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The nonlinear differential equation governing the periodic motion of the one-dimensional, undamped, and unforced cubic-
quintic Duffing oscillator is solved exactly, providing exact expressions for the period and the solution. The period as well as the
exact analytic solution is given in terms of the famous Weierstrass elliptic function. An integrable case of a damped cubic-quintic
equation is presented. Mathematica code for solving both cubic and cubic-quintic Duffing equations is given in Appendix at

the end.

1. Introduction

It is known that most phenomena in nature have a non-
linear character, i.e., their laws of evolution are governed by
either nonlinear ordinary or nonlinear partial differential
equations. In many situations, it is desiderable to make an
analytical study of the behavior of the equation solutions by
means of the stability analysis of some associated linear
systems (for example, for hyperbolic equilibria, Hart-
man-Grobman Theorem). This “linearization” is not
possible in all cases. This is the reason why analytical
techniques are required to analyze the behavior of these
solutions. There are analytical methods that give necessary
and sufficient conditions for the existence and uniqueness
of solution to nonlinear equations (say Lie Groups, Sobolev
spaces, etc.). However, we are investigating analytical

methods that allow us to obtain exact solutions to this type
of equations. In that sense, we meet in literature different
techniques for integrating nonlinear equations, such as
parameter perturbation techniques and homotopic per-
turbation methods, among others. As a contribution to the
literature, in this article, we present the exact solution to the
cubic-quintic Dufling oscillator equation by means of the
famous Weierstrass elliptic function. The approach we
present here is different from other approaches known in
the literature [1-3]. A Mathematica code is included in
Appendix at the end.

This paper is organized as follows. In Section 2, we give
the solution to the cubic Duffing equation in terms of Jacobi
elliptic functions. In Section 3, we give the solution to the
cubic Duffing equation by means of the Weierstrass elliptic
function. Section 4 is related to the solution of the cubic-
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quintic Duffing equation for given initial conditions. Section
5 is related to applications of the obtained theoretical results
for solving the nonlinear cubic-quintic nonlinear Schro-
dinger equation and the nonlinear cubic-quintic reaction-
diffusion equation. A PHP script for solving the damped
cubic-quintic equation may be found at http://fizmako.com/
duffing35.php.

2. The Cubic Duffing Oscillator Equation

The equation is as follows:

V() +av(t) + Bv(t)’ =0, B#0. (1)

In the case when 3> 0, this oscillator may be interpreted
as a forced oscillator having a spring whose restoring force F
reads

F=-av—- ﬂv3. (2)

This spring may be hardening or softening depending on
the sign of . If 3> 0, we have a hardening spring, while for
B <0, we deal with a softening spring. This last interpretation
is valid only for small v. In this last case, the Duffing os-
cillator describes the dynamics of a point mass in a double-
well potential. Chaotic motions can be observed in this case
[4, 5]. Duffing equation is closely related to the pendulum
equation [6, 7], and it has many important applications in
soliton theory [8]. Other physical interpretations may be
found in [9]. [10, 11] describe stability analysis for the
Duffing equation.

The general solution to this ode reads

v(t) = clcn(\/a+ﬁcft+c2, W) (3)
1

The values of the constants ¢; and ¢, are determined
from the initial conditions. Let us consider the i.v.p
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V() + av(t) + pv(t)’ = 0,

e (4)
v(0) = vy, v (0) =,

subjected to

The number A = (a+ pv2)” +2pv% is called the dis-
criminant of i.v.p (4). If (« + ﬁvg)z + 2,81)(2) >0 (or in the case
when a, 8 are complex and (a + Bv2)* +2Bv% #0), the so-
lution to initial value problem (4) is given by

voen(Vwt | m) + (vo/Vw )sn(\wt |m)dn(y/wt | m)

V(D) = 1+usn(wt | m)*

(5)

where
[ 0= \(a+ B3) +287%,

1 o
m

] :5_2\/(a+ﬁV%)2+2/3V%’ (6)

a—\(a+ ﬁvé)z +2pvp + v

24 (a+ ﬁvﬁ)z +2pvg

Here, cn, sn, and dn are the elliptic Jacobi functions. In
the case when (a + v2)* +2Bv2 = 0, the solution reads

v(t) = —\/j% tanh<\/§t— tanh_1<\j—7§u0>>,

2 _ (a+p)’
0 _zﬁ .

v (02 =v
(7)

Finally, when (& + fv2)* +2Bv; <0,

2c

v=v(t)=c—

1+ds c(t = (U~@)sc(((a +vo)/d (vy - &) | m) V@ 'm>’

