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Abstract
This dissertation proposes a new approach for analyzing high resolution aerial photographs 

of urban areas. Analyzing aerial photographs is the process of constructing an overall 

description of a scene. It involves knowledge of visual sensors, computing systems, artificial 

intelligence, software engineering, and perceptual psychology. Researchers have had only 

limited success in this area. This dissertation considers a high level analysis approach. 

Most aerial photograph interpretation systems concentrate on analyzing an airport, roadway, 

or urban scene. Those systems, however, do not explain how they knew they were 

examining such a scene. This dissertation concentrates on how to reach that point. It 

begins with "this is an aerial photograph" and works its way down through a hierarchy of 

labels until it reaches the point of "this is an urban area - find and label the objects." 

The new analysis approach introduces a unique use of three basic ideas. These ideas are 

(1) the use of context, expectations, selective attention, and the perceptual cycle, (2) 

analyzing the image through a hierarchy of increasingly specific labels, and (3) the interplay 

between the segmentation and interpretation processes. These are developed in a computer 

vision system for analyzing aerial photographs. The system comprises (1) a control 

mechanism, (2) a knowledge base, (3) a belief maintenance system, and (4) an image 

processing interface. In general, the system uses the knowledge stored in frames to 

investigate areas in the image. The control mechanism calls low level routines in the image 

processing interface. They report the results back to the control mechanism which invokes 

the belief maintenance system. The belief maintenance system reports which frame is the 

most probable label for the area under investigation. To demonstrate the system, this 

dissertation presents the results of analyzing a high resolution, multi-spectral, aerial image 

of an urban area. It also presents the results of analyzing three different housing areas 

taken from a single channel, gray scale image of a color aerial photograph. These show 

the validity of the new approach and the power and portability of the system.



1 - The Problem - How to Analyze High Resolution Aerial Photographs

Analyzing aerial photographs is a problem that has received the attention of 

researchers for years. Automating the process of analyzing aerial photographs is an 

increasingly important social and scientific issue. This field has applications to diverse and 

sometimes opposing special interest groups such as map makers, tax assessors, 

environmentalists, treaty verifiers, law enforcement officials, farmers, and oil companies. 

Human photointerpreters perform with high levels of skill and expertise. They are, 

however, few in number, very expensive, and they require large amounts of time to carry 

out their tasks. As time passes, our ability to collect aerial photographs grows much faster 

than the number of human photointerpreters.

Automated systems are no longer a curiosity but a necessity. The special interest 

groups mentioned above need systems that can analyze hundreds of aerial photographs in 

a matter of hours without expert human intervention. The techniques and tools in the 

systems must be simple, to the point, and flexible. In many cases, aerial image analysis does 

not require labeling the image to the last detail. Special interest groups want systems that 

can sift through thousands of photographs and hand them the four or five that contain toxic 

waste dumps, military bases, or rain forests. At that point, the special interest groups can 

have an expert human photointerpreter detail the stacks of asbestos, barrels of chemical 

weapons, or logging camps. Researchers have made progress in creating new and better 

low level operators that locate and label objects in aerial photographs. These operators, 

however, only work when given specific instructions about the objects for which they are 

searching and they do not address the higher level analysis questions. (Note, while many 

of the aerial photographs analyzed today are not really photographs but are digitally 

scanned images, the following general discussions will refer to both photographs and images 

as photographs.)

A major problem that still exists is how to approach the analysis of an aerial 

photograph. Most work done to date uses the problem statement "given an aerial 

photograph of an airport, label the runways, buildings, and aircraft," or "given an aerial 

photograph of a housing area, label the streets, sidewalks, houses, yards, and vehicles."

1
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The problem statement of this dissertation is "given an aerial photograph, discover 

what type of area it contains and label the objects that pertain to that type of area." This 

is a very broad and ambitious problem statement. The scope of this problem cannot be 

completely and thoroughly satisfied in a single dissertation. Nevertheless, this dissertation 

will outline some of the obstacles and propose solutions. A computer vision system was 

created to address these problems and demonstrate solutions (see chapter four). The 

system experimented with the analysis of two vastly different types of aerial photographs. 

This showed the validity of the approach.

One problem is the number of ambiguities in aerial photographs. Given a rectangle 

in the photograph, is it a building, swimming pool, car, or bale of hay? If the rectangle is 

a building, then is it a warehouse, hospital, or prison? If it is a warehouse, then a linear 

feature next to it is probably a road - or maybe a river or a railroad line. Now the 

interplay and interdependence of the objects becomes important and confusing.

The above relates to the problem of the explosion of possible scenes an aerial 

photograph can contain. When presented with an aerial photograph of a specific type, the 

number of possible objects is immense. When you multiply this by the number of different 

scene types, the number of objects becomes unmanageable. The analysis approach must 

reduce the size of the problem. The number of alternatives at any one time must be small. 

There should be under seven or eight - preferably only two or three.

Another problem is guiding low level operators. A system must select and direct 

properly even the best low level operators if they are to succeed. The general, all purpose 

operator has not yet been created. Each operator or tool works well in only select, specific 

situations. If applied in the wrong situation, an operator will return results that are wrong. 

Histogram analysis tools fail when applied to a texture image. Texture analysis tools fail 

when applied to a simple line drawing.

Once a system selects the proper low level operator, there is the problem of how 

to operate on only specific features of the image. Images are too large and operators are 

too complex to apply the latter to the former in their entirety. Images contain too much 

information for a system to process them fully. As an illustration, consider recognizing a 

person in a photograph. Humans can recognize a person in a color photograph. Humans 

can recognize the same person in a black and white photograph, so the color photograph
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contains more information than is necessary. Humans can recognize the same person in 

a simple line drawing, so the black and white photograph contains more information than 

is necessary. Finally, humans can recognize the same person in a partially covered, simple 

line drawing, so the full line drawing contains more information than is necessary. The 

point is there are certain salient features that contain the minimum information required 

to recognize something. The operators should only work on those features.

Another problem is allowing operators to function on their own without help. 

Operators often go astray because of noise, ambiguities, or occluded objects. The aerial 

photograph analysis approach should tie the operators together so they can feed 

information to and direct themselves and each other.

Another problem is attempting to explain and understand the results of less than 

perfect operators. Image processing operators often return faulty, incorrect, and 

contradictory results. Basing an interpretation of an aerial photograph on such results leads 

to unreliable results. In analyzing an aerial photograph, the understanding system might 

have to explain why a swimming pool is next to a prison or why a single bale of hay is 

larger than a warehouse. The understanding portion of the analysis approach needs to feed 

information to the operators to guide and redirect them. The approach could relax or 

restrict the parameters with the new results altering or reinforcing the previous explanation.

Related to guiding low level operators and focusing in on salient features is the 

overall problem of what to do and when to do it. Often the most difficult step is the first 

one. The situation should determine the action. Therefore, the system should always know 

the current situation, the alternatives, how to limit the number of alternatives, and how to 

select the best alternative.

These are the major problems facing the analysis of aerial photographs. This 

dissertation proposes attacking them with the following ideas (see chapter two for further 

explanation of these ideas). The use of a hierarchy of scene labels will significantly reduce 

the explosion of possible scenes that can confront an analysis system (see section 3.1 for 

a discussion of this hierarchy). The hierarchy will limit the number of possibilities facing 

the system to a manageable amount. Expectations can guide the low level operators. At 

any given time, the system can expect certain situations. The expectations guide and direct 

the operators properly. The operators can operate on only the salient features when they
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use selective attention. Humans use selective attention without thinking about it to 

function and solve simple, everyday problems. The system should use the perceptual cycle 

[Neisser 1976] to tie together operators so they can function with help from themselves and 

other operators. Tying together the segmentation and interpretation processes can improve 

dramatically the performance of low level operators. These processes cannot be 

independent. They must work together. The unifying principle is context. The context 

of the current situation drives the action, the interpretation, and the next action. Context 

limits the complexity, drives the operators, and interprets the results.

These concepts - a hierarchy of scene labels, expectations, selective attention, 

context, the perceptual cycle, and tying segmentation and interpretation together - are not 

new. Researchers have expressed them in many ways on many occasions in the perceptual 

psychology, artificial intelligence, and computer vision literature. Nevertheless, no one has 

ever tied them together as the basis for an approach to analyzing aerial photographs. The 

end result of this dissertation is a computer vision system that analyzes aerial photographs 

of urban areas. Figure 1.1 shows the block diagram of this system. The system’s four basic 

parts are (1) the control mechanism, (2) the knowledge base, (3) the belief maintenance 

system, and (4) the image processing interface. The control mechanism implements the 

cycle and the interpretation part of the interpretation and segmentation interplay. The 

knowledge base is the hierarchy and also imbeds the ideas of expectations, selective 

attention, and context. The belief maintenance system works with the control mechanism 

to draw reasonable conclusions from the analysis. The image processing interface is the 

segmentation portion of the segmentation and interpretation interplay.
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Knowledge Base

ImageProcessing
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Figure 1.1 - Block Diagram of System

In general, the system uses the knowledge stored in frames to investigate areas in 

the image. The control mechanism calls low level routines in the image processing 

interface. They report the results back to the control mechanism which invokes the belief 

maintenance system. The belief maintenance system reports which frame is the most 

probable label for the area under investigation. The control mechanism either uses the 

most probable frame for further investigation or for labeling the area.

