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Abstract 
In this paper, we study a new approach for solving linear fractional programming problem (LFP) 
by converting it into a single Linear Programming (LP) Problem, which can be solved by using any 
type of linear fractional programming technique. In the objective function of an LFP, if β is nega-
tive, the available methods are failed to solve, while our proposed method is capable of solving 
such problems. In the present paper, we propose a new method and develop FORTRAN programs 
to solve the problem. The optimal LFP solution procedure is illustrated with numerical examples 
and also by a computer program. We also compare our method with other available methods for 
solving LFP problems. Our proposed method of linear fractional programming (LFP) problem is 
very simple and easy to understand and apply. 
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1. Introduction 
Various optimization problems in engineering and economics involve maximization (or minimization) of the ra-
tio of physical or economic function, for instances cost/time, cost/volume, cost/benefit, profit/cost or other quan-
tities measuring the efficiency of the system. Naturally, there is a need for generalizing the simplex technique 
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for linear programming to the ratio of linear functions or to the case of the ratio of quadratic functions in such a 
situation. All these problems are fragments of a general class of optimization problems, termed in the literature 
as fractional programming problems. This field of LFP was developed by Hungarian mathematician Matros [1] 
[2] in 1960. Several methods are proposed to solve this problem. Charnes and Kooper [3] have proposed their 
method depended on transforming this (LFP) to an equivalent linear program, they say the feasible region X  
is nonempty and bounded, cx α+  and ax β+  do not vanish simultaneously in S  then they used the variable 
transformation , 0y tx t= ≥  in such a way that dt β γ+ =  where 0γ ≠  is a specified number and transform 
LFP to an LP problem. Multiplying the numerator and denominator and the system of inequalities by t  and 

, 0y tx t= ≥ , they obtain two equivalent LP problems and name them as EP and EN. If EP or EN has an optimal 
solution and other is inconsistence, then LFP also has an optimal solution. If any of the two problems EP or EN is 
unbound, then LFP is also unbound. So if the first problem is not unbound, one needs to solve the other. That’s 
why one needs to solve two LPs by Big-M or two-phase simplex method, which is a very lengthy process. On the 
other hand, the simplex type algorithm is introduced by Swarup [4] and Swarup, Gupta and Mohan [5].  
In that method one needs to compute ( ) ( )2 1 1 2

j j j j jZ c Z Z d Z∆ = − − −  in each step and continues this process  
until the value of j∆  satisfying the required condition. We see that it has to deal with the ratio of two linear 
functions, that’s why its computational process is complicated and also when the constraints are not in canonical 
form then it becomes lengthy. Another method is called updated objective function method derived from Bitran 
and Novaes [6] is used to solve this linear fractional program by solving a sequence of linear programs only 
re-computing the local gradient of the objective function. But to solve a sequence of problems sometimes may 
need many iterations and at some cases say, 0dx β+ ≥  and 0cx α+ <  x S∀ ∈ , Bitran-Novaes method is 
failed. Singh [7] in his paper makes a useful study about the optimality condition in fractional programming. 
Tantawy [8] develops a technique with the dual solution. Hasan and Acharjee [9] also develop a method for 
solving LFP by converting it into a single LP, but for the negative value of β , their method fails. Tantawy [10] 
develops another technique for solving LFP which can be used for sensitivity analysis. Effati and Pakdaman [11] 
propose a method for solving the interval-valued linear fractional programming problem. Pramanik et al. [12] 
develops a method for solving multi-objective linear plus linear fractional programming problem based on Tay-
lor Series approximation. 

In this paper, our intent is to develop a new technique for solving any type of LFP problem by converting it 
into a single linear programming (LP) problem because at some cases in the denominator and numerator when 
β  is negative, available methods are failed to solve the linear fractional problem. We also develop a FOR- 
TRAN computer program for solving it and analyze the solution by numerical examples. 

