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Abstract

Conventional lithography-based VLSI design technology deployed to optimize low-powered-computing and higher

scale integration of semiconductor components. However, this downscaling trend confronts serious challenges of

tunneling and leakage current increment to the Complementary Metal–Oxide–Semiconductor (CMOS) technology

on nanoscale regimes. To resolve the physical restriction of the CMOS, Quantum-dot Cellular Automata (QCA)

technology dedicates for the nanoscale technology that embrace a new information transformation technique.

However, QCA is limited to the design of the sequential and combinational circuits only. This paper presents some

highly scalable features reversible logic gate for the QCA technology. In addition, proposed layout compared with

CMOS technology, offer a better reduction in size up to 233 times.

Keywords: Quantum-dot Cellular Automata (QCA); Complementary Metal Oxide Semiconductor (CMOS); Nanoscale
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Introduction
Over the years, the reversible logic has attained a great

attention due to their ability of power minimization

which is the main requirement in the low power VLSI

design. This technology is a promising computing para-

digm that has immense applications in emerging tech-

nologies such as quantum dot cellular automata, quantum

computing, optical computing, DNA computing, optical

information processing, etc. (Al-Rabadi 2004; Ma et al.

2008; Thapliyal and Ranganathan 2008; Thapliyal and

Ranganathan 2009a; Thapliyal and Ranganathan 2010). In

reversible circuits the input and output mapping is one-

to-one that means every unique output vector is generated

from each input vector, and vice versa. It has shown by

(Landauer 1961) that the loss of every bit of information

dissipates energy of kTln2 joules, where k is Boltzmann’s

constant and T is the absolute temperature. In room

temperature TR, the amount of heat generated due to one

bit of information loss (Landauer 1961) is small, which is

calculated as 2.9 × 10−21 joule, but is not negligible. Later

on, (Bennett 1973) showed that the energy losses could be

avertable; if the computation is carried out by reversible

circuits.

Now-a-days, CMOS technology is imminent to its

physical boundary in downscaling and confronting crit-

ical challenges of designing ultra low power consuming

computational devices. This projected the expectation to

go looking new technologies that offer emerging solu-

tions. One of the alternatives is known as Quantum-dot

Cellular Automata (QCA) (Lent et al. 1993a; Lent et al.

1993b) which has recently been recognized as one of the

top emerging technologies with potential applications in

future computing (Orlov et al. 1997; Wilson et al. 2002)

for its express speed, nanoscale integration and ultra low

power consumption in various computational applica-

tions (Lent et al. 1993a).

Molecular QCA can operate at room temperature

shown in (Lent et al. 2003; Wang and Lieberman 2004).

Since the emancipation of QCA, a number of QCA-

based logic circuits have been proposed based on major-

ity voter gate, inverter and QCA wires. A lot of QCA

based combinational (Azghadi et al. 2007; Cho and

Swartzlander 2007; Cho and Swartzlander 2009; Gin

et al. 1999; Hänninen and Takala 2010; Ke-ming and

Yin-shui 2007; Kim et al. 2007; Mardiris and Karafyllidis

2010; Navi et al. 2010; Sara et al. 2012; Sayedsalehi et al.
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2011; Srivastava and Bhanja 2007; Tougaw and Lent

1994; Vetteth et al. 2002; Wang et al. 2003; Zhang et al.

2005), sequential (Askari et al. 2008; Dehkordi et al.

2011; Ghosh et al. 2013; Huang et al. 2007; Sen et al.

2013; Vankamamidi et al. 2008; Venkataramani et al.

2008; Wu et al. 2014; Xiao et al. 2012; Yang et al. 2010)

circuits have been proposed in recent years. However,

reversible logic circuit designs (Bahar et al. 2013; Shah

et al. 2012) in QCA are still unexplored research area.

In this paper, four novel QCA circuit layouts of revers-

ible logic gate have been presented and their function-

ality has been verified using the QCADesigner (Walus

et al. 2004).

Material and methods
A Quantum Cellular Automata, one of the emerging

nanotechnologies was first introduced by (Lent et al.

1993a) which encodes information based on position of

electrons. The basic element of a QCA based device is

the squared cell with two mobile electrons and two

quantum dots (Amlani et al. 1999; Ling-gang et al. 2005)

shown in Figure 1. Based on the occupied electron's pos-

ition, a QCA cell has two different types of polarization,

P = +1 or binary 1 and P = -1 or binary 0 (Lent and

Tougaw 1997). A cell polarization p is +1 if the electrons

are occupied the position 1 and 3, similarly a cell

polarization p is -1 in the case of electrons are occupied

the position 2 and 4. The equation for the cell polarization

(Lent and Tougaw 1997) is given below:

P ¼
ρ2 þ ρ4ð Þ− ρ1 þ ρ3

� �

ρ1 þ ρ2 þ ρ3 þ ρ4

� � ð1Þ

Where, ρi denotes the electronic charge at dot i.

The QCA based design consists of a wire, a 3-input

majority voter gate, and an inverter. An array of cells ar-

ranged one after another makes up the QCA wire, as

shown in Figure 2. In the QCA wire, the polarization of

each cell is affected by the electrostatic forces generated

through neighboring cells. Thus, information propagates

from one cell to another by through the QCA wires.

The 3-input majority gate has five cells: three inputs, a

middle cell, and one output shown in the Figure 3 (a).