(8)
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where

at+ct B
44>

2V2 2B (2B - a) — a+3c*B

a+c2p ’

22 _ 2
s a*(« 36/3)’
a+c2p

, ,Zoc 2+ Byt +2y;
c =sgn(y,)[4] “0V0TPYo ¥ 2V f;o Yo

3. Solution to the Duffing Equation in terms of
the Weierstrass Elliptic Function

Our next aim is to solve initial value problem (1). Let

B
u(t) = lim(A+ >, (10)
>t 1+Cp(7; 92 95)

where A, B, C, g,, and g; are some constants to be deter-
mined. Here, @ (t, g,, g;) stands for the elliptic Weierstrass
function. This function satisfies the ode

0 (t.9,,9:)" =40 (t. 92 95)’ — 9209 (t: 95, 93) — g5 (1)
From (10), it is clear that
u(0) = A,

u' (0) =0. (12)

u(t) = lim

Inserting ansatz (10) into the equation u” (£) + au(t) +
Bud(t) =0 gives

2C*(2B + ACa + A’CB)g’ + 2C(-6B + 3ACa
+ BCa + 3A°CB + 3A*BCB)
+C(6Aax +4Ba + 6A°B + 12A’BB + 6AB’B - 3BCg, )p
+(2Aa + 2Ba + 2A°B + 6A’ BB + 6AB’B

+2B’B+ BCg, — 4BC?g,) =0,
(13)

where g = @ (t) =lim,__,p(7; 92’33)-

Equating the coefficients of g’ to zero (j=0,1,2,3)
gives a nonlinear system of algebraic equations. Solving it
gives

_ 6A(A’B+a)
© 3A28+a
(14)
12

C=—r .
3A2+«a

In expression (14), the quantity A is arbitrary withy
3AB+a+0.

_1 402 2 2

9> —ﬁ(—3A B —6A"aff+« ),
(15)

1 402 2 2

g3 :2—1605(9A B+ 18A%aff + « )
Thus, the solution to the initial value problem
u (t) + au(t) + pu(t)’ =0,

(1) (t) + Bu(t) (16)

subjectedto  u(0)=A, u'(0)=0,

is given for a + 3A?B+0 by

6A (a+ A?B)/(a+3A2P)

Observe that the function
v(t) =u(t+t,) (18)

is also a solution to the equation u” (t) + au (t) + pu’ (t) = 0
for any constant t;, (real or complex). Our aim is to solve
initial value problem (4).To this end, we will make use of the
addition formula

Ht<A 1+ (12/(a + 3428))(7; (1/12)(a? - 6420 — 3A67), (1/216)a(a? + 18A%af + 9A4ﬁ2))>' v

2
0 (195 95) — ¢ (to; 92)93))

1
T+t 3 > =
p(T+t; 92 93) 4< ©(7: 92 93) = 0 (t0: 92, 93)

~ (7592 95) — 0 (to; 92, 93),
(19)

and then
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v(t) = lim(A + p B 3 > (20)
ot 1+ C((1/4) (0" (192 95) =)/ (9 (7592, 95) = M) — (7592 95) - /11)

We already know the values of the constants B, C, g,,
and g5 (from (14) and (15)). We must find the values of the
constants A, A, and 1,. We will determine them from the
conditions

v(0) = v,
v/ (0) = vy, (21)
v (0) + av(0) + Bv(0)* = 0.
Solving the last system gives

_3A’B+3A By, +5Aa + av,
- 12A - 12v,

M

A _Av (A +a)
2T o2(A- ) (22)

B

v(t) = Vi (t) = lim

In the case of periodic solution, the period of oscillations
is that of the Weierstrass function g (t; g,, g5), and it may be
calculated by means of the formula

T=2 ro—l (23)

€ V4t3 - gzt - 93’

where e, is the first root to the cubic

Z - 922 — g5 =0. (24)

We have proved the following.

Theorem 1. The solution to initial value problem (4) is given
by

The respective constants are evaluated by formulas (??),
(15), and (22). The flow ¢, (x, v) of the nonlinear dynamical
system,

% =—av—pv’,

(26)
v=x,
reads
%vm (1)
¢ (x,v) = . (27)
Voo ()

There is a more general equation called the generalized
Dufling equation or Helmholtz-Dufling equation:

<A+ , b ; ) (25)
ot 1+ C((1/4) (0 (1:92,95) = 1)/ (9 (7: 92, 95) = M) — (71925 95) — )Ll)

V) +n+av(t) + fr(e) +yv()’ =0, (28)

with real or complex constant coefficients. The solution to
this equation may be found in [8].