The knowledge base for the system is a hierarchy (as mentioned above) of frames. 

Figure 1.2 shows the top portion of the hierarchy of frames. Section 3.1 discusses the
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hierarchy in detail. Section 3.2 discusses frames and how they are well suited for a 

knowledge base in a computer vision system.

A key question before launching into the development of a major computer vision 

system deals with the advantages of such an effort. The question is "given an aerial 

photograph of a known urban area, what will be the difference between this approach and 

system and other systems (such as will be described in chapter 2)." The first major 

difference deals with the implicit knowledge imbedded into each point in the hierarchy. 

Each point in the hierarchy contains the context of the situation. This frees the low level 

operators from worrying with unnecessary details and complications. If the system is at a 

housing node, then the low level linear feature detector knows it is looking for sidewalks 

and roads. It does not need to consider linear features such as streams, rivers, or runways. 

This removes much of the complexity of the operator and allows it to concentrate on the 

specific problem at hand. It also limits the search area of the low level operators. The 

objects of interest are located in a small portion of the image. The context knows that 

small portion and limits the operator’s search by focusing their attention.

Several other advantages of the approach concern reducing the computational 

complexity of the problem. At different levels in the hierarchy the system faces different 

problems and can use different operators. This translates into simple operators at the 

higher levels. The system delays using the fine detail, complex operators until later in the 

image analysis. Another reduction in complexity comes in the belief maintenance system. 

This system uses a form of the Dempster-Shafer theory of evidence (see section 3.3 for a 

discussion of this). There are several major simplifications to this theory when it is used 

with a hierarchy. Another advantage is the system will be able to label all types of urban 

areas - not just one or two. The hierarchy will encompass all types such as housing, 

transportation, manufacturing, government, etc. The initial implementation of the system 

may not have all the knowledge necessary for this, but it will contain the needed framework 

for such a task.

Several advantages of the approach concern working with large numbers of images 

requiring less than expert analysis. Since the approach is based on a hierarchy of labels, 

there is no reason why it cannot stop analysis at any mid-point in the hierarchy. This is 

a great departure from other analysis systems whose goals are to always work to the finest
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Figure 1.2 - Top Portion of Hierarchy
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detail possible. For example, if a special interest group wanted to analyze a thousand 

images and separate them according to man made or natural, then the system could do this 

using quick and simple operators. Another case is classifying an image as a target or 

non-target image. Suppose a special interest group wanted to find the one or two images 

out of a thousand that contained airports. The system would work its way down the 

hierarchy as usual. As soon as the system branched down a section of the hierarchy that 

was out of the airport path, it would stop and label the image as non-target. If it worked 

its way down to the airport label, then it would label that image as target and hand it over 

to an expert photointerpreter for final analysis.

The remainder of this dissertation will expand upon these ideas and demonstrate 

their use. It concentrates on the high level approach. Provan [Provan 1987], [Provan 1988] 

took a track similar to this. He used a simplified puppet world image. This allowed him 

to concentrate on reasoning and a truth maintenance system instead of signal processing. 

This dissertation concentrates on the high level approach instead of image processing. The 

author created a computer vision system to address these issues and demonstrate a solution. 

Chapter four of this dissertation describes the implemented system. Chapter five presents 

the results of several experiments and analyzes the advantages of the system.

Chapter two of this dissertation takes a step back and looks at the general computer 

vision problem. It discusses why computer vision encompasses knowledge from many 

different fields ranging from psychology to software engineering. Some successes have been 

achieved in computer vision. Labeling aerial photographs, however, has not yielded much 

success. The chapter also reviews some early computer vision systems. The basic bottom- 

up, data-driven, rule-based approach was predominant in these early systems. This approach 

completely separates the segmentation and interpretation processes. The results were not 

good because the segmentation process produced faulty results. This was because of the 

nature of the data. The chapter ends with a review of the current use of perceptual 

psychology in low level operators. Perceptual properties form the basis of much of the 

work of this dissertation. This chapter examines how other researches have used such 

properties. Most current work uses perceptual or geometric grouping in low level 

operators. The goal is to find perceptually significant low level image features. Many early 

vision operators found mathematical features in images. These features, however, did not
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correspond to objects in the real world. Perceptually significant image features correspond 

to objects in the real world. The researchers discussed in chapter two have created several 

excellent, generic, low level operators. These could be incorporated into general computer 

vision systems. The final part of chapter two presents the perceptual properties that are 

the basis of this dissertation. It discusses selective attention, expectations, context, and the 

perceptual cycle. Other researchers use these principles to some extent in other work. 

Nevertheless, no one has ever used them together for a high level analysis approach.

Chapter three details the new analysis approach that this dissertation proposes. This 

chapter introduces the Defense Mapping Agency’s hierarchy for labeling aerial photographs. 

It discusses an example that shows how using a hierarchy leads one through the analysis 

of an image. This process employs the principles given above and avoids the obstacles in 

aerial image analysis presented earlier. The chapter also discusses knowledge representation 

in computer vision. It presents frames as the logical choice for knowledge representation. 

Frames have several advantages over other knowledge representation schemes for computer 

vision. They allow expectation driven processing, are one of the corners of the perceptual 

cycle (see chapter five), are well suited for expressing hierarchies in images, express 

knowledge in an explicit and modular manner, and allow both procedural and declarative 

knowledge. Finally, the chapter discusses belief maintenance and the Dempster-Shafer (D- 

S) theory of evidence. Computer vision needs a belief maintenance system. A 

characteristic of computer vision is that different pieces of evidence are often uncertain, 

inadequate, and contradictory. Computer vision needs a system to pool different pieces of 

evidence and draw logical conclusions. The D-S theory has gained acceptance from several 

sources during the completion of this dissertation. Several references in the literature 

agree with this dissertation that the D-S theory works, is sound theoretically, and is not too 

computationally complex.

Chapter four examines the implementation of the new approach. The computer 

vision system created using this approach is simple and modular, but it required a significant 

software effort. The system was written in C with the highest priority given to portability 

and modifiability. During its development, it was moved among four computers using three 

different operating systems and four different compilers. It has proven that it is portable 

and that it can easily accept new and complex operators developed by other researchers.
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The knowledge base clearly separates the spatial and spectral information. This allows 

movement from one image type to another by modifying only the spectral properties of 

basic materials (e.g. concrete, roofing, etc.). Chapter four discusses details of each part of 

the system.

Chapter five presents the results of the analysis of several images. The system 

analyzed two vastly different types of images and discusses the advantages of the approach. 

The first is a high resolution, multi-spectral, aerial image of an urban area. The second is 

three housing areas of a single channel, gray scale scan of a color aerial photograph. This 

chapter details how the system works its way down through the hierarchy of labels using 

the principles given earlier. The chapter concludes with a discussion of the advantages of 

the approach and the system built around it.

Chapter six draws conclusions about this work. It reviews what has been done and 

how this dissertation contributes to the field of computer vision.



2 - Background Material

This chapter reviews the computer vision problem. Computer vision requires skills 

and techniques from many disciplines. The goal of computer vision research is to teach a 

computer to see. Researchers have succeeded in some limited problem domains, but 

labeling aerial photographs has had only limited triumphs. The basic bottom-up, data- 

driven, rule-based approach has been tried extensively with poor results. Newer research 

has used perceptual psychology properties in low level operations. These efforts are 

promising, but they are only in the low level parts of the problem. The chapter closes with 

a discussion of the perceptual properties that form the basis of this dissertation’s approach.

2.1 - The General Computer Vision Problem

The computer vision problem is the task of teaching a computer to "see." The 

process involves connecting a visual sensor to a computing system and having a computer 

program "recognize" what is given in the input data. The problem is extremely difficult. 

It involves knowledge from many different fields. The computer vision researcher needs 

knowledge of visual sensors, computer hardware and architecture, artificial intelligence and 

expert systems, image processing tools, psychology, and software engineering. This 

dissertation work proved that and is in agreement with [Li, Render] and [Nicolin, Gabler].

Knowledge of visual sensors is a must. Sensors have the task of measuring and 

recording the scene. Next, a system must digitize the measured image for the computer. 

A sensor can be a simple black and white camera or a satellite. This dissertation works 

with airborne sensors. These range from small airplanes to the space shuttle.

Computers host vision systems. The researcher must be able to assemble a powerful 

and flexible computing system. The system requires special peripherals for image input and 

display. Many researchers are trying to build parallel processing systems to better 

implement vision algorithms.

Image processing forms the base for computer vision work. Image processing 

spawned from digital signal processing and extended that field to two dimensions. Many 

of the early image processing algorithms are still useful, especially in preprocessing or 

filtering noisy images.

Many useful techniques have come to computer vision from artificial intelligence

11
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research. Implementing knowledge bases and belief maintenance systems are two major 

examples. Other tools include languages such as LISP and PROLOG and some of their 

associated workstations.

In recent years, researchers have added perceptual psychology to the already long 

list of tools. Early operators often failed on images because they detected features that did 

not correspond to real world objects. Most operators select shadows, glare spots, and 

defects in surface materials as objects. Newer operators that use results from perceptual 

psychology can remove these false objects because the false objects are not perceptually 

significant.