The middle cell of the 3 input majority gates switches

major polarization and maintains a consistent output. If

the polarization of one of the 3-input cells is constant to

P = -1 or P = +1 then this gate can be programmed to

function as a 2-input AND or a 2-input OR gates, re-

spectively shown in the Figure 3 (b) and (c).

In the Figure 4 shows the variety module of the inverting

gate in the QCA. Seven cells inverter in the Figure 4 (c)

operate appropriately in all various circuits.

Proposed circuits and presentation
A reversible logic gate is one that has n input n output;

with one-to-one mapping that means it determines the

outputs from the inputs. It also helps the inputs to be

uniquely recovered or reconstructed from the outputs.

1

4

2

3

(a) (b)
P= +1 P= -1

Electron

Figure 1 Basic structure of a QCA cell with four dots (a),

different positions of the electrons based on polarization (b).

Figure 2 QCA wire.

Figure 3 The QCA majority gate (a), function as (b) the AND gate and (c) the OR gate.

Bahar et al. SpringerPlus  (2015) 4:153 Page 2 of 7



NFT gate

The New Fault Tolerant (NFT) gate is one of the basic

3 × 3 parity preserving (Haghparast and Navi 2008) revers-

ible logic gates having the inputs and output mapping as

P = A⊕ B, Q ¼ �BC⊕A�C and R ¼ BC⊕A�C, where the

input vector is I (A, B, C) and the output vector is

O (P, Q, R). The Figure 5 shows the QCA representation

of this gate.

TR gate

The TR gate is a 3-input, 3-output, reversible gate (Thapliyal

and Ranganathan 2009b) having inputs to output mapping

as P ¼ A; Q ¼ A⊕B and R ¼ A�Bð Þ⊕C , where A, B, C are

the inputs and P, Q, R are the outputs, respectively, as shown

in Figure 6.

R gate

The R gate is a 3-input, 3-output, reversible gate (Vasudevan

et al. 2006). Figure 7 shows the block diagram of this

gate in QCA. The input vector is I (A, B, C) and the

output vector is O (P, Q, R). The outputs are defined as

P ¼ A⊕B; Q ¼ A and R ¼ AB⊕�C .

BVF gate

BVF gates also known as 4 × 4 double XOR reversible

logic gates (Bhagyalakshmi and Venkatesha 2010). This

can be used for duplication of the required inputs to

meet the fan-out requirements. The input vector is I (A,

B, C, D), the output vector is O (P, Q, R and S) and the

Figure 4 Three different structure of inverter gates (a) two cell inverter (b) four cell inverter (c) seven cell inverter.

MV

A B C

P

Q

1 MV

R

-1

MV
-1

MV

1 MV

-1

MV
-1

1 MV

MV-1

Figure 5 Proposed QCA block diagram of NFT gate.
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Figure 6 Proposed QCA block diagram of TR gate.

MV

MV

A B C

P

Q

-1

MV R1

-1

MV

-1

MV1

MV

-1

MV-1

Figure 7 Proposed QCA block diagram of R gate.
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output is defined as P =A, Q =A⊕ B, R = C and S =

C⊕D shown in Figure 8.

Simulations and result analysis
Our proposed circuits have been simulated using the

QCADesigner (Walus et al. 2004) a common and power-

ful simulation tool for QCA circuits. Bistable Approxima-

tion has been applied for simulating the proposed circuit

with below parameters: cell size = 18 nm, number of

samples = 50000, convergence tolerance = 0.0000100,

radius of effect = 65.000000 nm, relative permittivity =

12.900000, clock high = 9.800000e−022 J, clock low =

3.800000e−023J, clock shift = 0, clock amplitude factor =

2.000000, layer separation = 11.500000 and maximum

iterations per sample = 100. Most of the above mentioned

parameters are default for Bistable Approximation. The

circuit layout of NFT, TR, R and BVF gates are shown in

Figure 9. Here, the input cells are denoted by A, B, C and

D, output cells are P, Q, R and S; and the two polariza-

tions, P = +1 is denoted by 1 and P = -1 denoted by -1.

Figure 10 shows the input and output waveforms of our

proposed gate in QCADesigner.

Table 1 shows the different parameters of the pro-

posed gates. From the above table it is clear that QCA

technology provides highly integrated designing para-

digm over CMOS technology. Covered areas in both

CMOS and QCA technologies with improvements are

shown in Figure 11. Here, Microwind and Dsch3 has been

employed to design and calculate covered area for CMOS

design. Moreover, the number of cells and majority voter

gates are the total number of cells and majority voter gates

required to design a gate.

Conclusion
Quantum-dot cellular automata, one of the promising

nanotechnologies that are appropriate for the design of

Figure 9 QCA simulated circuit layout of (a) NFT gate, (b) TR gate, (c) R gate, and (d) BVF gate.

Figure 8 Proposed QCA block diagram of BVF gate.
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Figure 10 Input output waveforms of (a) NFT gate, (b) TR gate, (c) R gate, and (d) BVF gate.
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highly scalable logic circuits. A number of QCA-based

reversible logic gates, which are significantly smaller size

than CMOS have been presented here. In addition, QCA

design accomplished by the basic gate and logic circuit

in which less area is required to make a device. Thus the

new device will consume less power and increase device

performance. Since nanotechnology has high demand in

the market, this QCA technology can be best suited sub-

stitute of CMOS based technology.
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