2. Mathematical Formulation of LP and LFP 
The mathematical expression of a general linear programming problem is as follows: 

Maximize (or Minimize) 
1

n

j j
j

Z c x
=

= ∑  

Subject to }{
1

, , ; 1, 2, ,
n

ij j i
j

a x b i m
=

≤ = ≥ =∑   

0; 0x b≥ ≥  
where one and only one of the signs (≤, =, ≥) holds for each constraint and the sign may vary from one con-
straint to another. Here ( )1,2, ,jc j n=   are called profit (or cost) coefficients, ( )1,2, ,jx j n=   are called 
decision variables. The set of feasible solution to the linear programming problem (LP) is 

( ) ( ){ }T T
1 2 1 2, , , : , , , n

n nS x x x x x x R= ∈   and ( )T
1 2, , , nx x x . The set S is called the constraints set, feasible  

set or feasible regionof (LP). 
In matrix vector notation the above problem can be expressed as: 
Maximize (or Minimize) Z cx=  
Subject to ( ), ,Ax b≤ = ≥  

0; 0x b≥ ≥  
where A  is an m n×  matrix, x  is an 1n×  column vector, b  is an 1m×  column vector and c  is a 
1 n×  row vector, mb R∈ ; , nx c R∈ . 
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The mathematical formulation of an LFP (in matrix vector notation) is as follows: 

Maximize 
cxZ
dx

α
β

+
=

+
 

Subject to ( ), ,Ax b≤ = ≥  
0; 0x b≥ ≥  

where A  is an m n×  matrix, x  is an 1n×  column vector, b  is an 1m×  column vector and c  is a 
1 n×  row vector, mb R∈ ; , , nx c d R∈ ; , Rα β ∈ . 

2.1. Solving LFP by Our Method 
If 0c ≠  and 0d ≠ , we assume that the feasible reason { }: , 0nS x R Ax b x= ∈ ≤ ≥  is nonempty and 
bounded and the denominator 0dx β+ ≠ . 

We convert the LFP into an LP in the following way assuming that 0β ≠ . 
Case I: 0β >  
For objective function, 

( )
( )

c d xcx cxZ
dx dx dx

β αα α α α α
β β β β β β β

−+ +
= = − + = +

+ + +
 

( )H y Iy J∴ = +  

where, 
c dI β α

β
−

= , 
xy

dx β
=

+
, J α

β
=  

For constraint, Ax b≤  

1
Ay b

yd
β

⇒ ≤
−

 

by
A bdβ

⇒ ≤
+

 

( )A bd y bβ⇒ + ≤  

Ky L∴ ≤  
where ,K A bd L bβ= + =  

So the new LP is: Maximize ( )H y Iy J= +  
Subject to Ky L≤ , 0y ≥  

2.2. Calculation for the Unknown Variable of the LFP 

From the above LP, we get 
xy

dx β
=

+
 

1
yx

dy
β

∴ =
−

 

This is our required optimal solution. Putting the value of x  in the original objective function, we can get 
the optimal value. 

Case II: 0β < , 0α ≥  
For objective function, 

cxZ
dx

α
β

+
=

−
 



S. K. Saha et al. 
 

 
77 

( )
( )

1
1

c d xZ cx dx c x
Z cx dx c d x d x

α βα β α
α β α β β

+ + − ′ ′+ + + − +
⇒ = = =

′ ′− + − + − + + +
 

where,  ,   and  , c c d d c dα α β β α β′ ′ ′ ′= − = + = + = −  

Same as above procedure, we have 

( )H y I y J′ ′ ′= +  

where, 
c dI β α

β
′ ′ ′ ′−′ =

′
, 

xy
d x β

=
′ ′+

, J α
β
′

′ =
′

, ( ) 1
1

ZH y
Z
+′ =
−

 

For constraints, following the same procedure as above, we get 

K y L′ ′≤  

where ,K A bd L bβ′ ′ ′ ′= + =  
Case III: 0β < , 0α <  
For objective function:  

cx cxZ
dx dx

α α
β β

− − +
= =

− − +
 

Same as above procedure, we have 

( )1 1 1H y I y J= +  

where, 1
d cI α β

β
−

= , 
xy

dx β
=
− +

, 1J α
β

=  

For constraints, following the same procedure as above, we get 

1 1K y L≤  

where 1 1,K A bd L bβ= − = . 

