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Abstract

Traditional arc skeletonization algorithms using the principle of Blum's transform, often, produce 

unwanted spurious branches due to boundary irregularities and digital effects on objects and other 

artifacts. This paper presents a new robust approach of extracting arc skeletons for three-

dimensional (3-D) elongated fuzzy objects, which avoids spurious branches without requiring 

post-pruning. Starting from a root voxel, the method iteratively expands the skeleton by adding a 

new branch in each iteration that connects the farthest voxel to the current skeleton using a 

minimum-cost geodesic path. The path-cost function is formulated using a novel measure of local 

significance factor defined by fuzzy distance transform field, which forces the path to stick to the 

centerline of the object. The algorithm terminates when dilated skeletal branches fill the entire 

object volume or the current farthest voxel fails to generate a meaningful branch. Accuracy of the 

algorithm has been evaluated using computer-generated blurred and noisy phantoms with known 

skeletons. Performance of the method in terms of false and missing skeletal branches, as defined 

by human expert, has been examined using in vivo CT imaging of human intrathoracic airways. 

Experimental results from both experiments have established the superiority of the new method as 

compared to a widely used conventional method in terms of accuracy of medialness as well as 

robustness of true and false skeletal branches.

Keywords

Arc skeletonization; distance transform; geodesic distance; minimum cost path; airway tree

I. INTRODUCTION

Skeletonization [1-12] provides a simple yet compact representation of an object that has 

widely been used in a variety of applications from computer vision, pattern recognition, and 

medical imaging [13, 14]. For three-dimensional (3-D) objects, two different types of 

skeletonization method, namely surface skeletonization and curve or arc skeletonization, 

have been popularly applied depending upon the geometry of target objects and the purpose 

of an application. Surface skeletonization generates a medial representation of an object, 
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which is a union of finitely many surfaces and curves each being symmetrically placed in 

the object. Surface skeletonization has been used in many applications including thickness 

computation [15, 16], local structure characterization [17, 18] etc.

This paper deals with arc skeletonization of 3-D tree-like elongated objects, e.g., vascular or 

airway trees; here, we use the term "arc skeletonization" instead of "curve skeletonization". 

Arc skeletonization is primarily used for elongated objects, which generates a centerline 

representation as a union of finitely many curves. In the literature, there exist a large number 

of arc skeletonization methods [19-21] for elongated 3-D objects. Generally, these methods 

fall under two categories - topology preserving iterative erosion [6-8, 22, 23] or distance 

transform based technique [2, 5, 9, 24]. Although these methods generate an arc skeleton 

with the same object topology and elongatedness, often, a large number of spurious or false 

branches and jagged curves are produced by such methods. Therefore, many researchers 

have suggested post-processing algorithms to prune and beautify resulted arc skeletons [2, 5, 

18, 25-27]. However, even with skeletal pruning and beautification steps, resulted skeletons 

are inevitably left with some spurious or false branches caused by irregularities in object 

boundaries, noise, and other artifacts. Some methods [27] are effective in 2-D while their 

generalization to 3-D are not straightforward.

In this paper, we present a new arc skeletonization method that is different from Blum's 

grassfire principle [3], commonly used by conventional algorithms. The method starts with a 

root voxel as the seed skeleton and iteratively expands it by adding a new branch in each 

iteration that joins the farthest object voxel to the current skeleton using a minimum-cost 

geodesic path. The new method is robust in terms of suppressing spurious or false branches 

while capturing all meaningful branches. Another major advantage of the methods is that the 

same fundamental principle is equally applicable to both binary and fuzzy representations of 

an object. The performance of the method has been evaluated on computer-generated 

phantoms with known skeletons as well as on in vivo CT images of human intrathoracic 

airways. Computer generated phantoms at different down-sampling rates and additive 

Gaussian noise have been used to examine the method's accuracy in terms of agreement with 

known skeletons. CT image data of human intrathoracic airway tree is used to evaluate the 

method's performance in terms of false and missing branches. Principles and definitions of 

methods and algorithms are presented in Section II while the experimental design and results 

are described in Section III. Finally, the conclusion is drawn in Section IV.