Finally, since computer vision algorithms and systems are written in software, 

knowledge of and strict adherence to software engineering is essential. This is one area 

where unfortunately most research efforts fail. Most research efforts produce software that 

proves an idea or concept. The software, however, is usually not modular, portable, 

maintainable, or understandable by anyone other than the author. This prevents others 

from using the results of the research effort. Others must attempt to implement the 

algorithm on their own. Seldom if ever is the resulting software the same as the original 

author’s.

Researchers are years, perhaps decades, away from solving the general computer 

vision problem. Researchers have met major problems in vision work. This has led 

researchers to simplify the problem by working on different, limited applications areas. In 

some applications researchers restrict the inputs to the vision system enough to achieve 

success. Examples of this are small robot manufacturing stations, circuit board inspection, 

and simple x-ray analysis. The area of labeling aerial images, however, has not had much 

success.

Nagao and Matsuyama [Nagao, Matsuyama] describe the problem of analyzing aerial 

photographs as constructing an overall description of a scene. This differs from statistical 

methods of image analysis which seek to label each point in a scene. Nagao and 

Matsuyama claim that the core of image understanding is knowledge based symbolic 

processing. A system uses any knowledge which may help in the analysis. Specific sources 

of knowledge are photographic conditions, intrinsic properties of objects, and contextual and 

semantic information.
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Nagao and Matsuyama list four difficulties which arise in the analysis process: (1) 

the number of possible combinations of objects in a scene are immense, (2) it is a 

formidable task to organize the knowledge needed to analyze the scene, (3) low-level image 

processing operators are often inept, and (4) how to resolve the issue of top-down or 

bottom-up processing. Nagao and Matsuyama created an early aerial photograph 

interpretation system [Nagao, Matsuyama]. That system used a blackboard architecture for 

a knowledge base that pointed to rules in a production system. Each rule in the production 

system pointed to an object detection subsystem. The object detection subsystems were the 

low level operators that would actually locate the individual objects. Nagao and Matsuyama 

had sixteen different object detection subsystems. A problem with this was that each object 

detection subsystem lacked generality and power. They could only detect very specific 

objects. Nagao and Matsuyama used their system on very limited images. This was a good 

early system and led to work in the same area by many other researchers.

In 1982 Binford [Binford] performed a survey of vision systems. He listed the goals 

of a vision system to be high performance, generality, completeness, intelligence, ease of 

use, and system support. High performance means that the system should be able to 

analyze complex, real world scenes - not just laboratory images. Generality relates to 

analyzing any images that can occur whether it be indoors, outdoors, or aerial photographs. 

Completeness means the system should span all tasks. The system should be self contained 

and complete in itself. Intelligence means that the system should be able to reason on its 

own without human intervention. Easy to use is a common requirement for any computing 

system. System support gets back to software engineering. One person cannot create 

vision systems in one day. They require many persons and many years. The system must 

be structured and constructed to allow new techniques to be incorporated.

Binford found general shortcomings of the systems he reviewed. These were that 

they had severely limited context, were image dependent, and the low-level operators, 

especially the texture operators, were not sufficient. Binford discussed several vision 

systems of that time. He repeatedly pointed out that weaknesses were in the low level 

operators. The advent of low level operators using perceptual and geometric properties 

(see section two of this dissertation) has corrected some of these weaknesses. This 

dissertation proposes overcoming the problem of weak operators by using a better analysis
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approach to guide, direct, and interpret. Another repeated weakness was that the systems 

worked on only specific types of scenes. This dissertation proposes overcoming that 

problem by using an all encompassing hierarchy of labels that would include any aerial 

scene.

Levine [Levine, Shaheen], [Levine, Nazif 1984], and [Levine, Nazif 1985] has 

worked on outlining the basic structure of a vision system. We note his work here 

because many systems were created along the basic lines he established. He defines the 

objective of a computer vision system as to outline the objects in a picture and label them 

with an appropriate interpretation. Levine lists three requirements for computer vision 

systems. They are (1) extensibility, (2) modularity, and (3) separability. The system must 

accept new model and control information easily. The development of the system will last 

years and involve many people working independently. The knowledge and control systems 

must be modular enough to allow additions, deletions, and corrections without harming 

other parts of the system. The knowledge base must be separate from the analysis 

program. This enforces generality and forces one to create functions that are scene 

independent.

Levine divides the system into three components: (1) the Long Term Memory 

(LTM), (2) the Short Term Memory (STM), and (3) the Analysis Processors. Figure 2.1 

shows a block diagram of the system. The STM contains the image data and analysis 

results. The LTM contains the semantic knowledge or the model of the scenes which the 

system can analyze. The Analysis Processors are a group of processors that operate on the 

image. Each processor specializes on a particular task. The processors continually update 

and change the contents of the STM. They use information in both the LTM and STM 

to activate themselves.

The low level processor analyzes raw picture data. The first low level processor was 

a region segmentation algorithm. The feature analyzer computes a set of attributes for the 

segmented picture. It then sends the results to the STM. The hypothesis initializer takes 

region descriptions from STM, uses knowledge from LTM, and generates possible 

interpretations for each region. The hypothesis verifier verifies and interprets each region 

label based on confidences. The focus of attention processor controls the order of analysis 

of regions. It recognizes the situation and begins action. The scheduler is responsible for
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Figure 2.1 - Block Diagram of Levine’s System

deciding which process should be started and when. In theory, the analysis processors could 

each be a separate physical computer processor. They would each have independent access 

to the memories and would examine the STM constantly and activate themselves. In 

reality, they are software and need a scheduler to determine which software process 

activates when.

2.2 - Early Computer Vision Systems

This section will describe several existing computer vision systems. The current 

literature describes many systems. This section will discuss only a small sample.

The Multi Spectral Image Analysis System (MSIAS) described in 

[Ferrante,Carlotto,Pomarede,Baim] is a rule-based system for labeling low-resolution satellite 

photographs. The goal is to label one pixel at a time as to its land use classification. One 

feature of MSIAS is that it organizes knowledge in a hierarchy as shown in figure 2.2. One
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advantage of a hierarchical structure is that the knowledge base is simpler. There only 

needs to be enough knowledge at each node to distinguish the children of that node. At 

the vegetation node, for example, there only needs to be enough knowledge to distinguish 

between crops and other. The node does not require knowledge about silt and planted. 

Another advantage is that each node has contextual information. When the decision 

reaches the vegetation node, this implies the pixel is not soil and is not water. The system 

does not express this information explicitly, but it does know and use it. MSIAS uses multi- 

spectral images. Each land class has unique properties in one or more spectral bands. A 

system can use multiple spectral bands to great advantage when analyzing aerial 

photographs.

9llt
S O I

image/ water

c r o p s

I v eg e t a t i o n ,

>otlier

Figure 2.2 - MSIAS Hierarchy

The next three systems reviewed (LES, SPAM, and ANGY) all use the same basic 

data driven, rule-based, bottom-up approach. This technique is quite common among 

computer vision systems. There are two steps in this approach. The first is to apply scene 

independent image processing operators to segment the image and form a data base. The 

second is to apply a set of rules to the data base to interpret and label the image. The 

segmentation and interpretation processes are separate.

This approach is data driven because the data itself dictates the outcome of the 

segmentation in the first step. This outcome in turn dictates which rules to activate when
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interpreting and labeling the image. The data, therefore, drives or controls the entire 

process. This approach is rule-based because the knowledge base is a set of IF-THEN 

rules. One reason researchers use the rule-based approach is there are many rule-based 

expert system tools available. This approach is bottom-up because processing begins at the 

lowest level, the pixels. The system groups pixels into objects and then groups objects 

into regions during segmentation. This is the opposite of top-down processing which begins 

at the highest level, the image, and works its way down to individual objects and pixels.

Researchers at Lockheed have tried to analyze aerial photographs using their in- 

house, rule-based, general purpose expert system LES (Lockheed Expert System) [Perkins, 

Laffey, Nguyen]. The first stage of the system is a set of low level image processing 

operators which segment the image into atomic regions. The system then calculates a set 

of properties for each region. The rule-based stage of the system uses the properties of 

the atomic regions and tries to label each region. The system achieves only limited success.

SPAM [McKeown, Harvey, McDermott], [McKeown, Harvey], and [McKeown] is 

a system designed to label aerial photographs of airports. It is a rule-based system and uses 

mapping and airport design information as part of the knowledge base. One good point 

of this system is that it uses cartographic coordinates. Cartographic coordinates are of 

interest to map makers and map users. SPAM has a separate first stage that segments the 

image into atomic regions. The rule-based stage tries to label the regions. This system 

performs well if the image segmentation is done by human hand. The performance, 

however, degrades when it uses a computer segmentation.

AN GY [Stansfield] is a system which looks at angiograms. It is a rule-based system 

and operates like the two previously discussed systems. It has a low-level image 

segmentation section and a rule-based section which attempts to label the regions. The 

author of AN GY concludes with some candid and honest comments on this general 

approach to computer vision. Separating the segmentation operators from the rule-based 

interpretation system is a simple and fundamental idea. It comes from the principle of 

dividing a problem into smaller problems and solving them one at a time. Current 

segmentation operators, however, are not capable enough. The interpretation rule-base 

cannot work with the faulty results of the segmenters. In the future, the segmentation 

operators may have the expertise to allow a separate interpretation rule-base. Nevertheless,
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at this time this is not possible.