3. Algorithm 
If 0β >  then 

; ; ; ;c d xI y J K A bd L
dx

bβ α α
β

β
β β
−

← +← ←
+

←←  

( ) ;H y Iy J← +  for all & 0;Ky L y≤ ≥  else if 0 & 0β α< ≥  then 
; ; ; ;c c d d c dα α β β α β′ ′ ′ ′← − ← + ← + ← −  

; ; ;c d xI y J
d x

β α α
β β β

′ ′ ′ ′ ′−′ ′← ← ←
′ ′ ′ ′+

 

 ; K A bd L bβ′ ′ ′ ′← + ←  

( ) ;H y I y J′ ′ ′← +  for all & 0;K y L y′ ′≤ ≥  

( ) ( )
( )

1
1

H y
H y

H y
′ +

←
′ −

 

else 

1 1 1 1; ; ;  ; d c xI y J K A bd L b
dx

α β α β
β β β
−

← ← ← ← − ←
− +

 

( ) 1 1H y I y J← + , for all 1 1 & 0;K y L y≤ ≥  return ( )H y . 
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4. Numerical Examples 
Here we illustrate some numerical examples to demonstrate our method. 

Example 1: 

Minimize 1 2

1 2

2 2
3 4

x xZ
x x
− + +

=
+ +

 

Subject to 1 2 4x x− + ≤  

1 2

2

1 2

2 14
6

, 0

x x
x
x x

+ ≤
≤

≥
 

Solution: Here we have, ( ) ( ) ( ) ( ) ( )1 2 3 1 22,1 , 1,3 , 2, 4, 1,1 , 2,1 , 0,1 , 4, 14,c d A A A b bα β= − = = = = − = = =

3 6b = , where 1 1,A b  is related to the first constraint, 2 2,A b  is related to the second constraint and 3 3,A b  is  
related to the third constraint. So, we have the new objective function. 

Minimize ( ) ( ) ( ) 1
1 2

2

4 2,1 2 1,3 2 5 1 1
4 4 2 2 2

y
H y y y

y
− −   

= + = − − +   
  

 

Now for the first constraint, 

( ) ( ) 1

2

1,1 4 4 1,3 4
y
y
 

− + ≤    
 

 

2
1
4

y⇒ ≤  

For the second constraint, 

( ) ( ) 1

2

4 2,1 14 1,3 14
y
y
 

+ ≤    
 

 

1 211 23 7y y⇒ + ≤  

For the third constraint, 

( ) ( ) 1

2

4 0,1 6 1,3 6
y
y
 

+ ≤    
   

1 23 11 3y y⇒ + ≤  
Converting the LP in standard form we have 

Maximize ( ) ( ) 1 2
5 1 1min 
2 2 2

T y H y y y= − = + −  

Subject to 2 1
1
4

y s+ =  

1 2 211 23 7y y s+ + =  

1 2 33 11 3y y s+ + =  

1 2 1 2, , , 0y y s s ≥  

Now we get the following table (Table 1 and Table 2): 
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Table 1. Initial table for Example 1.                                                                          

CΒ  
JC  

5
2

 1
2

 0 0 0 
 

b  
Basis 1y  2y  1s  2s  3s  

0 
1s  0 1 1 0 0 1

4
 

0 
2s  11 23 0 1 0 7 

0 
3s  3 11 0 0 1 3 

j j jc c E= −  5
2

 1
2

 0 0 0  

 
Table 2. Final table for Example 1.                                                                          

CΒ  
JC  

5
2

 1
2

 0 0 0 
 

b  
Basis 1y  2y  1s  2s  3s  

0 
1s  0 1 1 0 0 1

4
 

5
2

 1y  1 23
11

 0 1
11

 0 7
11

 

0 
3s  0 52

11
 0 3

11
−  1 12

11
 

j j jc c E= −  0 52
11

−  0 5
22

−  0  

 

So we have, 1
7
11

y = , 2 0y =  

Now ( ) ( )
( )( ) ( )

( )1 2
1 2

1 2

7 28,0 4 ,0, 11 11, 7,0
1171 1,3 , 1 1,3 ,0
411

y y
x x

y y
β

   
   
   = = = =

−  −  
 

 

Putting this value in the original objective function, we have 

Min 2 7 0 2 12
7 3 0 4 11

Z − × + +
= = −

+ × +
 

Now, we solve the above problem by computer program. 
Output: 
Minimum value of the Objective Function = −1.090909. 
X1 = 7.000000; 
X2 = 0.000000. 
We see that our hand calculation result and computer oriented solution is the same. This shows that our com-

puter program is correct. 
 