4. The Analytic Solution to the Complex Cubic-
Quintic Equation for Given Initial Conditions

In this section, we make use of results in Section 2 in order to
solve the cubic-quintic oscillator equation. We show that the
cubic-quintic Duffing equation is reduced to the cubic
Duffing equation. That is, knowing the flow of the dynamical
system associated with the cubic oscillator is enough to find
that of the cubic-quintic. Indeed, let p, g, 7, ¥,, and y, be
arbitrary complex numbers with r#0. We will solve the
initial value problem
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y' () + py () +qy () +ry(t)’ =0,

(29)
subjectedto  y(0) = y,, ¥ (0) = y,.

Let
v(t)

y(t) = ———,
1+ A (t)? G0

where the function v = v(t) is the solution to some Duffing
equations given by (4). For small , we may consider that
equation (29) represents a small perturbation of equation
(1). In that sense, equation (29) has a physical meaning
similar to that of (1).

Multiplying equation (29) by »'(t) and integrating it
with respect to ¢ give

p
2

g4 T 6
ZJ’0+€J’0'

(31)

1 P q r 1.
SISO P IONSSIONES TR T

In a similar way, from equation V" (t)+av(t)+
Bv(t)* = 0, we obtain

N2 2 ﬁ"é 2 2 1 4 32
V' (t) —cxv0+7+v0—(xv(t) —Eﬁv(t). (32)
Let

R =y 0 + 2y a7 + Ly + Ly o
(33)

1o Po2 qa T .
—(yé + 5}/3 + Zyg + gyg) : residual.

Inserting ansatz (30) into (33) and taking into account
(32) give
R(t) =(61°p— 61’ pyy + 31q - 31°qy, — 2\ °ryg + 2r —61° 35 )y (1)°
-3(B—4Ap+6)°pys +3)7qy, — g+ 2A%ryg + 6A%5g )y ()*
- 3(2oc + 6/1py§ -2p+ 3)qug + ZAryg + GA)}(Z))y(t)z
- 6py(2) - 3qy§ - Zryg + 6¢xv§ + 3[31/3 + 61}5 - 6)'/3.
(34)
Equating to zero, the coefficients of y(t)j (j=0,2,4,6)
give the following nonlinear algebraic system:
602 p — 61 pyZ + 30q - 30°qyh — 2A%ryg + 2r —61°y% = 0,
B—4Ap+ 67 py2 + 30 gyt — g+ 20 ryS + 61292 = 0,
200+ 6Apy2 —2p + 3\qye + 2Ary§ + 6133 = 0,
—6pyE —3qys — 2ry§ + 6av] + 3Pvj + 6v; — 65 = 0.
(35)

We now eliminate the variables v, and v, taking into
account that v(0) = v, and v' (0) = ,, and we obtain

20+ A(6py2 +3qye +2ry + 6y5) = 2p,

B+ (6pyg +3qys +2rys +6y5) = 4Ap + q,
(6py% +3qyt + 2ryS + 6921 = 31 (2Ap + q) + 2r.
(36)

From the first two equations of system (36), it follows
that

1
a=p =S M6pyy +3ay, +2ry5 +63;),
(37)
B =4Ap-+q-(6pys +3qy; +2ry§ + 63N
The number A is obtained by solving the cubic equation

(6py(2) + 3qyg + 2ryg + 6)'/(2,)/\3 - 6pA2 -3gAr—2r=0.
(38)

The values of v, and v, are found from the equations
¥(0) = y, and y' (0) = y,, and they read

Yo
V-3
1 (39)
+ 20 :
\/—A3y8 +30%yE -30y2 + 1

Vo= *

Vo =

We have proved the following.

Theorem 2. The solution to the initial value problem

y' )+ py®) +qy®)’ +ryt) =0,

subjectedto  y(0) = y,, ' (0) = y,, o
is given by
y(t) = L, (41)
V1 +Av()?
where
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The respective constants are evaluated by formulas (16),
(23), and (37)-(39) - (??).

