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Abstract: Recently, researchers have been interested in studying fractional differential equations and
their solutions due to the wide range of their applications in many scientific fields. In this paper, a
new approach called the Hussein–Jassim (HJ) method is presented for solving nonlinear fractional
ordinary differential equations. The new method is based on a power series of fractional order. The
proposed approach is employed to obtain an approximate solution for the fractional differential
equations. The results of this study show that the solutions obtained from solving the fractional
differential equations are highly consistent with those obtained by exact solutions.
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1. Introduction

Engineering-related problems, applied mathematics, and physics are significantly
impacted by nonlinear phenomena. Many of these physical phenomena are represented by
nonlinear differential equations. In both physics and mathematics, differential equations
remain an important issue requiring innovative approaches to find precise or approximate
solutions. Since the majority of brand-new linear and nonlinear equations lack an exact
analytic solution, numerical techniques have mostly been employed to solve them [1].

During the past decades, fractional differential equations (FDEs) have appeared more
and more frequently in different research areas, and they can offer an improved description
of many vital phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry,
cosmology, and materials science. Consequently, considerable attention has been given to
the solution of the fractional differential equations [2].

The exploration and development of numerical techniques particularly designed
to solve fractional differential equations have been inspired by the growing interest in
applications of fractional calculus. It is more difficult to find analytical solutions for FDEs
than it is to solve conventional ordinary differential equations (ODEs), and most of the
time, the answer can only be approximated numerically [3].

Mathematical models called nonlinear differential equations (NDEs) are used to ex-
plain complicated events that appear in our environment. Numerous applications of
science and engineering, including those involving fluid dynamics, plasma physics, hy-
drodynamics, solid state physics, optical fibers, acoustics, and other fields, use nonlinear
equations. Recently, numerous researchers have focused their on NDEs solutions uti-
lizing a variety of techniques, including the Adomian decomposition method [4], the
variational iteration method [5], the homotopy perturbation method [6], the homotopy
analysis method [7], the differential transform method [8], the F-expansion method [9], the
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Exp-function method [10], the sine–cosine method [11], the reduced differential transform
method [12], the Sumudu homotopy perturbation method [13], the Sumudu Adomian
decomposition method [14], the Daftardar–Jafari method [15], and others [16–39].

In this paper, a new iterative method for solving fractional ordinary differential equa-
tions (FODEs) is presented and discussed. This method is mainly based on fractional power
series. In order to introduce the method, we must mention several concepts and definitions.

Definition 1 ([40–42]). If f (x) ∈ C([a, b]),α > 0, and a < x < b, then the Riemann–Liouville
fractional integral of orderα is given by as

Iα
x f (x) =

1
Γ(α)

∫ x

a

f (t)
(x− t)1−α

dt,

where Γ is the well-known Gamma function.

The properties of the Riemann–Liouville fractional integral are as follows:

1. Iα
x Iσ

x f (x) = Iα+σ
x f (x);

2. Iα
x Iσ

x f (x) = Iσ
x Iα

x f (x);

3. Iα
x xβ = Γ(β+1)

Γ(α+β+1) xα+β;

where α and σ are greater than zero and β is a real number.

Definition 2 ([41,42]). The fractional derivative of f (x) in the Caputo sense is defined as

C
a Dα

x f (x) =
1

Γ(m− α)

∫ x

a
(x− τ)m−α−1 f (m)(τ)dτ,

where m− 1 < α ≤ m, m ∈ N.

The following are the basic properties of the operator C
a Dα

x :

1. C
a Dα

x λ = 0;
2. C

a Dα
x Iα f (x) = f (x);

3. C
a Dα

x xβ = Γ(β+1)
Γ(β−α+1) xβ−α;

4. C
a Dα

x
C
a Dσ

x f (x) = C
a Dα+σ

x f (x) = C
a Dσ

x
C
a Dα

x f (x);
5. C

a Dα
x (λ f (x) + δg(x)) = λC

a Dα
x f (x) + δC

a Dσ
x g(x);

6. IαC
a Dα

x f (x) = f (x)−∑m−1
k=0 f (k)(0) tk

k! ;

where λ and δ are constants.