Charnes and Kooper Bitran and Novae Swarup Our Method 

EN 1 iteration and inconsistent 1st LP-2 iterations 
2nd LP-2 iterations 

2 iterations with clumsy 
calculations of LFP 

2 iterations with easy  
calculations of LP EP 2 iterations in Phase I 

1 iterations in Phase II 
 

Example 2: 

Maximize 1 2

1 2

2 3
1

x xZ
x x

+
=

+ −
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Subject to 1 2 3x x+ ≤  

1 2

1 2

2 3
, 0

x x
x x
+ ≤

≥
 

Solution: Here we have, ( ) ( ) ( ) ( )1 1 2 22,3 , 1,1 , 0, 1, 1,1 , 3, 1,2 , 3c d A b A bα β= = = = − = = = = , where 1 1,A b  
is related to the first constraint and 2 2,A b  is related to the second constraint. 

Now, ( ) ( )1, 1, 3,4 , 1,2c dα β′ ′ ′ ′= − = = =  
So, we have the new objective function 

Maximize ( ) ( ) ( )( ) ( )1

2

3, 4 1 1,2 1 1
1 1

y
H y

y
− − −   ′ = +   

  
 

( ) 1 24 6 1H y y y′ = + −  

Now for the first constraint, 

( ) ( ) 1

2

1,1 1 3 1,2 3
y
y
 

+ ≤    
 

 

1 24 7 3y y⇒ + ≤  

For the first constraint, 

( ) ( ) 1

2

1, 2 1 3 1,2 3
y
y
 

+ ≤    
 

 

1 24 8 3y y⇒ + ≤  

Converting the LP in standard form we have 
Maximize ( ) 1 24 6 1H y y y′ = + −  
Subject to 1 2 14 7 3y y s+ + =  

1 2 24 8 3y y s+ + =  

1 2 1 2, , , 0y y s s ≥  

Now we get the following tables (Table 3 and Table 4): 
 

Table 3. Initial table for Example 2.                                                                         

CΒ  
JC  4 6 0 0 

b  
Basis 1y  2y  1s  2s  

0 
1s  4 7 1 0 3 

0 
2s  4 8 0 1 3 

j j jc c E= −  4 6 0 0  

 
Table 4. Final table for Example 2.                                                                          

 
CΒ  

JC  4 6 0 0 
b  

Basis 1y  2y  1s  2s  

4 
1y  1 7

4
 1

4
 0 3

4
 

0 
2s  0 1 1−  1 ( )0 ε  

j j jc c E= −  0 1−  1−  0  
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So we have, 1
3
4

y = , 2 0y =  

Now ( ) ( )
( )( ) ( )

( )1 2
1 2

1 2

3 3,0 1 ,0, 4 4, 3,0
131 1,2 , 1 1, 2 ,0
44

y y
x x

y y
β

   
   ′    = = = =

−  −  
 

 

Putting this value in the original objective function, we have 

Maximum 2 3 3 0 3
3 0 1

Z × + ×
= =

+ −
 

By using computer technique we get the following result. 
Output: 
Maximum value of the Objective Function = 3.000000. 
X1 = 3.000000; 
X2 = 0.000000. 
Note: This problem cannot be solved by any available method because the value of β is negative. 
Example 3: 

Maximize 1 2

1 2

6 5 4
2 3 8

x xZ
x x
− −

=
+ −

 

Subject to 1 22 2 3x x− ≤  

1 2

1 2

3 2 2
, 0

x x
x x

+ ≤
≥

 

Solution: Maximize 1 2 1 2

1 2 1 2

6 5 4 6 5 4
2 3 8 2 3 8

x x x xZ
x x x x
− − − + +

= =
+ − − − +

 

Subject to 1 22 2 3x x− ≤  

1 2

1 2

3 2 2
, 0

x x
x x

+ ≤
≥

 

Here we have, ( ) ( ) ( ) ( )1 1 2 26,5 , 2, 3 , 4, 8, 2, 2 , 3, 3,2 , 2c d A b A bα β= − = − − = = = − = = = , where 1 1,A b  is 
related to the first constraint and 2 2,A b  is related to the second constraint. 