Niblack and others [Niblack, Petkovic, Damian] report another study of the rule- 

based approach. This study applied a rule-based system to the problems of circuit board 

inspection and analyzing satellite photos of ice flows. The approach worked well for the 

circuit boards, but performed poorly on the satellite photos. This is because of the regular, 

clean nature of circuit boards. The satellite photos proved too difficult. The authors 

concluded "Rule based methods can be useful but provide no fundamental breakthrough."

The data driven, rule-based, bottom-up approach does not work well. The low level 

image processing operators cannot process the image accurately enough to enable simple 

rules to label the image.

The strict bottom-up approach does not perform well when representing the 

knowledge by means other than simple rules. TESS, [Gilmore, Fox, Stevenson, Rabin], 

uses a hierarchy of frames as a knowledge base. This is an excellent method to represent 

knowledge, but TESS uses bottom-up, data driven processing before invoking the 

knowledge. The results are not promising.

Smyrniotis and Dutta [Smyrniotis, Dutta] described a system using mostly the top- 

down approach. The system directs a large set of image processing operators based upon 

overall knowledge of the image and the desired output. This system has several good 

qualities, but it is purely top-down or goal-driven.

The conclusion is that neither bottom-up processing nor top-down processing 

performs acceptably. Systems must use a combination of top-down and bottom-up 

processing. Uhr in [Uhr] and many other researchers agree with this. This relates to the 

relationship between segmentation and interpretation. Most research systems segment and 

then try to interpret. The results have not been good. Segmentation and interpretation 

cannot be separated. Several researchers that have addressed this question include [Kohl, 

Hanson, Riseman] and [Nicolin, Gabler]. The noisy nature of images [Haralick, Lee] and 

the limited ability of current operators [Huertas, Nevatia] preclude separating the 

segmentation and interpretation processes.

The segmentation processes lead astray the interpretation processes.

The question is - what type of combination of top-down and bottom-up processing 

will work? What is the proper relationship between segmentation and interpretation?
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2.3 - Current Low Level Use of Perceptual Psychology

This section discusses perceptual psychology and how some researchers use it in 

computer vision. Perceptual psychology deals with how a person’s mind perceives or 

understands what he sees.

Recent publications have explored the importance and usage of perceptual 

psychology in computer vision. Researchers are working on discovering perceptually 

significant low level image features. The goal is to find practical, easy to use features and 

include them into general purpose computer vision systems. Another goal is to build 

systems that improve on the human visual and perceptual system [Hochberg] and [Hink, 

Woods]. Optical illusions easily fool humans. If a computer vision system is modeled 

exactly after a human, then optical illusions could fool it. The goal is to understand how 

illusions trick humans and use this knowledge to avoid having the computer vision system 

fooled. A common thread is to find properties that occur in the actual three dimensional 

object and also occur in the two dimensional image representation. A simple example is 

that a straight edge in a three dimensional object is represented by a straight line in a two 

dimensional image.

Biederman in [Biederman] was one of the first to approach the computer vision 

problem using perceptually significant features. He developed recognition-by-components 

(RBC). RBC is a proposal for a particular vocabulary of components. The key is how an 

arrangement of these components can access a representation of an object in memory. The 

goal in Biederman’s system is to identify simple components of an object. Individual 

components are easier to identify than an entire object in a degraded image.

The properties on which Biederman concentrates are collinearity, curvature, 

symmetry, and cotermination.

These ideas lead to Biederman’s Principle of Componential Recovery. "If 

the components in their specified arrangement can be readily identified, 

object identification will be fast and accurate."
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Walters [Walters 1986], [Walters 1987], [Walters, Krishnan] described another 

computer vision system built around perceptually significant features. A goal of Walters’s 

research is to develop data driven, general purpose, generic algorithms that select 

perceptually significant features from an image. This is similar to the simple bottom-up 

approach described in the previous section. Walters, however, wants the results of the low 

level operators to agree with human perception. Walters’s system works only with line 

drawings.

Walters has two uses for the generic algorithms. The first use is to enhance noisy 

or degraded line drawings. The second use is for segmentation of line drawings. Walters’s 

system can divide line drawings into perceptually meaningful segments. The system is also 

able to group lines into objects. Walters performed several psychophysical experiments to 

determine significant low level features. The properties on which Walters’s system 

concentrates are line length and types of connections between ends of lines.

Lowe created a computer vision system called SCERPO (Spatial Correspondence, 

Evidential Reasoning, and Perceptual Organization) [Lowe 1985] and [Lowe 1987]. 

SCERPO concentrates on analyzing images of three dimensional objects without the use 

of depth information. SCERPO is fairly successful at locating three dimensional objects in 

a line drawing.

The perceptual properties used by Lowe are collinearity, proximity, and parallelism. 

These properties meet two conditions set down by Lowe: the viewpoint invariance position; 

and the detection condition. The viewpoint invariance condition is that the perceptual 

features must remain stable over a wide range of viewpoints of some corresponding three- 

dimensional structure. The detection condition is to constrain the perceptual features so 

accidental instances are unlikely to arise.

Pentland in [Pentland 1986a], [Pentland 1986b], and [Pentland 1987] has developed 

a theory of part models. His goal is to find generic part models and use them to recognize 

the contents of an image as a combination of these primitives. Pentland’s idea uses two 

concepts: representation and analysis. The representation concentrates on processes not 

models. The focus is on lumps of clay or superquadrics. There is a small number of 

primitives. The emphasis is on processes such as stretching, bending, twisting, and tapering. 

Given these and combinations of them, the system can represent the world by formative
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processes. The analysis is a simple global search of the models. The system can employ 

an exhaustive search because the number of primitives is small.

Chien and Aggarwal in [Chien, Aggarwal] attempted to recognize 3-D objects from 

single silhouettes. They concentrated on occluding contours and corners as the primary 

perceptual features. Perceptual psychology experiments showed that information 

concentrates in the occluding contour of a viewed object and at places where the contour 

changes most rapidly. The system used these features to recognize multiple objects with 

occlusion.

Weiss and Boldt in [Weiss, Boldt] apply perceptual psychology features in a low 

level generic operation. They use some of the perceptual organization techniques of Lowe 

in an edge detector. They begin with the traditional zero crossing method. They apply a 

hierarchy to join line segments using both geometric and intrinsic properties. The process 

is bottom-up. This general purpose low level operator uses the perceptual psychology 

properties of collinearity, symmetry, parallelism, proximity, repetition, and closure. This 

is an original. It is a generic, smart edge detector.

Mohan and Nevatia [Mohan, Nevatia] developed a system to detect buildings in 

aerial photographs. They concentrate on lines and perceptual grouping. The first step is 

a simple edge detector. The output of an edge detector usually contains too much false 

information. The system takes this output and groups the edge segments perceptually. 

The first grouping uses the edges. Next, the system groups parallel lines. Next comes TJ’ 

shapes, and finally complete rectangles. This perception based, low level operator works 

quite well. It could be incorporated into large aerial image analysis systems.

Fua and Hanson [Fua, Hanson 1987] developed a system to detect several types of 

objects in aerial photographs. They use loosely defined shape models. Their operator 

starts with detecting edges. Next, the operator examines the area inside the edges. The 

loosely defined generic shape models possess predictive power. After an initial 

examination, the operator tries to verify the predictions. This allows a refining of 

parameters as the analysis progresses. This is quite similar to the perceptual cycle 

described later in this paper. Fua and Hanson do not specifically mention perceptual 

psychology properties. They do, nevertheless, employ them. The properties used are 

parallelism, perpendicular, closure, and collinearity. The result is a fine, generic, adaptive,
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smart object detector.

Similar work has been done by Harwood, Chang, and Davis [Harwood, Chang, 

Davis]. They first enhance an aerial image, then segment it. Next comes the similar 

process of adjusting parameters and optimizing on the objects they can find in the image. 

Then, they search for "missing" objects, i.e. objects that the initial parameters missed. Now 

that the parameters are optimal, they can locate objects missed during the initial analysis. 

The strategy employed in this low-level object detector improves the reliability.

Reynolds and Beveridge [Reynolds, Beveridge] worked on a class of algorithms for 

grouping collections of tokens into geometrically significant components. The first step is 

to segment the image and find the edges. The next step uses geometric segmentation and 

grouping algorithms. The output is a set of tokens that satisfy some geometric relations. 

They use the geometric or perceptual properties of collinearity, parallelism, relative angle, 

and spatial proximity. Spatial proximity divides into three parts. They are spatially 

proximate orthogonal, spatially proximate collinear, and spatially proximate parallel.

Huertas, Cole, and Nevatia [Huertas, Cole, Nevatia] applied their efforts to aerial 

photographs of airports. Like others, this group uses a hypothesize and verify low-level 

strategy. The system uses a four step process. The steps are (1) low-level segmentation, 

(2) hypotheses formation, (3) hypotheses verification, and (4) symbolic description. The 

results are good. This is just the lowest level of an overall system still under development.

Huertas and Nevatia [Huertas, Nevatia] worked on detecting buildings in aerial 

photographs. They used geometric (perceptual) models of buildings. The models included 

the properties of straight lines (collinearity), corners (perpendicular), sides (parallel), and 

box shape (closure). This low-level building detector is driven or triggered by a global goal, 

i.e. "find the buildings." It is, however, a data-driven operator. It performs well and would 

be a fine addition to any large system which analyzes aerial photographs.

