≤ k ≤ 17, 1 ≤ i ≤ 4, are given in
Table XIII.

The parameters used by the evolutionary approach for the ki-
nematic example kin2 are presented in Table XIV. Some of the
nondominated solutions obtained by the evolutionary approach
for the kinematic example kin2 are presented in Table XV.

The sum of the absolute values of the objectives for the

nondominated solutions obtained for the kinematic application

kin2 is depicted in Fig. 9. In Fig. 9(a), the nondominated

solutions for which the sum of objectives (in absolute values)

is less than or equal to 1 are plotted. In Fig. 9(b), the sum

of the objectives (in absolute values) for all the nondominated

solutions obtained is depicted.
5) Combustion Application: We consider the combustion

problem for a temperature of 3000 ◦C as proposed in [35] (see
also [27]). The problem is described by the following sparse
system of equations:































































x2 + 2x6 + x9 + 2x10 = 10−5

x3 + x8 = 3 · 10−5

x1 + x3 + 2x5 + 2x8 + x9 + x10 = 5 · 10−5

x4 + 2x7 = 10−5

0.5140437 · 10−7x5 = x2
1

0.1006932 · 10−6x6 = 2x2
2

0.7816278 · 10−15x7 = x2
4

0.1496236 · 10−6x8 = x1x3

0.6194411 · 10−7x9 = x1x2

0.2089296 · 10−14x10 = x1x
2
2.
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The parameters used by the evolutionary approach for the

combustion application are presented in Table XVI. Some of the

nondominated solutions obtained by the evolutionary approach

are presented in Table XVII.

The sum of the absolute values of the objectives for the non-

dominated solutions obtained for the combustion application is

depicted in Fig. 10. In Fig. 10(a), the nondominated solutions

for which the sum of objectives (in absolute values) is less than

or equal to 1 are plotted. In Fig. 10(b), the sum of the objectives

(in absolute values) for all the nondominated solutions obtained

is depicted.

6) Economics Modeling Application: The following mod-

eling problem is considered as difficult and can be scaled up

to arbitrary dimensions [35]. The problem is given by the

following system of equations:























(

xk +
n−k−1

∑

i=1

xixi+k

)

xn − ck = 0, 1 ≤ k ≤ n − 1

n−1
∑

l=1

xl + 1 = 0.

The constants ck can be randomly chosen. We considered

the value 0 for the constants in our experiments and the case of

20 equations.

The parameters used by the evolutionary approach for the

combustion application are presented in Table XVIII. Some

of the nondominated solutions obtained by the evolutionary

approach are presented in Table XIX.

The sum of the absolute values of the objectives for the non-

dominated solutions obtained for the combustion application

is depicted in Fig. 10. In Fig. 11(a), the nondominated solutions

for which the sum of objectives (in absolute values) is less

than or equal to 1.5 are plotted. In Fig. 11(b), the sum of

the objectives (in absolute values) for all the nondominated

solutions obtained is depicted.

VI. DISCUSSIONS AND CONCLUSION

The proposed approach seems to be very efficient for solving

equations systems. We analyzed the case of nonlinear equations

systems. We first compared our approach for some simple equa-

tions systems having only two equations that were recently used

for analyzing the performance of a new proposed method. The

results obtained using the proposed evolutionary multiobjective

optimization approach are very promising, clearly outperform-

ing the new technique proposed by Effati and Nazemi and some

of the classical methods established in the literature, namely,

Newton, Broyden, and secant methods.

The running time required for our algorithm to converge

is presented in Table XX. It is measured in seconds, and the

experiments were run on a 2.4-GHz Intel Duo Core CPU with

2-GB RAM.

It is worth to mention that our approach obtains several

nondominated solutions in one run (this number was kept

constant, less than or equal to 200). Most of the systems used in

the experiments have more than one solution (even hundreds

Fig. 10. Nondominated solutions obtained for the combustion application.
(a) Solutions whose sum of the absolute values of the objective functions is less
than or equal to 0.5. (b) Sum of the absolute values of the objective functions
for all the nondominated solutions obtained.

TABLE XVIII
PARAMETERS USED BY THE EVOLUTIONARY APPROACH

FOR THE ECONOMICS APPLICATION

of solutions can be found). Therefore, our approach detects

multiple solutions in one run. If we consider that Newton-like

methods obtain a single solution in 0.5 s, then 200 solutions will

be obtained in 100 s. Also, these solutions are compared after

the final run, and not all of them will be kept as final solutions.

This means that more than 200 runs must be performed to

obtain 200 solutions. For Examples 1 and 2, we are not aware

of the running time required by Effati and Nazemi’s algorithm.

However, in Effati and Nazemi’s approach, the search space is

divided into 10 000 and 140 000 subsets, respectively, and it is

obvious that it cannot be done in a few seconds.

The promising results obtained by our approach for two-

equation systems were the starting point, and the approach was

extended for high-dimensional nonlinear equations systems.

We also used some of the most well known applications such

as application from interval arithmetic benchmarks, applica-

tion from neuropsychology, chemical equilibrium application,

kinematic application, combustion application, and economics

modeling. All these applications consist of systems having
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TABLE XIX
EXAMPLES OF SOLUTIONS OBTAINED BY THE EVOLUTIONARY APPROACH FOR THE ECONOMICS MODELING APPLICATION E2

a higher number of equations—10 equations for the interval

arithmetic benchmarks, 6 equations for the neuropsychology

example, 5 equations for the chemical equilibrium application,

8 equations for the kinematic application, 10 equations for the

combustion application, and 20 equations for the economics

modeling.

Since we transformed a system of equations into a multi-

objective optimization problem, whose number of objectives

is equal to the number of equations contained by the corre-

sponding system, our task is to deal with complicated high-

dimensional optimization problems. The goal is to obtain values

as close to zero as possible for each of the involved objectives.

As evident from the obtained empirical results, the proposed

approach is very much appealing for solving high-dimensional

equations systems. As a measure of quality for the solutions

obtained, the sum of the absolute values of the objectives

(which are the modified equations of the initial system) is con-

sidered. The closer the value of this sum to zero, the better the

solution.

From the graphical illustrations provided in the manuscript,

it can be deduced that the proposed approach could obtain

very good results even for some complicated systems such as

combustion application, neuropsychology application, chemi-

cal equilibrium application, and economic modeling.
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Fig. 11. Nondominated solutions obtained for the economics application.
(a) Solutions whose sum of the absolute values of the objective functions is less
than or equal to 1.5. (b) Sum of the absolute values of the objective functions
for all the nondominated solutions obtained.

TABLE XX
CPU TIME REQUIRED BY THE EVOLUTIONARY ALGORITHM

FOR ALL THE CONSIDERED BENCHMARKS

The proposed method could be extended for more higher

dimensional systems, although this will also involve increased

computational complexity. In a similar manner, we can also

solve inequality systems and systems of differential equations,

which are part of our future research work.
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