So we have the new objective function 

Maximize ( ) ( ) ( ) 1
1 2

2

6,5 8 2, 3 4 4 13 15
8 8 2 2

y
H y y y

y
− − − −   

= + = − + +   
  

 

Now for the first constraint, 

( ) ( ) 1

2

2, 2 8 2, 3 3 3
y
y
 

− + − − ≤    
 

 

1 210 25 3y y⇒ − ≤  

For the second constraint, 

( ) ( ) 1

2

3, 2 8 2, 3 2 2
y
y
 

+ − − ≤    
 

 

1 2

1 2

20 10 2
10 5 1

y y
y y

⇒ + ≤
⇒ + ≤

 

Converting the LP in standard form, we have 

Maximize ( ) 1 2
13 15
2 2

H y y y= − + +  
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Subject to 1 2 110 25 3y y s− + =  

1 2 210 5 1y y s+ + =  

1 2 1 2, , , 0y y s s ≥  

Now we get the following tables (Table 5 and Table 6): 
 

Table 5. Initial table for Example 3.                                                                                 

CΒ  
JC  5−  13 2  0 0 

b  
Basis 1y  2y  1s  2s  

0 
1s  10 25−  1 0 3 

0 
2s  10 5 0 1 1 

j j jc c E= −  5−  13 2  0 0  

 
Table 6. Final table for Example 3.                                                                                

CΒ  
JC  5−  13 2  0 0 

b  
Basis 1y  2y  1s  2s  

0 
1s  40 0 1 5 8 

13 2  2y  2 1 0 1 5  1 5  

j j jc c E= −  18−  0 0 13 10−   

 

So we have 1 0y = , 2
1
5

y =
 

Now, ( ) ( )
( )( ) ( )

( )1 2
1 2

1 2

1 80, 8 0,, 5 5, 0,1
811 2, 3 , 1 2, 3 0,
55

y y
x x

y y
β

   
   
   = = = =

− − −  − − −  
 

 

Putting this value in the original objective function, we have 

Maximum 6 0 5 1 4 9
2 0 3 1 8 5

Z × − × −
= =

× + × −
 

Using computer program, we get the following result. 
Output: 
Maximum value of the Objective Function = 1.800000. 
X1 = 0.000000; 
X2 = 1.000000. 
Example 4: Production Problem of a Certain Industry. 

Suppose an industry has Tk. 3,00,00,000/= by which it can produce six different products Palm oil, Coconut oil, 
Mustard oil, Soyabean oil, Sunflower oil and Dalda. The net refined oil from per metric ton cobra, master seeds, 
sunflower seeds, palm crude oil, soyabean crude oil are respectively 300 kg, 400 kg, 400 kg, 980 kg, 970 kg. 
The industry has some production loss for palm oil and soyabean oil, which are respectively 2% and 3%. The 
industry has a fixed establishment cost is Tk. 5,00,000. The management of industry wishes to produce maxi-
mum 600 metric tons different types of oil. The cost for different raw materials to produce per metric ton crude 
oil/ seed/cobra in taka as follows (Table 7). 

In addition the industry has the following limitations on expenditures: 
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Maximum investment for crude oil/seeds/cobra is Tk. 20,000,000/-; 
Maximum investment for transportation is Tk. 5,00,000/-; 
Maximum investment for storage is Tk. 15000/-; 
Maximum investment for customs duties and vat is Tk. 6,000,000/-; 
Maximum investment for chemicals is Tk. 55,000/-; 
Maximum investment for electricity and gas is Tk. 120,000/-; 
Maximum investment for maintains is Tk. 30,000/-; 
Maximum investment for labor is Tk. 10,000/-; 
Maximum investment for management is Tk. 25,000/-. 
 