II. METHODS AND ALGORITHMS

Description of methods and algorithms of the new arc skeletonization approach are 

presented in this section. Basic principles of the overall method are described in Section II.A 

using schematic illustrations. Three major steps, namely, skeletal branch detection, object 

volume filling, and termination criterion, are described in Section II.B, II.C, and II.D, 

respectively.

A. Basic principle

Conventional arc skeletonization algorithms are designed on the principle of Blum's 

grassfire transform implemented using some form of a voxel peeling approach that is 
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constrained by preservation of local topology and "elongatedness". This intrinsic strategy of 

using local properties for voxel peeling limits the utility of larger contextual information in 

conventional algorithms. Therefore, these methods suffer from irregularities in object 

boundaries and structure noise, e.g., the small protrusion pnoise in Fig. 1. The new method is 

designed for 2-D or 3-D tree-like objects with elongated branches (e.g., vascular or airway 

trees), which geodesic path from o to p1 (see Fig. 1a). An important issue in this context is 

that the cost function should be chosen such that minimum-cost path passes through the 

centerline of the structure and a high cost is applied when it deviates from the centerline. 

After the skeletal branch op1 is constructed, the representative object volume is filled by a 

local scale-adaptive dilation along the branch as shown in Fig. 1b. During the next iteration, 

the farthest geodesic point (here, p2) is sought from the filled object volume and the skeleton 

is augmented by another branch op2 joining p2 to the current skeleton. This process 

continues until dilated skeletal branches fill the entire object volume or all meaningful 

branches have been found.

One important feature of the new method is that meaningfulness of individual skeletal 

branches are determined from their global context and, therefore, the method offers 

enhanced robustness in stopping noisy branches. Minimum-cost paths improve smoothness 

of skeletal branches. Also, depending upon the application, the initial root point may be 

automatically detected, e.g., (1) the point with the largest distance transform value, (2) the 

topmost point in the airway tree etc. Major components of the algorithm in a digital grid are 

presented in the following.

- Identify a root voxel as the initial skeleton and set it as the current filled object volume

- Iteratively perform the following steps until dilated skeletal branches fill the entire 

object volume or all meaningful branches have been found

- Find the farthest geodesic voxel from the current filled object volume

- If the farthest voxel is sufficiently far (geodesic distance) from the filled object 

volume, i.e., a meaningful branch may be derived then find the minimum-cost path 

joining the farthest voxel to the current skeleton

- Dilate the newly generated branch to augment the current filled object volume

Finally, it may be mentioned that surplus voxels are generated at a T-junction when a branch 

is created. It is solved by deleting non-arc-end 3-D simple points [10].

In the following sections, different components of the algorithm are described in details. In 

this paper, the cubic image grid Z3, where Z is the set of integers, is used and an element p ∈ 

Z3 of the grid is referred to as a voxel. A fuzzy digital object is defined as a fuzzy subset of 

Z3 and is denoted as  where μo:Z3 → [0,1] is the membership 

function. The support of a fuzzy object, denoted as O, is the set of voxels with non-zero 

membership values, i.e., . A voxel inside the support of an 

object is referred to as an object voxel.
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B. Skeletal branch detection

During an iteration, the skeleton is expanded by exactly one meaningful skeletal branch. The 

first task is to find the farthest geodesic voxel from the filled object volume for which a 

skeletal branch has already been found. This task is accomplished by binary distance 

transform (DT) [30, 31] or fuzzy distance transform (FDT) [32] from the filled volume and 

then selecting the voxel with the largest DT or FDT value.

The next task is to connect the farthest voxel to the current skeleton by a smooth branch that 

also runs along the centerline of the object. As mentioned earlier, the new branch is selected 

as the minimum-cost geodesic path. To impose medialness of the branch, the path is 

encouraged to pass through centers of maximal balls (CMB) [5, 33]. However, such CMBs 

are highly sensitive to noise, especially, for fuzzy objects. To further improve the 

performance, a measure of local significance factor (LSF) [5], which is a measure of 

impulse by opposing fire-fronts, is used to define path cost. LSF at an object voxel p ∈ O in 

a fuzzy object O is defined as follows:

(1)

where the function f+(x) returns the value of x if x > 0 and zero otherwise; and N*(p) is the 

26-neighborhood of p. It can be shown that LSF at a CMB lies in the interval (0,1] and it 

takes the '0' value at non-CMB voxels.