Definition 3 ([42]). The Mittag–Leffler function Eα(x) is defined as

Eα(x) = ∑∞
m=0

xm

Γ(mα + 1)
.

For special values α, the Mittag–Leffer function is given by the following:

1. E0(x) = 1
1−x ;

2. E1(x) = ex;
3. E2

(
x2) = cosh(x);

4. E2
(
−x2) = cos(x).

2. Analysis of the New Method

Consider the following initial value problem in the FODE sense

CDσ
t
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and definitions. 
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where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)(t) +N (
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Equation (1), we obtain
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Now, we rewrite the right side of Equation (2) as an infinite fractional power series:

λ + Iσ
t (g(tσ)−N (
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i=0 aitiσ, (3)

where a0, a1, . . . are coefficients.
By taking the fractional derivative of Caputo CDiσ

t where i = 0, 1, 2, . . ., for both sides
of Equation (3) at t = 0, we obtain

a0 =
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a1 =

(
g(tσ)−N

(
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))

t=0
Γ(σ+1) ,

a2 =
C Dσ

t

(
g(tσ)−N

(
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t=0
Γ(2σ+1) ,

a3 =
C D2σ

t

(
g(tσ)−N

(
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))

t=0
Γ(3σ+1) ,
...

(4)

Substituting Equation (4) into Equation (3) results in
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Γ(iσ + 1)

tiσ. (5)

Now, suppose that
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By setting i = i + 1 in the left side of Equation (7), we obtain
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Therefore, the approximate solution can be formulated as follows:
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3. Convergence of the New Method

Theorem 1. The proposed method used to solve Equation (1) is equivalent to determine the
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Sη =
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η ,

S0 = 0
(10)

By using the iterative scheme:

Sη+1 = ∑η+1
i=1

CD(i−1)σ
t

(
g(tσ)−N

(
∑i−1

j=0
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))
t=0

Γ(iσ + 1)
tiσ. (11)

Proof. For η = 0, Equation (11) can be written as

S1 =
(g(tσ)−N (
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tσ,
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Mathematics 2023, 11, x FOR PEER REVIEW 2 of 13 
 

tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 
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Using Equation (10), the following equation can be obtained:
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Theorem 2. Let B be a Banach space.
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3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)η |
∣∣ ≤ E2
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tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)
η−1|
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tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)
η−2|
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tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)0||.
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tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)0‖ ≤ Eη−1‖
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tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)0‖ ≤ Eη−2‖
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tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)0‖ ≤ · · · ≤ Em+1‖
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tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 
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Theorem 3. The following equation (Equation (13))

S = ∑∞
i=1

CD(i−1)σ
t (g(tσ)−N (∑∞

i=0

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 13 
 

tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)i))t=0
Γ(iσ + 1)

tiσ

is equivalent to Equation (1):

CDσ
t
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Proof . Equation (13) can be rewritten as follows:

λ + S = λ + ∑∞
i=1

C D(i−1)σ
t

(
g(tσ)−N

(
∑∞

i=0
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))
t=0

Γ(iσ+1) tiσ,
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i=0

C D(i−1)σ
t

(
g(tσ)−N

(
∑∞

i=0
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Γ(iσ + 1)

tiσ. (16)

It seems clear that the right-hand side of Equation (16) is equivalent to the right-hand
side of Equation (5), so Equation (16) can be written in the following form:
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tiσ. (17)

Using Equations (3) and (4), Equation (17) can be written as
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t for both sides of Equation (18) results in

CDσ
t
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4. Illustrative Examples

Example 1. Consider the following fractional ordinary differential equation:

CDσ
t
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where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
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6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)= ∑∞
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(
∑i

j=0
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)
t=0

t(i+1)σ

Γ((i+1)σ+1) =
t(i+1)σ

Γ((i+1)σ+1) .