Table 7. Cost for different raw materials.                                                                       

N
am

e 
of

 p
ro

du
ct

s 

C
os

t o
f c

ru
de

 
oi

l/s
ee

ds
/c

ob
ra

 

Tr
an

sp
or

ta
tio

n 
co

st
 

St
or

ag
e 

co
st

 

C
us

to
m

s d
ut

ie
s a

nd
  

va
t 

C
he

m
ic

al
 c

os
t 

C
os

t o
f e

le
ct

ric
ity

  
an

d 
ga

s 

M
ai

nt
ai

ns
 c

os
t 

La
bo

ur
 c

os
t 

M
an

ag
em

en
t c

os
t 

D
el

iv
er

y 
co

st
 

R
et

ur
n 

(p
er

 m
et

ric
 to

n)
 

1. Dalda 22,800 650 20 11400 148 180 60 30 42 15 59,890 

2.Coconut oil 9200 630 22 3220 - 220 40 32 38 18 23,390 

3.Mustard oil (seed) 16,000 320 20 1800 - 200 35 28 36 16 30,750 

4.Sunflo-wer oil 25,500 660 18 12,750 238 150 50 35 40 14 59,570 

5.Soyabean oil 20,000 360 20 3250 - 100 30 26 37 17 40,700 

6. Palm oil 37,000 640 17 3700 135 160 45 20 35 18 59,435 

 
The objective is to maximize the ratio of return to investment. This leads to a linear fractional program as 

shown below. 
Formulation of Example 4. 

The three basic steps in constructing an LFP model are as follows: 
Step 1. Identify the unknown variables to be determined (decision variables) and represent them in terms of 

algebraic symbols. 
Step 2. Identify all the restrictions or constraints in the problem and express them as linear equations or in-

equalities, which are linear functions of the unknown variables. 
Step 3. Identify the objective or criterion and represent it as a ratio of two linear functions of the decision va-

riables, which is to be maximized (or minimized). 
Now we shall formulate the above problem as follows: 
Step 1. Identify the decision variables. 
For this problem the unknown variables are the metric tons of refined oil produced for different product. So, 

let 
1x =  The metric tons of dalda has to be refined; 
2x =  The metric tons of coconut oil has to be refined; 
3x =  The metric tons of mustard oil has to be refined; 
4x =  The metric tons of sunflower oil has to be refined; 
5x =  The metric tons of soyabean oil has to be refined; 
6x =  The metric tons of palm oil has to be refined. 

Step 2. Identify the constraints. 
In this problem constraints are the limited availability of found for different purposes as follows: 

1) Since the management of industry wishes to produce maximum 600 metric tons different types of oil, so we 
have 

1 2 3 4 5 60.3 0.4 0.4 0.98 0.97 0.98 600x x x x x x+ + + + + ≤  
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2) Since the industry has maximum investment for crude oil/ seeds/ cobra is Taka 2,00,00,000/-, so we have 

1 2 3 4 5 622800 9200 16000 25500 20000 37000 20000000x x x x x x+ + + + + ≤  

3) Since the industry has maximum investment for transportation is Taka 500,000/-, so we have 

1 2 3 4 5 6650 630 320 660 360 640 500000x x x x x x+ + + + + ≤  

4) Since the industry has maximum investment for storage is Taka 15,000/-, so we have 

1 2 3 4 5 620 22 20 18 20 17 15000x x x x x x+ + + + + ≤  

5) Since the industry has maximum investment for customs duties and vat is Taka 6,000,000/-, so we have 

1 2 3 4 5 611400 3220 1800 12750 3250 3700 6000000x x x x x x+ + + + + ≤  

6) Since the industry has maximum investment for chemical cost is Taka 6,000,000/-, so we have 

1 4 6148 238 135 50000x x x+ + ≤  

7) Since the industry has maximum investment for electricity and gas is Taka 120,000/-, so we have 

1 2 3 4 5 6180 220 200 150 100 160 120000x x x x x x+ + + + + ≤  

8) Since the industry has maximum investment for maintains is Taka 30,000/-, so we have 

1 2 3 4 5 660 40 35 50 30 45 30000x x x x x x+ + + + + ≤  

9) Since the industry has maximum investment for labor is Taka 200,000/-, so we have 

1 2 3 4 5 630 32 28 35 26 20 200000x x x x x x+ + + + + ≤  

10) Since the industry has maximum investment for delivery is Taka 10,000/-, so we have 

1 2 3 4 5 615 18 16 14 17 18 10000x x x x x x+ + + + + ≤  

11) Since the industry has maximum investment for management is Taka 25,000/-, so we have 

1 2 3 4 5 642 38 36 40 37 35 25000x x x x x x+ + + + + ≤  

We must assume that the variables , 1, 2, ,6ix i =   are not allowed to be negative. That is, we do not make 
negative quantities of any product. 