LSF measure is used to define path cost. A path π is an ordered sequence of voxels where 

every two successive voxels are 26-adjacent, i.e.,  where 

are 26-adjacent for every i = 1, … , l - 1. Total path cost is defined by adding the cost of 

individual discrete steps between every two successive voxels on the path. The step-cost of a 

discrete step between two 26-adjacent voxels p, q ∈ Z3 is defined as follows:

(2)

where the two parameters α and n determine the trade-off between the smoothness and 

medialness of the minimum-cost path. A higher weight of LSF value in the step-cost 

function leads to more medialness while a lower weight of LSF value generates straighter 

paths. In this paper, the values of α and n are chosen as '1' and '2', respectively. Results of 

LSF values and the step-cost map are illustrated in Fig. 3c,d, respectively.

The cost of a path  denoted as Cost(π), is computed as the sum of the 

costs of individual steps on the path, i.e.,

(3)

As stated earlier, our objective is to join the farthest geodesic object voxel to the current 

skeleton by a new skeletal branch. Let p be the farthest geodesic object voxel and let S 
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denote the current skeleton. The branch BRS,p joining the skeleton S and the farthest object 

voxel p is defined as the minimum cost path

(4)

where Πs,p is the set of all possible geodesic paths between the skeleton and the voxel p. The 

minimum-cost path BRS,p may be computed using a dynamic programming algorithm. It 

may be noted that, although, a dynamic programming algorithm always generates a 

minimum-cost path, the minimum-cost path between a set of voxels and another voxel is not 

necessarily unique. Cross-sections of minimum-cost paths representing different skeletal 

branches on a 2-D image slice are shown in Fig. 3e.

C. Object volume filling

The final step during an iteration is to fill the object volume represented by a newly added 

skeletal branch. After finding the minimum-cost path, a local volume filling operation is 

applied along the new branch path BRS,p . This step helps avoiding spurious or false 

branches, especially, at object regions with large scales, for example, at trachea of 

intrathoracic airway tree. A local scale-adaptive volume-filling algorithm is applied to fill 

the object volume represented by a newly added branch. It is implemented using a modified 

FDT algorithm. Local scale of dilation scale(q) at a given voxel q on BRS,p is defined as 

follows:

(5)

In the above equation, the parameter K is a positive value which is used to ensure that the 

local object region is completely filled by dilation. It may be noted that some extra filling 

does not negatively influence the results; rather, it helps stopping some noisy braches. In this 

paper, the value of the parameter K is chosen as '1'. The dilation process is implemented as 

follows. At every voxel q on BRS,p, the FDT value is initialized as - scale(q), the negative 

value of its dilation scale. Then FDT is computed within the support of the object using 

dynamic programming and, finally, the regions with negative or zero FDT values are filled. 

Results of filling on an image slice are shown in Fig. 3f.

D. Termination critierion

The algorithm iteratively adds skeletal branch and it terminates when either of the following 

two conditions are fulfilled - (1) the entire object region is entirely filled, or, (2) the geodesic 

distance of the next farthest voxel from the object volume filled by the current skeleton is 

not large enough. The first condition indicates that the entire object volume has already been 

filled by skeleton branches and no further skeletal branch may be added. The second 

condition indicates that no more meaningful skeletal branch may be added. In this paper, a 

distance threshold of three voxels is used for the farthest voxel. In this context, it must be 

mentioned that, since the geodesic distance of the farthest voxel is computed from filled 

object volume, the length of the branch does not define meaningfulness of a branch. At 

large-scale object regions, it is possible to visualize a situation where a branch may be long 

enough while failing to become a meaningful one. In such a situation, major portion of the 
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branch falls inside the object region already filled by representative skeletal branches. Final 

results of skeletonization for a CT-based human intrathoracic airway tree are shown in Fig. 

2c. As it appears visually, the algorithm successfully traces all true branches while stopping 

false branches.