Meisels and Bergman [Meisels, Bergman] describe their Rule-based Object Finder 

(ROF). As the title indicates, knowledge in the form of rules drives this low level 

segmenter. This is similar to [Levine, Nazifj with the addition that ROF uses context while 

[Levine, Nazif] was context independent.

This low-level operator (ROF) actually has several levels. These levels work back 

and forth on the image data.
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Haralick and Lee [Haralick, Lee] employed a perceptual psychology property in a 

mathematical form. They used context in an edge detector. Their operator is different in 

that it is application or domain independent, but image dependent. Their operator 

performs a calculation over the entire test image and uses the result to find edges at 

different locations in the image. Each image, therefore, provides the context for local 

edge detection.

The research work described above is good. This is a young field and the results 

are promising. It is a little disturbing that so many different research efforts have 

discovered so many different "essential perceptual properties." This is no doubt a reflection 

of the subject - human perception. Every person sees with a unique set of eyes and we 

all have our own features that we notice.

Several papers have directly mentioned efforts at using combination top-down and 

bottom-up processing. These works are at the end of this section to better compare them 

to the ideas expressed in the next section.

Matsuyama [Matsuyama] reports on the SIGMA system. The SIGMA system is 

unique in that it uses reasoning at three levels. The system reasons by (1) the Low Level 

Vision Expert, (2) the Model Selection Expert, and (3) the Geometric Reasoning Expert. 

The Low Level Vision Expert reasons about the image segmentation processes. Given a 

goal such as "find a white rectangle 20x20," the Low Level Vision Expert reasons through 

the processes available to reach the goal. If one string of processes does not succeed, 

another string of processes tries. The Model Selection Expert reasons about the 

transformation between object models and their appearances. The Geometric Reasoning 

Expert reasons about structures of and spatial relations among objects. The Geometric 

Reasoning Expert applies a form of top-down and bottom-up processing. It uses top-down 

to direct the lower levels to search for objects. The low levels use bottom-up initially to 

find the objects. The Geometric Reasoning Expert then applies top-down processing again 

to search for "missing" objects. Missing objects are those objects not found by the low level 

operators, but all evidence indicates they should be present. For example, if the low level 

operator finds a row of houses with a large space between two houses, then there is 

probably a house in that space. The system calls the low level operator again using relaxed 

parameters. The SIGMA system, therefore, uses the combination processing to locate these
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missing objects.

Nicolin and Gabler [Nicolin, Gabler] produced a system that uses a little more top- 

down and bottom-up processing. They too use the combination processing to locate 

missing objects. They, however, use some combination processing in the early segmentation 

phase. The system performs some low level processing initially to bring out some cues. 

These cues guide or focus attention for initial region segmentation. This segmentation is 

somewhat goal-directed. After segmentation, structural analysis uses the Gestalt psychology 

properties of similarity, proximity, smooth continuation, symmetry, and familiarity. 

Structural analysis points out missing objects. Segmentation repeats itself with relaxed 

parameters to find the missing objects.

COBIUS (Constraint Based Image Understanding System) is a system for aerial 

photograph interpretation [Kuan, Shariat, Dutta, Ransil]. The authors outline three major 

problems in the field. They are (1) generic domain object representation, (2) unreliable 

image segmentation, and (3) knowledge control. They attack the first problem by 

representing objects with a hierarchy of frames going from coarse to fine detail. They 

attack the second problem using a "multiple feature fusion approach with model-based 

feature verification capability." They attack the last problem using a form of the Dempster- 

Shafer theory to pursue the most probable hypothesis first. The multiple feature fusion 

approach is the combination top-down and bottom-up idea. First, a coarse segmenter 

provides an initial interpretation. Next, they resegment looking for expected objects and 

attempting to verify their object models. This is part of the perceptual cycle discussed in 

the next section. COBIUS uses some of the ideas described later in chapter three of this 

paper. It uses top-down and bottom-up processing, selective attention, and to some degree 

expectations.

Much of the work reported in this section concerns tactics. They are working on 

low level perceptually significant features. The next section deals with the main point of 

this research effort - strategy. What are the perceptually significant properties that guide 

the overall analysis of an image?
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2.4 - Selective Attention, Expectations, Context, and the Perceptual Cycle

Certain perceptual psychology properties control the analysis of images. The 

projects described in the previous section covered the use of perceptual psychology in low 

level tactics. The subject of this research effort is the use of perceptual psychology in high 

level strategy. This section discusses selective attention, expectations, context, and the 

perceptual cycle.

A review of psychology books and papers has uncovered the critical points listed in 

the following paragraphs. These points influenced the creation of the computer vision 

system described later. Humans use selective attention [Goldstein], [Neisser 1967]. We 

direct our attention to only those items which interest us and ignore all else. Part of the 

reason for this is that humans can only handle seven bits of information [Miller] at a time. 

We simply cannot simultaneously perceive all of the objects and information in an image. 

We cannot handle all the information present. We selectively focus our attention on the 

things which interest us. Another reason is the physical graded resolution of the human 

eye [Browse, Rodrigues].

Expectations play an important role in perception because they guide our attention 

[Lindsay, Norman]. All of our experiences lead us to expect types of objects. An example 

is a new restaurant. You expect to see some type of chairs, tables, and menus and they 

draw your attention. The use of expectations is growing in the current literature. You will 

find instances in [Draper, Brolio, Collins, Hanson, Riseman], [Burt], and [Haralick, Lee]. 

Context works closely with expectations in driving human perception [Bruner, Minturn]. 

You do not expect to see tires, spark plugs, and motor oil in a restaurant. You, therefore, 

do not look for them and do not burden your mind with them.

Human perception operates in a cycle [Neisser 1976] and [Rao, Jain]. Figure 2.3 

shows the perceptual cycle. The flow is counterclockwise. The object is what we are 

perceiving. Schema is the knowledge stored. Exploration is looking at the object or 

experimenting.

Start the cycle at the schema (the knowledge base). Knowledge directs exploration. 

You cannot initially explore without some known basis. The exploration takes samples or
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samplesmodifies

directs

schema exploration

Figure 2.3 - Perceptual Cycle

observations of the object under study, i.e. it performs calculations on the image. 

Exploration of the object produces some result which modifies the knowledge. The 

modified knowledge directs the exploration in a different direction. The new exploration 

samples the object. The result of exploration modifies the knowledge... This is a simple 

closed loop feedback system. Though not specifically mentioned, several research efforts 

such as [Fua, Hanson] and [Kohl, Hanson, Riseman] use the perceptual cycle.

Because of these concepts, it is obvious that humans do not spend equal time, 

energy, and effort on all objects in a scene. Why should a computer vision system do that? 

That was the case in the data driven, bottom-up systems described in section 2.2. Those 

systems devoted equal processing time and effort to each pixel in the image. This is not 

how human visual perception works.

A computer vision system should be guided and controlled so it spends most of its 

processing time and effort on only the critical portions of the image. The knowledge base 

and control mechanism should focus attention and time [Koons, McCormick], [Arkin, 

Riseman, Hanson], [Lehrer, Reynolds, Griffith February 1987], and [Ballard, Ozcandarli]. 

The system should commit resources to only those objects and properties that are 

necessary for object and region identification. In agreement with this idea are [Clark, 

Ferrier], [Sha’ashua, Ullman], and [Kuan, Shariat, Dutta, Ransil].
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Selective attention, context, expectations, and the perceptual cycle are not original 

ideas. Many papers mention these concepts and use them in various ways. It is, however, 

an original concept to use the four together as a global strategy and use them to tie 

together the segmentation and interpretation processes.

The next section discusses the issue of control strategy in more detail. That section 

discusses top-down and bottom-up processing. Those discussions are closely related to the 

above conclusions concerning perceptual psychology in computer vision.



3 - Introduction to the New Analysis Approach

This chapter introduces the new approach to analyzing high resolution aerial 

photographs. It talks about the approach in terms of perception, a hierarchy of labels, and 

the interplay between segmentation and interpretation processes. Next, the chapter 

discusses the knowledge base to be used by the approach. The chapter closes with a look 

at the Dempster-Shafer theory of evidence and how it is modified for use in the approach.

3.1 - A New Approach to Analyzing High Resolution Aerial Photographs

Researchers agree that some combination of bottom-up and top-down processing 

is appropriate for computer vision. The question is - what combination? This section 

proposes an answer to that question.

The approach presented in this section is the heart of the originality of this work. 

The approach uses three basic ideas in a unique manner. The three ideas are (1) the use 

of selective attention, expectations, context, and the perceptual cycle, (2) analyzing the 

image through a hierarchy of increasingly specific labels, and (3) the interplay between the 

segmentation and interpretation processes. These ideas translate into the computer vision 

system mentioned briefly in chapter one and described in detail in chapter four.

Computer vision systems should make use of selective attention, expectations, and 

context. The previous chapter discussed these perceptual properties. Context limits the 

number of possibilities which confront the computer vision system at a given moment. The 

system must use context at each moment in the analysis to describe the alternatives, limit 

the number of realistic alternatives, and select the proper option. Expectations guide the 

low level processing. When the system expects a group of buildings in an area, then it 

should use a specific building detector to search for the group. Selective attention focuses 

the processing to only the essential portions of the image. This ties closely to the use of 

expectations. There is no reason to process linear features while looking for buildings. 

Selective attention points the operators at only what is necessary.