Step 3. Identify the objective function. 
In this case, the objective is to maximize the ratio of total return and investment by different crops. That is 

( ) 1 2 3 4 5 6

1 2 3 4 5 6

59890 23390 30750 59750 40700 59435
Maximize

500000 35345 13420 18455 39455 23840 41770
x x x x x x

F x
x x x x x x

+ + + + +
=

+ + + + + +
 

Now we have expressed our problem as a mathematical model. Since the objective function is the ratio of re-
turn to investment and all of the constraints functions are linear, the problem can be modeled as the following 
LFP model: 

( ) 1 2 3 4 5 6

1 2 3 4 5 6

59890 23390 30750 59750 40700 59435
Maximize

500000 35345 13420 18455 39455 23840 4177
x x x x x x

F x
x x x x x x

+ + + + +
=

+ + + + + +
 

Subject to 1 2 3 4 5 60.3 0.4 0.4 0.98 0.97 0.98 600x x x x x x+ + + + + ≤  

1 2 3 4 5 6228005 9200 16000 25500 20000 37000 20000000x x x x x x+ + + + + ≤  

1 2 3 4 5 6650 630 320 660 360 640 500000x x x x x x+ + + + + ≤  

1 2 3 4 5 620 22 20 18 20 17 15000x x x x x x+ + + + + ≤  

1 2 3 4 5 611400 3220 1800 12750 3250 3700 6000000x x x x x x+ + + + + ≤  

1 4 6148 238 135 50000x x x+ + ≤  

1 2 3 4 5 6180 220 200 1510 100 160 120000x x x x x x+ + + + + ≤  
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1 2 3 4 5 660 40 35 50 30 45 30000x x x x x x+ + + + + ≤  

1 2 3 4 5 630 32 28 35 26 20 200000x x x x x x+ + + + + ≤  

1 2 3 4 5 615 18 16 14 17 18 10000x x x x x x+ + + + + ≤  

1 2 3 4 5 642 38 36 40 37 35 25000x x x x x x+ + + + + ≤  

1 2 3 4 5 6, , , , , 0x x x x x x ≥  

The problem consists of 6 decision variables and 11 constraints. To solve it by hand calculations it involves 
17 variables and 11 constraints, which cannot be accommodated in available size of papers. Moreover, in real 
life, there may be some problems which may be involved with hundreds of constraints and variables and hence 
these cannot be solved by hand calculations. To overcome difficulties one has to require computer oriented solu-
tions. Now, applying the computer program, we have obtained the following solutions. 

Output: 
X1 = 22.774542; 
X2 = 0.000000; 
X3 = 0.000000; 
X4 = 0.000000; 
X5 = 11.660869; 
X6 = 0.000000. 
Maximum value of the Objective Function = 1.655239. 

5. Comparison 
In this section, we compare our method with all other available methods and we find that our method is better 
than any other available method. The reasons are as follows: 
• We can solve any type of linear fractional programming problems by this methodology. 
• We can easily transfer the LFP problem into a LP problem. 
• Its computational steps are so easy from other methods. 
• In this method, we need to solve one LP but by other methods one needs to solve more than one LP, and thus 

our method saves valuable time. 
• The final result converges quickly in this method. 
• In this method there is one restriction that is 0β ≠ . 
• In some cases of the denominator and numerator say, 0dx β+ >  and 0cx α+ <  x X∀ ∈ , where Btran- 

Novaes method fails and for the negative value of β  all other existing methods are also failed, but our me-
thod is able to solve the problem very easily. 

• Using computer program, we get the optimal solution of the LFP problem very quickly. 

6. Conclusion 
In this paper, we have provided a new method for solving linear fractional programming problem (LFPP). While 
all other existing methods are failed in the case of negative value of β , but our method can solve the problem 
vary easily. At first we transform the LFP problems into an LP and then solve it by using simplex method. Then 
we develop a computer program for solving such problems, and verify that our computer program is correct. We 
illustrate a number of numerical examples to demonstrate our method. After that we compare our method with 
other existing methods. We further conclude that the proposed concept will be helpful in solving real-life prob-
lems involving linear fractional programming problems in agriculture, production planning, financial and cor-
porate planning, health care, hospital management, etc. Thus our newly developed method with computer pro-
gram saves time and energy and is easy to apply. 
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