5. Applications
5.1. Nonlinear Cubic-Quintic Nonlinear Schrodinger
(CQNLSE) Equation. This equation reads
d¢ o 2 4
\/__1£+Aﬁ+3|¢l @ +Clol*p = 0. (43)

In the case when A = —(k/2), B=—(k/2)y, and C =0,
the number y represents a dimensionless positive parameter
characterizing the medium that describes wave propagation
in fluids, plasmas, and nonlinear optics, while k is the wave
number of propagating waves. Let

@(2,T) = exp(V=1 (cT + bZ))y (aT - 2aAcZ).  (44)

This transformation gives

2
S () - (b+ Ac?)

B 3, C 5 _
A J’(f)+az—AJ’(f) +az—Ay(5) =0,

(45)

which is a cubic-quintic Dufling equation.

5.2. Nonlinear Reaction-Diffusion (NLRD) Equation. The
dimensionless form of the variable coeflicients in the
nonlinear reaction-diffusion (NLRD) equation is

u, +v(t)u, = Du,, +au—pu’ +yu’, (46)
where u = u(x,t) is the concentration or density variable
depending on the phenomena under study; D is the diffusion
coeflicient; v (t) is the convection term coefficient; and «, f3,

and y are the reaction term coefficients. Making the traveling
wave  transformation &=kx+7n(f) and letting

u(é) =a(t)y() give
a,y + (an' (t) +vak)y' (&) = Da  K*y" (§) + aay (&)
—Ba’y’ (&) +ya’y’ (&).
(47)

By selecting a = constant and 7 (t) = (26/a) — k I v(t)dt,
equation (47) turns out to be

Y (E+28y (O +py () +qy’ (O +ry (§) =0, (48)

<A+ , b i > (42)
ot 1+C((174) (¢ (13 92 95) = 1)/ (9 (13 92, 95) = 1)) — 0 (1920 95) - 1))

where
_ >
P=pi
2
a
q= %, (49)
4
_vya
r= DI

In the case § =0, we have a cubic-quintic Duffing
equation. If §#0 and

p=—k(k-2m),
(50)
3K
r= —m,
then
A
()= 1+B exp(kb) (51)

is a solution to equation (48) for any constants A, B, and k.
Finally, when g = 0 and p = (3/46)*, we have the damped
Duffing equation

y" (&) +28y" (§) +(3/40)* y (&) + ry° (§) = 0. (52)

Using Lie group theory, it is possible to prove that
equation (52) admits a solution of the form

_ Y —(nEl4) 2¢; ()
y(&) =[4] \/;\/c_le v(c2 - 716 ), (53)

where the function v = v(¢) is a solution to the quintic
Duffing equation v" (§) + yv(£)® = 0.

Equation (52) may be solved numerically for given initial
conditions y (0) = y, and y' (0) = y, at the authors’ website
http://fizmako.com/dufting35.php.

We think that some formulas given here are new in
the literature. The Mathematica code for solving either
symbolically or numerically both cubic and cubic-quintic
oscillator complex oscillator equations is given in
Appendix.
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Appendix

Mathematica code:

v[a-, B, vo-, v, -] [£-] == Module |:{A, P> s K, Gy» g3, WP, WPP, v, solution}

1{A=2vi8+(a+v§,8)2,p= Vo BVA = 20) + \|———— (3VA +2a),u =

2 A @ aA
R + —_—
27 24

(24
=2a+3VA, g, =— -, g; =
k= -2a 9= 5~

a+ VA —a+ VA

B B

wp = WeierstrassP[t, {g,, g;}|, wpp = WeierstrassPPrime|t, {g,, g5 }],

) 2
P 9<v1\/K\/ﬁ —2(v0—\/ﬁ) wpp)

V=————-—wp+
12vy = 12\/p

solution = /g (1 — (6 (a + )/ (x (1 + 12 (v/x)))) }; };solution:|;

(VO - W)z(p + 12(1/0 - \/p)wp)z

(A1)

y[p-q-1- yo-> y1-][t-] = Module |:{‘//> ¢, H,vg, vy, solvgvy |,

{ {( = Root[-2r — 3g#1 — 6p#1” + 6py#1° + 3qy,#1° + 2ryg#1’ + 6y1#1°&, 1],

Hlx_]=y"[x] + pylx] + quix]’ + ry[x]’;

solvyv, = SolveHv0 == yo\1 +V3(, v, == J’l(l + vé()m}, {vo,vl}]//Last;

v[—((Zr +3q( + 4p(2)/2(2), —(Z(r +q(+ p(z)/{), Vo» vl] [x]

v[x_] =

//.solvyvy,

B \/1 + (v[«((Zr +3q0 + 4p{2)/2(2),~(2(r +q¢+ p(z)/(), VO,Vl] [x]?

Hlx_] =" [x] + pylx] + qux]’ + ry[x]’ }; };w[t]//.solvovl].
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