Several of the systems described earlier in chapter two use these three concepts to 

some degree. Those systems use the concepts for low level operators such as edge 

detectors or building finding operators. This dissertation proposes to use them in the high

28
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level, overall, analysis approach. They are not used in the low level operators here. Using 

them in both the high and low level approaches is an excellent idea, but again developing 

high quality low level operators is not the point of the dissertation.

A key to the overall approach is the hierarchy of labels. The hierarchy of labels 

allows the system to work its way gradually to the point where it knows the type of scene 

in the image. At this point, it is ready to identify the pertinent objects,. Each node in the 

hierarchy has only a few possible choices. This greatly reduces the complexity of the 

problem.

There are many types of hierarchies used in vision research. Several of the 

references mentioned earlier used hierarchies to reduce the complexity of different parts 

of the vision problem. An example hierarchy would be of the parts of a residential area 

when viewed from an aerial photograph. The residential area has sub parts roads and 

blocks. The blocks have sub parts lots and walkways. Each lot has house, yard, tree, 

sidewalk, driveway, and swimming pool.

The hierarchy used in this project gives labels for areas in an aerial photograph. 

Figure 3.1 shows the top portion of the hierarchy. This hierarchy was given by the Defense 

Mapping Agency (DMA) [Rusco]. The DMA uses this hierarchy to map the world and 

label aerial photographs. Chapter four repeats this figure and appendix 2 lists the entire 

hierarchy. The DMA hierarchy works well for most of the image analysis task. 

Nevertheless, it has problems at the bottom of the hierarchy. It does not include a typical 

vision hierarchy such as the ones mentioned above. At the node commercial!residential, the 

DMA hierarchy does not include a vision hierarchy of roads and blocks, then lots, then 

yard, house, sidewalk, driveway, and tree. This shortcoming is more evident during the 

system description in chapter four and the example analysis of images in chapter five. 

Chapter four gives a brief description of how to remedy this situation.

A vision system must strongly couple the processes of segmentation and 

interpretation [Kohl, Hanson, Riseman]. The system cannot separate the two. The 

perceptual cycle (introduced in the previous chapter) requires close interaction between the 

two processes. Although not mentioning it specifically, several other researchers agree with 

this concept and are attempting to use it. Those researchers, however, are using it to 

improve the accuracy of the low level operators. They should apply this same idea in the
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overall approach.

The following paragraphs give an example of how to use these concepts in the 

analysis of an image. Figure 3.1 shows the top portion of the hierarchy used in the 

following discussion. Processing begins at the world node. Because of context, the 

computer vision system only has to distinguish between a culture area and a landscape area. 

This is a simpler, more solvable goal than "find all the objects in the image and label them 

from among 200 different possibilities."

The first step is data driven. The computer vision system invokes a low level 

operator that will return a sign of culture or landscape. The interpretation process drives 

the segmentation process. The data driven operation will not determine the final selection. 

It is only a first step. The operator does not have to be a single, general purpose operator. 

Because of selective attention, the computer vision system selects a simple operator that 

is appropriate to distinguish between culture and landscape areas.

The second step is goal driven. The computer vision system uses the quick 

impression given by the first step as a goal. Now expectations drive the analysis of the area 

under investigation. Suppose step one returned a guess of culture. The goal of the second 

step would be culture as opposed to landscape. The system uses appropriate operators that 

look for objects that are in culture areas and not in landscape areas. The segmentation 

process has altered the interpretation process which will now steer the segmentation process 

in a new direction.

Because of selective attention, the second step does not spend equal time processing 

all objects in the area. It only processes those objects that are appropriate to this very 

limited situation. The interpretation process focuses the segmentation process.

If the results of step two agree with those of step one, then label the area as culture 

and move down the hierarchy. This is because both bottom-up and top-down analysis 

agreed that the area is culture. If the results of step two disagree with those of step one, 

then repeat step two using landscape as the goal.

Suppose analysis labels the area culture. The next step must decide between urban 

(built up areas), transportation!navigation, and landmark/rural features. Once again, context 

reduces the complexity of the task. Expectations produce reachable goals. Selective
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world
—  culture

I—  urban (built up areas)

E industry/utility 
commercial/residential 
institutional/governmental

—  transportation/navigation
—  railroads
—  roads
—  aeronautical/aerospace
—  naval/marine
—  associated transportation features

—  landmark/rural features
—  communication/transportation
—  storage
—  agricultural
—  recreational
—  miscellaneous

*—  landscape
—  hydrography

I—  water 
'—  snow/ice

—  physiography
I—  exposed soils (surface composition) 
'—  landforms

—  phytography
—  cropland
—  rangeland
—  woodland 
*—  wetland

Figure 3.1 - DMA Hierarchy (top portion)
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attention focuses operators to only those objects of interest.

■world

  c u l t u r e

  u r b a n  ( b u i l t  u p  a r e a s )

I  c o m m e r c i a l / r e s i d e n t i a l

  0 3 9  c o m m e r c i a l  b u i l d i n g s

  0 4 0  a p a r t m e n t s / h o t e l

  0 4 1  b o u s e  ( s i n g l e  f a m i l y  d w e l l i n g )

  0 4 2  m o b i l e  t o m e s

  0 4 3  b a r r a c K s

 0 4 4  d i s p l a y  s i g n  ( l a r g e

b i l l b o a r d ,  h i g h w a y  s i g n )

Figure 3.2 - Sample Path Through Hierarchy

The analysis process continues down through the hierarchy until the analysis reaches 

either the bottom of the hierarchy or the desired level of analysis. (Note that the system 

user does not have to direct the system to locate the lowest level objects in an image. The 

analysis can stop at any desired level.) At the bottom of the hierarchy, the system locates 

and labels individual objects. For example, using the complete hierarchy given in appendix 

2, figure 3.2 shows one path through the hierarchy. The objects the system will locate and 

label are all different types of buildings. Size and shape distinguish them. The system calls 

a low level operator that specializes in detecting buildings (possibly one of the excellent
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operators described in chapter two). Once again, context, expectations, and selective 

attention simplify the task. In this context the system only expects to find buildings and 

selective attention narrows the focus to a special operator. The system does not need a 

super operator capable of detecting any object. This situation is possible because of the 

hierarchy of labels.

3.2 - Knowledge Representation - Frames and Expectation Driven Processing

This section discusses knowledge representation in computer vision. In particular 

it examines frames and expectation driven processing. A major question in any computer 

vision system is how to represent the knowledge needed to analyze an image. Chapter two 

pointed out the inadequacy of the simple rule-based system. The thoughts on perceptual 

psychology in chapter two pointed to context, expectations, selective attention, and the 

perceptual cycle. The frame is a logical choice of knowledge representation for a system 

using these concepts.

Minsky [Minsky] originated the concept of frames. Many others including [Rich], 

[Gevarter], [Barr, Feigenbaum], [Rao, Jain], and [Neisser 1976] also described frames. 

Frames are complex data structures that contain information describing objects and relations 

that are appropriate to a given situation. Frames provide a structure or framework for 

expectations given the context of the situation. Frames focus or select attention on the 

things that should occur.

Frames are one of the corners of Neisser’s perceptual cycle. The perceptual cycle 

was described earlier and figure 3.3 shows it again. Neisser describes them as anticipatory 

schemata. The term schemata describes a frame in a visual context. The schemata contains 

plans for perceptual action as well as readiness for a particular optical structure. The 

schemata is that part of the perceptual cycle that is internal to the observer. The 

observer’s experience modifies the schemata. The schemata controls the activity of looking. 

The schemata determines what will be perceived.

Frames have several advantages over other knowledge representation schemes in 

computer vision. Among these advantages are that frames encourage expectation driven 

processing. Frames can express the hierarchical nature of images. Frames express
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samplesmodifies

directs

schema exploration

object

Figure 3.3 - The Perceptual Cycle

knowledge in a more explicit and modular manner than other representations. Frames are 

a good compromise between procedural and declarative forms of knowledge.

The primary mechanism of the frame is the slot. A slot is a blank field in the 

frame that fills when an expected object or property is discovered. Because of this, frames 

have earned the name slot and filler structures. Figure 3.4 shows an example frame for a 

restaurant. A person entering a restaurant for the first time expects to see each of these 

slots. The person fills the slots with the appropriate answers as he observes objects. In 

this respect, frames evolve from general to specific instantiations during the analysis 

process.

Restaurant Frame
Type of: service industry
Menu: plastic book, place mat, billboard, ...
Serving place: covered table, picnic table, bar, ...
Type of food: traditional, Italian, Chinese, ...

Figure 3.4 - Example Frame

Shown in figure 3.5 is the general structure of a frame used in the computer vision 

system described in chapter four. Frames encourage expectation driven processing. The 

is_a slot in the frame names what the system expects to find. The is_ a becomes the goal
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of analysis. If analysis satisfies the goal, then the is_a is no longer a goal but a reality. If 

analysis does not satisfy the goal, then the frame is replaced by an alternate and the 

alternate is_a becomes the new goal.

is_a ... 
is_part_of... 
level_in_tree ... 
goal_of_analysis ... 
intrinsic_characteristics ...

distinguishing characteristics and 
assertions of belief 

sub_node_names ... 
sub_node_operator ...