Thus, the approximate solution of Equation (19) is given by
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Γ(σ + 1)
+

t2σ

Γ(2σ + 1)
+

t3σ

Γ(3σ + 1)
+ · · · = ∑∞

i=0
tiσ

Γ(iσ + 1)
,

Hence, the exact solution of Equation (19) at σ = 1 is
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Example 2. Assume the non-linear differential equation:

CDσ
t
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Γ(iσ + 1)

tiσ. (25)

By comparing both side of Equation (25), we obtain
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where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
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For special values α, the Mittag–Leffer function is given by the following: 
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3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
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)2
)

t=0

t(i+1)σ

Γ((i+1)σ+1) .

Thus, the approximate solution of Equation (24) is given by
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Γ(σ + 1)
− Γ(2σ + 1)

Γ2(σ + 1)
t3σ

Γ(3σ + 1)
+ · · · ,

Therefore, the exact solution of Equation (24) at σ = 1 is given by the following formula:
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Example 3. Suppose that nonlinear differential equation

CDσ
t
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∑∞
i=0
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By comparing both sides of Equation (27), we obtain the following:
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where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 
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Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)1)
2
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Γ(3σ+1) = 0,
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Example 4. Consider the nonlinear ordinary differential equation:

CDσ
t
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1 + y
, 0 < σ ≤ 1 (28)

with initial condition
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∑∞
i=0
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CD(i−1)σ
t

(
2− tσ

1 + ∑i−1
j=0
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)
t=0

tiσ

Γ(iσ + 1)
. (29)

By comparing both sides of Equation (29), we obtain
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The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)
0

)
t=0

tσ

Γ(σ+1) =
tσ

Γ(σ+1) ,
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1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
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4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)2 = CDσ
t

(
2−tσ

1+

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 13 
 

tional iteration method [5], the homotopy perturbation method [6], the homotopy analy-
sis method [7], the differential transform method [8], the F-expansion method [9], the 
Exp-function method [10], the sine–cosine method [11], the reduced differential trans-
form method [12], the Sumudu homotopy perturbation method [13], the Sumudu 
Adomian decomposition method [14], the Daftardar–Jafari method [15], and others [16–
39]. 

In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)
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Thus, the approximate solution of Equation (28) is given by
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.

Therefore, the exact solution of Equation (28) is given by the following formula:
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In this paper, a new iterative method for solving fractional ordinary differential 
equations (FODEs) is presented and discussed. This method is mainly based on fraction-
al power series. In order to introduce the method, we must mention several concepts 
and definitions. 

Definition 1 ([40–42]). If 𝑓(𝑥) ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 0, and 𝑎 < 𝑥 < 𝑏, then the Riemann–
Liouville fractional integral of order 𝛼 is given by as 

 𝐼 𝑓(𝑥) = ( )   ( )( ) 𝑑𝑡,  

where 𝛤 is the well-known Gamma function. 
The properties of the Riemann–Liouville fractional integral are as follows: 

1. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝑓(𝑥); 
2. 𝐼 𝐼 𝑓(𝑥) = 𝐼 𝐼 𝑓(𝑥); 

3. 𝐼 𝑥 = ( )( ) 𝑥 ; 

where α and σ are greater than zero and β is a real number. 

Definition 2 ([41,42]). The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as 𝐷 𝑓(𝑥) = ( )    (𝑥 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,  
where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The following are the basic properties of the operator 𝐷 : 
1. 𝐷 𝜆 = 0; 
2. 𝐷 𝐼 𝑓(𝑥) = 𝑓(𝑥); 

3. 𝐷 𝑥 = ( )( ) 𝑥 ; 

4. 𝐷 𝐷 𝑓(𝑥) = 𝐷 𝑓(𝑥) = 𝐷 𝐷 𝑓(𝑥); 
5. 𝐷 (𝜆𝑓(𝑥) + 𝛿𝑔(𝑥)) = 𝜆 𝐷 𝑓(𝑥) + 𝛿 𝐷 𝑔(𝑥); 

6. 𝐼 𝐷 𝑓(𝑥) = 𝑓(𝑥) − ∑  𝑓( )(0) !; 
where λ and δ are constants. 