III. EXPERIMENTS AND RESULTS

Two experiments were carried out to quantitatively examine the performance of the 

proposed method and to compare it with a conventional algorithm. Here, we have chosen the 

arc-skeletonization algorithm by Palágyi et al. [34] for comparison which has been 

popularly used for airways. Also, the algorithm by Palágyi et al. uses a post-pruning step to 

remove noisy branches. The first experiment was designed using computer-generated airway 

phantoms with known centerlines to examine the accuracy of the method in terms of 

agreement of computed skeleton with known centerlines. The second experiment was 

conducted on clinical CT data of human intrathoracic airway trees to evaluate the 

performance of the method in terms of false and missing branches as marked by a human 

expert. These experiments and observed results are described in the following sections.

A. Accuracy of arc skeletonization

To quantitatively examine the accuracy of the method, one human airway tree phantom with 

known centerlines was generated at each of three different levels of down-sampling and 

three different levels of noise (Fig. 4b-d). These phantoms were generated in the following 

steps - (1) segmentation of airway lumen using a region growing algorithm [35], (2) arc 

skeletonization [11] and computation of local airway lumen thickness [15], (3) pruning of 

arc skeleton beyond the 6th anatomic level of branching, (4) up-sampling of the skeleton and 

local thickness map by 2×2×2 voxels, (5) fitting of a B-spline to each individual skeletal 

branch, (6) smoothing thickness values along each skeletal branch, (7) reconstruction of a 

smooth airway tree volume using local thickness-adaptive dilation along each skeletal 

branch, (8) down-sampling of known centerline and corresponding airway volume at 3×3×3, 

4×4×4, and 5×5×5 voxels, (9) addition of zero-mean correlated white Gaussian noise at a 

signal-to-noise ratio of 24, 12, and 6.

Results of arc skeletonization for an airway phantom (Fig. 4a) at three different levels of 

down-sampling and three different levels of noise (Fig. 4b-d) are shown in Fig. 4e-g. 

Skeletonization error was calculated by comparing computed and true skeletons. True 

skeleton was generated by sampling the B-spline based skeletal branches in the continuous 

3-D space R3. Let ST be the set of NT number of sample points in a true skeleton. Let 

denote the computed skeleton by a given method at the down-sampling rate of F and the 

noise at SNR of ρ and let  denote the number of voxels in  Skeletonization error was 

computed as follows:

(6)
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Average errors for phantoms at different levels of down-sampling and noise are presented in 

Table 1. At each level of downsampling and noise, the average error using the new 

algorithm (Table 1a) is less than that by Palágyi et al.'s algorithm. As shown in the table, the 

average error is less than a voxel and as discussed by Saha et al. [16], the average 

digitization error is close to 0.38 voxel. Therefore, after deducting the digitization error, the 

performance of the new algorithm even at the highest level of noise and down sampling is 

very encouraging. Also, it may be noted that, at a given down sampling rate, the 

performance of our method is almost insensitive to noise. The primary reason behind this 

strong performance is that the new method detects a significant branch using path integral of 

a cost function and the effects of noise is significantly reduces by the path-integration.

B. Evaluation of false and missing branches

To evaluate the performance of the method in terms of false and missing branches, five 

human pulmonary CT images were used and the analysis was performed on airway tree 

skeletonization. These images were acquired on a Siemens Sensation 64 multi-row detector 

CT scanner using the following protocol: 120 kV, 100 effective mAs, pitch factor: 1.0, 

nominal collimation: 64×0.6mm, image matrix: 512×512 and (0.55 mm)2 in-plane 

resolution. Airway trees were segmented using a region growing algorithm and granular 

noisy protrusion and dents were added on airway border. It was ensured that the dents and 

protrusions do not create any cavities and tunnels [29]. Results of application of the new 

method and the algorithm by Palágyi et al. are shown in Fig. 5. The new method 

successfully stopped noisy branches for most noisy granulates on the airway border except 

for a few locations as shown in a zoomed panel on the left. On the other hand, Palágyi et 

al.’s algorithm produced undesired branches at many noisy protrusions. Both algorithms 

successfully detected all visible branches. To quantitatively examine the performance of the 

two methods, one expert observer visually labeled false and missing braches up to fifth 

generation of airway tree. The original airway tree prior to addition of noise was used for 

labeling noisy and missing branches. Following the expert observer, both methods 

successfully preserved all true branches in computed arc skeletons. Based on the expert 

observer’s labeling on five nosy airway trees, the new method produced an average of 2.4 

false branches on each airway tree while Palágyi et al.’s algorithm produced an average of 

31.4 false branches. The maximum number of false branches by the new method for any 

image used in this experiment was five.