Figure 3.5 - General Frame from TDBU System

Frames express well the hierarchical nature of images. You can describe images 

naturally by hierarchies. The DMA hierarchy shown in chapter three describes the image 

in general terms at the top levels. The description becomes more specific as you move 

down to lower levels. The is_part_of and level in tree slots connect the frame with the 

frames above it. The sub_node_names and subjnodeoperator slots connect the frame with 

the frames below it. Using these slots, the system moves up and down through the 

hierarchy.

Frames express knowledge in a more explicit and modular manner. The frame 

keeps all of the information concerning an entity in one place. The knowledge in frames 

is readable and understandable. Rule-based systems spread the information over many 

separate rules. The rules are often difficult to read and understand. Modifying the rules 

is especially difficult because you must first find many different rules and then modify them 

consistently.

Frames are a good compromise between procedural and declarative forms of 

knowledge. The is_a, is_part_of, level_in_tree, goal_of_analysis, and sub_node_names slots 

are declarative. They declare facts. The distinguishing_characteristics and 

sub node operator slots are procedural. They invoke attached procedures, i.e. they call
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3 3  - Belief Maintenance Systems - The Dempster-Shafer Theory of Evidence

This section discusses belief maintenance and the Dempster-Shafer theory of 

evidence. It describes how the Dempster-Shafer theory works and concludes that it is 

appropriate for computer vision.

A  belief maintenance system must take information from different sources at 

different times, pool this information, and draw a reasonable conclusion. There are two 

questions in belief maintenance. Is a belief maintenance system needed? If so, what 

system should you use? The first question may seem out of place, but it is valid. Any 

number of texts and handbooks on artificial intelligence and expert systems exist that do 

not mention the subject. At the same time, volumes have been written about the subject.

Computer vision systems need a belief maintenance system because of the inherent 

uncertainty and inadequacy of the individual pieces of evidence. In many expert systems 

the reasoning process hinges on a single piece of evidence. These systems do not require 

a belief maintenance system. The labeling of areas in an aerial image, however, requires 

pooling individual pieces of evidence. The individual pieces of evidence can be uncertain, 

incomplete, incorrect, and often contradictory [Lowrance, Garvey], [Wesley], [Rao, Jain], 

and [Hink, Woods].

The computer vision system described in chapter four uses the Dempster-Shafer (D- 

S) theory of evidence described by [Shafer 1976], [Lowrance, Garvey], and [Gordon, 

Shortliffe 1984 and 1985]. Several hundred subroutines comprising several thousand lines 

of code were written to implement a form of the D-S theory of evidence as part of the 

computer vision system. This theory performs well, is not computationally complex, and has 

a sound theoretical basis.

A survey of belief maintenance systems was performed by [Goldberg, et. al.], 

[Goodenough, et. al.], and by [Cheng, Kashyap]. These surveys favored the D-S theory. 

Zadeh [Zadeh] also reviewed the D-S theory and concluded that it was appropriate for use 

in expert systems. Other researchers favoring the D-S theory include [Lee], [Lehrer, 

Reynolds, Griffith February 1987], [Lehrer, Reynolds, Griffith June 1987], [Lee, Shin], and 

[Stephanou, Lu].
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In the D-S theory of evidence, the set of all hypotheses that describe a situation is 

called the frame of discernment. The letter 0  denotes the frame of discernment. The 

hypotheses in 0  must be mutually exclusive and exhaustive.

There are two properties of the D-S theory to note. First, the D-S theory allows 

one to assign belief not only to single hypotheses, but also to subsets of hypotheses. 

Second, one can represent ignorance by assigning belief to the union of all the basic 

hypotheses. The expert can be vague in the early stages of analysis. This is done by 

assigning belief to subsets of hypotheses. This enlarges the set of possible interpretations 

to 2s. The expert can narrow his assertions about the problem later when more specific 

evidence is available.

The assignment of belief to ignorance allows an expert to delay judgment about a 

problem until he acquires adequate evidence. This mirrors the human tendency to 

procrastinate. It allows the expert to express doubt and wait until further evidence appears 

before becoming more specific in the reasoning process.

There are several methods to describe the D-S theory, but the easiest to understand 

is that used by [Gordon, Shortliffe 1984 and 1985]. This method uses actual examples as 

opposed to mathematical theory. Please refer to [Shafer 1976] and [Shafer 1985] for more 

theoretical discussions. Consider the situation where there are three hypotheses, A, B, and 

C. There would be eight subsets of hypotheses in the frame of discernment as shown in 

figure 3.6.

(A,B,C)

(A,B) (A,C) (B,C)

(A) (B) (C) (NULL)

Figure 3.6 - Example Frame of Discernment

The first subset (A,B,C) corresponds to the hypothesis A or B or C. Since this 

hypothesis includes all three basic hypotheses it distinguishes nothing. This is how the D- 

S theory represents ignorance. The first three hypotheses in the bottom row of the
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hierarchy, (A), (B), and (C) are the basic hypotheses. They are singletons. The final set 

in the bottom row (NULL) is the empty set and corresponds to the hypothesis known to 

be false. The belief in (NULL), therefore, must always be zero. The NULL set normalizes 

the combination of two assertions.

Assertions of belief are basic probability assignments (bpa). A bpa represents the 

impact of a piece of evidence. It is a generalization of the Bayesian probability density 

function. The bpa is more general because it can assign degrees of belief to all of the 

subsets in the frame of discernment - not just to the singletons. The degrees of belief must 

sum to 1.0. An example clearly demonstrates a bpa. Suppose there is a piece of evidence 

that supports hypothesis (A or B) and also supports hypothesis (A). The bpa (represented 

by m for measure of belief) for this piece of evidence might be: 

m(A,B) = 0.6 m(A) = 0.3 m(0) = 0.1

The quantity m(A,B) is the portion of total belief committed exactly to the subset 

(A or B). In the same manner m(A) and m(B) represent the portions of total belief 

committed exactly to (A) and exactly to (B). The sum m(A) + m(B) + m(A,B) represents 

the total portion of belief committed to (A or B) and is denoted by Bel(A,B). The 

quantity m(0) represents ignorance. In this case m(0) represents the subset (A or B or C).

Dempster’s rule of combination provides the means to combine two bpa’s. This 

allows the system to pool assertions from multiple pieces of evidence and draw a 

conclusion. The combination rule employs an intersection tableau. Given two bpa’s shown 

in figure 3.7, an intersection tableau is constructed with the first bpa across the top and the 

second bpa down the left side as shown in figure 3.8.

ml(A,B) =  0.8 
m l(0) = 0.2

m2(B) = 0.7 
m2(C) = 0.2 
m2(0) =  0.1

Figure 3.7 - Two Basic Probability Assignments
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The subsets inside the tableau are the intersection of the subsets along the top and 

down the side. The intersection of (A,B) and (B) is (B). The value given to (B) in the 

upper left corner of the tableau is the product of the subsets (A,B) and (B). The other 

subsets and values inside the tableau are obtained in the same manner.

ml

C A , B ) ( THETA)
0 .  B 0 . 2

CB) CB) CB)
□ . 7 0 .  5 6 0 .  14

CC) ( NULL) C C)
□ . 2 □ . 1 6 □ . 0 4

CTHETA) C A , B ) CTHETA)
□ . 1 □ . 0 8 □ . 0 2

Figure 3.8 - Intersection Tableau

Note the NULL set in the second row inside the tableau. The intersection of (C) 

and (A,B) is NULL. As mentioned earlier, the belief attributed to the NULL set must 

equal zero. This value will normalize the other beliefs. Let a value K equal the sum of 

all NULL sets in the tableau. To remove the belief attributed to NULL, you sum the 

other values in the tableau and divide them by 1 - K. This yields the result shown in figure 

3.9. Notice how the combination of the two bpa’s has narrowed the hypothesis set. The 

first bpa pointed to the subset (A,B). The second bpa pointed to the singleton (B). 

Combining the two bpa’s narrowed the decision to (B).

The D-S theory has proven its value, but what about using it in the computer vision 

field? Does it fit into computer vision systems? In expert system terms, the computer 

vision system in this dissertation is an analysis system. The term analysis system contrasts 

with diagnostic system (diagnosing a problem such as a bad car engine) or advisory system 

(giving advice in a field such as a financial consultant). Other analysis systems could be in
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K = 0.16 

1 - K = 0.84

ml(A,B) + m2(A,B) = 0.08/0.84 = 0.% 

ml(B) + m2(B) = (0.56 + 0.14)/0.84 = 0.832 

ml(C) + m2(C) = 0.02/0.84 = 0.024

Figure 3.9 - Result of Intersection Tableau

geology (this is an unknown rock, analyze it and list its characteristics) or military (here are 

the physical specifications of a weapon, analyze them and list the capabilities and limitations 

of the weapon). The difference in the computer vision system is in the evidence. In 

computer vision, the computer must derive the evidence by itself using less than perfect 

operators. There is more ignorance (more belief attributed to 0) here than in other fields. 

This means the decisions can be less conclusive. Therefore, the system requires more 

pieces of evidence to reach a conclusion with the same high degree of certainty.

A problem with the D-S theory involves the number of computations involved in 

the combination of two bpa’s. The above example is a trivial case. There are three 

singletons and only 23 or 8 total hypotheses. If there are 100 singletons, then there are

2100 total hypotheses and the combination of two bpa’s becomes intractable. Researchers 

have worked on reducing the number of computations when the hypotheses are in a 

hierarchy [Gordon, Shortliffe 1985], and [Shafer 1985]. The best way to explain the 

reduction in computations is with an example.