Definition 3 ([42]). The Mittag–Leffler function 𝐸 (𝑥) is defined as 𝐸 (𝑥) = ∑   ( ).  
For special values α, the Mittag–Leffer function is given by the following: 

1. 𝐸 (𝑥) = ; 
2. 𝐸 (𝑥) = 𝑒 ; 
3. 𝐸 (𝑥 ) = cosh(𝑥); 
4. 𝐸 (−𝑥 ) = 𝑐𝑜𝑠(𝑥). 
2. Analysis of the New Method 

Consider the following initial value problem in the FODE sense 𝐷 𝓎(𝑡) + 𝒩 𝓎(𝑡) = 𝑔(𝑡 ), 0 < 𝜎 ≤ 1 (1)e(t) = −1 +
√
−t2 + 4t + 4.

Remark 1. From Tables 1–4 and Figures 1–4, it is clear that the approximate solution of the new
method converges with the analytical solution.

Table 1. Values of the approximate and exact solutions of Equation (19) at different values of t.
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0.3000 0.3979 0.3413 0.2910 0.2913 0.1065 0.0500 0.0003

0.4000 0.4875 0.4308 0.3787 0.3799 0.1076 0.0508 0.0013

0.5000 0.5614 0.5083 0.4583 0.4621 0.0993 0.0462 0.0038

0.6000 0.6180 0.5721 0.5280 0.5370 0.0809 0.0350 0.0090

0.7000 0.6555 0.6201 0.5857 0.6044 0.0511 0.0157 0.0187

0.8000 0.6717 0.6503 0.6293 0.6640 0.0077 0.0137 0.0347

0.9000 0.6645 0.6606 0.6570 0.7163 0.0518 0.0557 0.0593

1.0000 0.6314 0.6486 0.6667 0.7616 0.1302 0.1130 0.0949
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Table 3. Values of the approximate and exact solutions of Equation (26) at different values of t.

t
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0.1180 1.0073 1.0073 1.0070 1.0070 0.0003 0.0002 0.0000

0.2160 1.0252 1.0248 1.0239 1.0239 0.0013 0.0009 0.0000

0.3140 1.0553 1.0540 1.0517 1.0519 0.0034 0.0022 0.0001

0.4120 1.1000 1.0969 1.0921 1.0927 0.0073 0.0042 0.0007

0.5100 1.1627 1.1561 1.1470 1.1495 0.0132 0.0066 0.0025

0.6080 1.2474 1.2348 1.2190 1.2267 0.0207 0.0081 0.0077

0.7060 1.3593 1.3373 1.3113 1.3319 0.0274 0.0054 0.0206

0.8040 1.5043 1.4682 1.4277 1.4776 0.0268 0.0093 0.0499

0.9020 1.6892 1.6331 1.5723 1.6858 0.0035 0.0527 0.1135

1.0000 1.9218 1.8382 1.7500 2.0000 0.0782 0.1618 0.2500

Table 4. Values of the approximate and exact solutions of Equation (28) at different values of t.

t
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Remark 1. From Tables 1–4 and Figures 1–4, it is clear that the approximate solution of the new method 
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0.2034 1.3258 1.2721 1.2255 1.2256 0.1002 0.0465 0.0001 
0.3030 1.4719 1.4103 1.3536 1.3539 0.1180 0.0564 0.0004 
0.4026 1.6267 1.5595 1.4945 1.4957 0.1310 0.0639 0.0012 
0.5021 1.7939 1.7220 1.6493 1.6523 0.1416 0.0698 0.0029 
0.6017 1.9762 1.8996 1.8191 1.8253 0.1509 0.0744 0.0062 
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1.0000 2.9016 2.7924 2.6667 2.7183 0.1833 0.0741 0.0516 
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5. Conclusions

A new approach is proposed for solving fractional ordinary differential equations. The
strength of this new method lies in its ability to solve different types of fractional ordinary
differential equations, such as linear, nonlinear, homogeneous, and nonhomogeneous, of
the order 0 < σ ≤ 1. The results of this study show that the approximate solutions obtained
from the proposed algorithm are highly consistent with the exact solutions. Moreover,
this method can be developed to solve ordinary differential equations, partial differential
equations, integral equations, and fractional differential equations. It is also recommended
for solving boundary value problems of differential equations.
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Resources, H.K.J.; Writing—original draft, M.A.H.; Writing—review & editing, H.K.J. All authors
have read and agreed to the published version of the manuscript.
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