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Abstract: We describe in this paper a new data mining approach for the analysis of spatial data for 
environmental modelling.  The sparse grids analysis system models the functional relationship between a set 
of predictor variables and a response variable by using a combination of easily computable functions defined 
on grids of varying mesh sizes in attribute space.  The approach circumvents the so-called “curse of 
dimensionality” by using, instead of a costly high-dimensional grid a with a fine mesh size in every 
dimension, a collection of grids that are coarse along some dimensions but fine along others.  Adaptive 
sparse grid regression and classification methods select combinations of grids that suit a particular data set.  
One advantage of the sparse grids approach from an environmental analysis perspective is that it uses 
machine learning approaches, and so can deal with correlated data, as are common in environmental 
problems.  One advantage of the sparse grids approach from an environmental analysis perspective is that it 
uses machine learning approaches, and so can deal with correlated data, as is commonly the case with 
geographic data.  They also require fewer degrees of freedom than do full grid models, allowing them to be 
applied to more datasets.  The parameters defining the adaptive sparse grids can be used to interpret 
relationships in terms of scale and resolution.  For example, the distribution of mesh points used in the set of 
lattices describes the complexity of the relationships present.  It can be used to understand if the system is 
responding to fine scale variations (many mesh points used) or to gross patterns (few mesh points used).  
This is valuable information for environmental modelling. 
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1. INTRODUCTION

We introduce in this paper a new analysis tool for 
environmental data known as sparse grids.  Sparse 
grids were originally developed for the solution of 
partial differential equations (Zenger, 1991), and 
later adapted to data mining (Garcke et al., 2001). 
They have great applicability to the analysis and 
understanding of environmental data and 
processes. 

This paper represents a work in progress with 
initial results.  More detailed descriptions of the 
method and results will be presented in a later 
publication. 

1.1. Approaches to environmental 
correlation

The process of finding relationships between a 
response variable and some set of predictor 
variables is known as environmental correlation.  
It can be used for a variety of purposes, including 
classification, predictive mapping, or simply to 
better understand the relationships in a system. 

There are many different approaches to 
environmental correlation, including 

Classification and Regression Trees, Artificial 
Neural Networks, Generalised Linear Models, 
Generalised Additive Models, and Multivariate 
Adaptive Regression Splines (see Hastie et al. 
2001).   

All these approaches effectively address the curse 
of dimensionality and use few degrees of 
freedom, both important considerations for 
analysing geographic data (Gahegan, 2003).  
They differ in how well they can approximate the 
data and, most importantly for our purposes, in 
the way they can be used to extract information 
about the underlying system relationships. 

The sparse grid predictive model is additive, 
where all the components are piecewise 
multilinear functions.  It generalises linear and 
additive models (in the sense of Hastie and 
Tibshirani, 1986) and can be interpreted as a 
computationally very efficient variant of a 
multivariate regression spline.  Sparse grid 
function evaluation is very fast, and effective 
parallel algorithms are used to fit the functions to 
very large data sets using high performance 
computers.  The function evaluation uses a 
machine learning approach, which allows it to 
effectively deal with correlated data.  Geographic 
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datasets are commonly correlated, and so this is
an advantage over parametric statistical 
approaches.

2. SPARSE GRIDS

The sparse grids system uses a sum of piecewise
multilinear functions to represent relationships
between a subject variable and a set of predictor
variables.  In the simplest case, each of these
component functions depends on only one
variable, and is piecewise linear. The number of
grid points of the components is the degrees of
freedom used by that component and
characterises the complexity of the model and its 
capability to approximate fine fluctuations (see 
Figure 1).

Figure 1.  Modelling a function (dotted line)
using piecewise linear functions (solid lines) with 

various degrees of freedom.

A piecewise linear function can be represented as 
a combination of components which all have an 
intuitive meaning like the height, slope, curvature,
and other fluctuations including noise (see Figure
2).  It is this interpretation which is inherited by
the sparse grids and provides useful insights into
the underlying system in attribute space.
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Figure 2.  The combination of intuitive grid
functions.

In the full grids case, one could represent a
relationship using a single system of regularly
spaced grid points. However, it can be seen that
most of the degrees of freedom used do not
contribute anything to the approximation
provided by the model.  In the sparse grids case, 
one can represent a similar amount of complexity

by using a series of partial grids, the combination
of which will give the solution (Figures 3 and 4).
To take a very simple example, a full grid might
use a 5 by 5 lattice of grid points, requiring 25
grid points in total (Figure 3). A sparse grid
system might instead use two grids, each with
five grid points along one data axis and two grid
points along the other (denoted V1,3 and V3,1).
The functions derived from these grids are added
together, but to avoid ‘double counting’ one then
needs to subtract the function associated with the
intersection grid—in this case, the grid with two 
grid points along each data axis (V1,1) (Figure 4).
In this simple system a total of only 16 grid points
are used, although there is some redundancy
because the constant term is repeated in each 
model.  The additive system used by sparse grids
also makes it easy for interaction terms to be
included where parts of the system are 
represented in more than one model.

Figure 3.  The number of grid points used by the
sparse grid system (right) is much less than that

used for the full grid system (left).

= +

Figure 4.  The combination of sparse grids
approximates more complex functions in attribute

space, plan view and three dimensional view.