IV. CONCLUSION

A new approach of computing arc-skeleton for three-dimensional tree-like objects has been 

presented and its performance has been evaluated. The new method uses an initial root seed 

voxel to grow the skeleton. A novel path-cost function has been designed using a measure of 

local significance factor, which forces new branches to adhere to the centerline of an object. 

The method uses global contextual information while adding a new branch, which 

contributes additional power to stop false or noisy branches. Quantitative evaluative 

experiments on realistic phantoms with known centerlines have demonstrated that the new 

method is more accurate than a popular conventional method. The other experiment using 

airway tree data with additional noisy dents and protrusions has shown that the new method 

Jin et al. Page 7

Proc IAPR Int Conf Pattern Recogn. Author manuscript; available in PMC 2015 January 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



significantly reduces the number of noisy or false branches as compared to a conventional 

algorithm. In this paper, a threshold on geodesic distance of the farthest voxel from object 

volume filled by representative skeletal branches is used to determine meaningfulness of a 

new branch. Currently, we are working on defining a scale-adaptive smart criterion to define 

meaningfulness of a skeletal branch. One concern of the new method is high computational 

complexity. At present, we are developing a computationally efficient algorithm that 

exploits the volumetric sparseness of object voxels in a tree-like structure and that will 

minimize repetitive computation of FDT, path-cost, farthest geodesic voxel, and volume 

filling.
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Fig. 1. 
Schematic illustration of the new method. (a) The method starts with the rood point o as the 

initial skeleton and finds the farthest geodesic point p1. This farthest point is connected to 

the skeleton by a new branch op1 using a minimum-cost geodesic path. (b) The object 

volume corresponding to the current skeleton is filled and the next farthest geodesic point p2 

is found and another skeletal branch op2 is added. It may be noted that the noisy protrusion 

pnoise does not create any noisy branch even after all meaningful branches are added to the 

skeleton.
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Fig. 2. 
Results of arc skeletonization at different stages of skeletal expansion by the new method. 

(a) The first two skeletal branches and corresponding filled object volume on CT image data 

of a human intrathoracic airway tree. Filled object volumes by different branches are 

rendered in different colors. (b,c) Same as (a) but after extracting more branches (b) and at 

the terminal condition (c).
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Fig. 3. 
Illustration of local significance factor and different cost functions on a small region in a 2-

D image slice of a pulmonary CT image. (a) A small region from an original CT image slice. 

(b) Segmented airway lumen mask. (c,d) LSF (c) and path cost (d) functions. (e) Extracted 

centerlines. (f) Filleted object volume for different skeletal branches.
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Fig. 4. 
Results of arc skeletonization on phantom images at different levels of noise and down 

sampling. (a) 3D rendition of the original phantom. (b-d) Sagittal image slices at SNR of 24, 

12 and 6 and down sampling of three, four, and five voxels. (e-g) Arc skeletons for the 

images of (b-d), respectively, using by the proposed method.
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Fig. 5. 
3D display of arc skeletonization of a CT-derived human intrathoracic airway tree after 

adding noisy protrusions and dents. The arc skeleton obtained by the new method (a) has 

significantly reduced false branches as compared to Palágyi algorithm (b). A zoomed in 

pane is shown in (a) to demonstrate a false branch by the new method. Both methods have 

successfully captured all visible meaningful branches.
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Table 1

Arc skeletonization errors using the new method (a) and the algorithm by Palágyi et al. [34] (b). Each cell 

presents the mean and the standard deviation of skeletonization errors in voxel unit of corresponding down-

sampled resolution.

down- Different signal to noise ratio

sampling SNR 24 SNR 12 SNR 6

3×3×3 0.66±0.38 0.67±0.38 0.67±0.37

4×4×4 0.69±0.33 0.69±0.35 0.69±0.34

5×5×5 0.72±0.40 0.75±0.38 0.72±0.38

(a)

down- Different signal to noise ratio

sampling SNR 24 SNR 12 SNR 6

3×3×3 0.78±0.39 0.78±0.40 0.79±0.40

4×4×4 0.86±0.43 0.86±0.41 0.86±0.41

5×5×5 0.92±0.39 0.92±0.40 0.92±0.40

(b)
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