The computational advantage of sparse grids
becomes apparent when one moves to higher
dimensional data spaces, such as are commonly
used for environmental correlation analyses.  Full
grids with d variables and m grid points per
variable have a total of md grid points whereas
classical sparse grids have only m(log2 m)d-1 grid
points, and newer sparse grids have even fewer.
The actual number of grid points used depends on
the data, and in many cases the number of grid 
points is of the order dm.  For example, in the 
case when the data can be approximated by a 
linear function (two grid points) with eight
variables, the full grid requires 28 = 512 data
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points, where the sparse grid might use a 
combination of eight linear one dimensional 
functions with a total of 2  8 = 16 degrees of 
freedom.  This is a significant reduction.  
Furthermore, the number of degrees of freedom of 
the sparse grid is a more realistic estimator of the 
number of degrees of freedom inherent in the 
underlying data. 

As with most analysis systems, it is possible to 
use sparse grids as a spatial interpolator by using 
spatial coordinates as the predictor variables.  
However, it is likely that other systems 
specifically designed for this purpose would be 
more effective.  Sparse grids are most useful 
when dealing with high dimensional datasets. 

The interpretation of the system of grids provides 
a means of understanding the relationships within 
the system studied.  One advantage of sparse 
grids over other systems is that the number of 
mesh points used by the system to represent a 
relationship can be used to gain some 
understanding of the scale of the relationships.  
This is done through visualisation of the results 
for each sparse grid in the system.  Such 
visualisation can be done through mapping the 
relationships modelled by each sparse grid, as has 
been done for Artificial Neural Networks by 
Laffan (1998), and by plotting error matrices for 
the individual sparse grids (Figure 6).  The error 
matrix approach can also be used as a means of 
pruning grids that contribute little to the overall 
solution from the system, possibly in a step-wise 
manner, and forms the basis of a means to 
understand the scales represented in the system. 

3. AN APPLICATION 

We applied the sparse grids system to an 
extensive geochemical dataset from Weipa, Far 
North Queensland, Australia.  The objective of 
the test application is to find correlations between 
subsurface regolith properties and some set of 
features that are easily measured from the surface.  
The purpose of this is to better understand how 
applicable the mapping of regolith properties is.  
Previous work using this dataset is presented in 
Laffan (2001, 2002) and Laffan and Lees 
(submitted).   

The dataset consists of a set of 57,642 drill cores 
collected between 1955 and 1980, 54,757 of 
which intersect bauxite.  These are sampled on a 
magnetic north aligned grid at spacings from 
38 m to 308 m (1000, 500, 250 and 125 feet) 
using an infilling sample design.  Each drill core 
contains data for percentage abundance of oxides 
of aluminium, iron, silica and titanium, and for 
the depth to the base of the bauxite layer, and the 
depth of the overburden (topsoil or A-horizon). 

There is also a set of eight surface measurable 
features consisting of: a DEM and derived 
attributes of slope and flow accumulation (fD8 
algorithm, Freeman, 1991); Landsat Thematic 
Mapper bands two, four and seven, captured 16 
June 1988; and the Euclidean distances from 
swamps (melon holes) and from drainage lines 
(defined as cells with flow accumulation greater 
than 200,000 m2).

All datasets use a 30 m cell size, and the drill core 
dataset reduces to 14,833 locations after raster 
conversion and exclusion of locations identified 
in the Landsat dataset as having been mined 
(regrowth or mine floor), or as cleared for mining. 

A sparse grids model was trained using two thirds 
of the silica data, with an accuracy of 48% correct 
within a tolerance of 1% silica abundance.  The 
testing set returned an accuracy of 26% for the 
same error tolerance.  The testing accuracy is 
almost identical to that obtained using an ANN on 
the same data (25%, Laffan, 2001), with some 
key differences (Figure 5).  The ANN predictions 
were similar for both the training and testing data, 
where the sparse grids training accuracies are 
higher than the testing accuracies.  The sparse 
grids error distribution is also less skewed than 
that for the ANN, and is aligned to the axis of 
correct prediction.  However, the errors are more 
dispersed than for the ANN. 

We attribute the low predictive accuracy to the 
effect of spatial non-stationarity in the 
relationships.  Previous analyses using 
Geographically Weighted Regression (GWR, 
Laffan, 2001), which fitted local regression 
models to samples within 300 m of each location, 
returned accuracies of 67% for a 1% error 
tolerance.  However, further investigation showed 
that only 15% of sample locations had any 
relationship that could not also be explained using 
a local constant model (mean of the 300 m radius 
sample; Laffan, 2001).  For comparison, only 6% 
of locations were better predicted by the ANN 
than by its related constant model (the global 
mean), and 7% for these sparse grids predictions. 

Visualisations of the error matrices for individual 
sparse grids are shown in Figure 6.  None of the 
variables analysed appear have a strong 
relationship with percentage silica abundance.  
Again, we attributed this to spatial non-
stationarity in the relationships. 

CONCLUSION 

The sparse grids system is a means of analysing 
environmental datasets with high dimensionality.  
The initial results are comparable to those used 
for previous work on this dataset. 
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Given that previous results showed a better
response for the geographically local analyses, an 
avenue currently being pursued is to extend the
sparse grids model to use such a weighting
scheme.
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Figure 6. Scaled error plots for individual grids in the sparse grids system, including combination grids and
the constant model.  Contours relate to the density of data points.
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