Shown in figure 3.10 is the top portion of the DMA hierarchy. It is important to 

realize that the label culture is the subset (urban (built up areas) or transportation/navigation 

or landmark/rural areas). The label landscape is the subset (hydrography or physiography 

or phytography). The label world is equal to 0. When the hypotheses are in a hierarchy 

there are two major simplifications you can make. (1) The number of meaningful 

hypotheses is a small percentage of the total hypotheses. (2) The number of meaningful 

bpa’s you can make is also a small percentage of the total possible and context limits them.

The hierarchy shown in figure 3.10 has six singletons - urban (built up areas),
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world
—  culture

1—  urban (built up areas)

E industry/utility 
commercial/residential 
institutional/governmental

—  transportation/navigation
I—  railroads
—  roads
—  aeronautical/aerospace
—  naval/marine
—  associated transportation features 

*—  landmark/rural features
—  communication/transportation
—  storage
—  agricultural
—  recreational
—  miscellaneous

—  landscape
—  hydrography

I—  water 
'—  snow/ice

—  physiography
I—  exposed soils (surface composition) 
'—  landforms

—  phytography
—  cropland
—  rangeland
—  woodland
—  wetland

Figure 3.10 - DMA Hierarchy (top portion)



42

transportation/navigation, landmark/rural areas, hydrography, physiography, and phytography. 

In the pure D-S theoiy there would be 26 or 64 subsets or hypotheses. Most of these 

subsets have no meaning in the labeling process so you can drop them. For example, the 

subset (urban (built up areas) or hydrography or phytography) has no meaning. There is no 

reason to make computations on its behalf. There are only 9 meaningful hypotheses in the 

hierarchy - 1 meaningful hypothesis for each node in the hierarchy.

The context and form of bpa’s will be limited to small portions of the hierarchy. 

If the analysis is at a node and you assert a bpa about its sub-nodes, then that bpa will 

mention only one sub-node and its complement within the other sub-nodes. For example, 

if the analysis is at the culture node figure 3.11 shows a possible bpa. The m ̂  (not urban 

(built up areas)) is not the true complement of urban (built up areas) - it is the simplified 

complement. The simplified complement of a node is the union of the other nodes with 

the same parent node. (The term simplified complement is original to this paper.) Figure 

3.12 shows the difference between the true complement and the simplified complement. 

The true complement of urban (built up areas) has no meaning. The simplified 

complement, however, has meaning in the context of culture. It means "give belief to 

everything but urban (built up areas) under the context of culture."

m(urban (built up areas) = 0.7 

m ̂  (not urban (built up areas)) = 0.2 

m(THETA) = 0.1

Figure 3.11 - Example bpa

The above two simplifications greatly reduce the computations in the combination 

of two bpa’s. The research of [Gordon, Shortliffe 1985] showed that using a knowledge 

of the hierarchy and modifying the D-S could reduce the computational load. Shafer, in 

[Shafer 1985] and [Shafer 1987], demonstrated that the unmodified D-S theory is usable 

with reduced computations given the special conditions mentioned above.

The computer vision system described in chapter four uses a form of the D-S theory 

to maintain beliefs in the analysis of aerial images. Since the system organizes knowledge
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in a hierarchy, it can use the simplifications mentioned earlier. This required creating a 

large set of custom subroutines to implement the D-S theory and the intersection tableau. 

In itself, this was a major research and programming effort.

If the knowledge base were not organized in a hierarchy, the size and complexity 

of the problem would be much greater. Taking the DMA hierarchy and using the labels 

one level up from the leaf nodes results in a flat list of area labels. The labels would 

include commercial/residential, naval/marine, agricultural, and disposal. Using the flat list 

of labels instead of the hierarchy, there would be 29 labels and no simplifications. In this 

case 9  is 29 and there are 229 or 536,870,912 possible combinations. This explodes the 

computational complexity of the problem. The D-S theory would be unusable and its 

advantages would be lost.



4 - Implementing the New Approach

This chapter examines the TDBU (Top-Down Bottom-Up) computer vision system. 

TDBU is a computer vision system that analyzes multi-spectral, high resolution, aerial 

images of urban areas. This work began with [Harlow, et. al.] and continued in [Phillips].

A Kaypro 286i (IBM-PC AT compatible) currently hosts TDBU. The computer has 

a 40 Mbyte hard disk and 640K of memory. TDBU is written entirely in C and is currently 

using the Microsoft C compiler version 5.0. This is the fifth different compiler and fourth 

different machine used during the development of TDBU. It is a portable system.

Figure 4.1 shows the basic structure of this system. In general, the system uses the 

knowledge stored in frames to investigate areas in the image. The control mechanism calls 

low level routines in the image processing interface. They report the results back to the 

control mechanism which invokes the belief maintenance system. The belief maintenance 

system reports which frame is the most probable label for the area under investigation. The 

control mechanism either uses the most probable frame for further investigation or for 

labeling the area.

The control mechanism implements the cyclical nature of the analysis. It does this 

with a simple closed loop algorithm. This is the interpretation portion of the interpretation 

and segmentation interplay. It interprets results from the image processing interface and 

belief maintenance system and then redirects the segmentation. The control mechanism 

also guides the system down through the hierarchy. When analysis decides on an area 

label, the control mechanism moves the system down to the next level in the hierarchy.

The knowledge base is the hierarchy of frames. Figure 4.2 shows the top portion 

of the hierarchy. Section 3.2 discussed the advantages of using frames in knowledge 

representation in computer vision systems. The hierarchy brings context into the processing. 

Each node in the hierarchy contains implicit knowledge based on its position in the 

hierarchy. The frames imbed expectations. The slots in the frames contain what the system 

expects to find at each point in the analysis.

The belief maintenance system aids the control mechanism in drawing a reasonable 

conclusion. It pools evidence from a group of less than perfect operators and sends the 

result to the control mechanism. The system uses a form of the Dempster-Shafer theory

44
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of evidence. It comprises a large set of subroutines that implement the intersection tableau 

as described in section 3.3. These subroutines use and implement the computational 

simplifications available from using a hierarchy of hypotheses (labels or frames). They 

greatly limit the amount of computations needed to use the D-S theory and they were a

Knowledge Base

Image
Process ing
In te r fa c e

Multi
S p ec tra l
ImagesDistance Based 

C la s s if ie r

7K Object Enbanceient Functions

B e l i e f
Maintenance
System

Figure 4.1 - Top-Down Bottom-Up System
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major programming effort in themselves.

The image processing interface works on the image data. It is the segmentation 

portion of the segmentation and interpretation interplay. There are several different 

operators in the image processing interface. The control mechanism chooses the operators 

depending on the situation and the expectations given by the knowledge base. The relation 

between the knowledge base and the operators is very close. The operators are procedural 

attachments in the knowledge base. The knowledge base contains their names and directs 

the control mechanism to call them when appropriate. The code of the operators is not 

in the knowledge base, but their names are.

4.1 - The Images

The system analyzed two different types of images. The primary image is a three 

channel multi-spectral aerial image of an apartments area south of the Baton Rouge campus 

of Louisiana State University. The image was taken from an altitude of 1500 feet. The 

image is 511x512 pixels and has 256 gray levels. Each pixel covers an area 2.25 feet by 2.25 

feet. You can identify easily buildings, parking lots, and carports from this altitude. The 

image is in a format tied to the ELAS [NASA] image processing system.

Appendix 1 contains photographs of the image. The photographs show how each 

spectral channel aids in detecting objects of interest.

Photograph 1 shows the green channel (.5 - .55 /xm band). The bright white objects 

are carports. The roads appear as long bright objects. Buildings sometimes do not appear 

because they are almost the same gray level as the surrounding grass. Photograph 2 shows 

the red channel (.65 - .69 /xm). The bright white objects are buildings. The long gray areas 

are roads and cement. Photograph 3 shows the thermal IR channel (8.5 - 13.0 /xm). The 

dark gray objects are buildings. Photograph 6 shows the results of analysis.

To illustrate the power and portability of the system, a second type of image was 

analyzed. The basis of the second type of image was an 8"xl0" color aerial photograph of 

the Atlantic Undersea Test and Evaluation Center (a U.S. Navy test facility) on Andros 

Island in the Bahamas. A Hewlett-Packard ScanJet Plus desktop scanner scanned several 

portions of the photograph into a single channel, 256 gray level image. The scanner 

produced an image in the TIFF (Tagged Image File Format) format. This was transformed
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to the ELAS format. Photograph 7 shows the first area of this image. This is a section 

of house trailers separated by a road. This image is 200x200 pixels. Photograph 8 shows 

another section of house trailers. This image is 100x200 pixels. Photograph 9 shows a third 

section of house trailers. This image is also 100x200 pixels. These three images 

(photographs 7, 8, and 9) possess vastly different spectral properties from the first image 

(photographs 1, 2, and 3).

4.2 - The Knowledge Base

A hierarchy of frames stores the knowledge base. As described in chapter three, 

frames are a basic slot and filler notation. They satisfy the three perceptual psychology 

properties of context, expectation, and selective attention and they are a cornerstone of the 

perceptual cycle.

You could use any number of hierarchies for the frames. This system uses a 

hierarchy of labels given by the Defense Mapping Agency (DMA) [Rusco]. The hierarchy 

was introduced in earlier chapters and some of its weakness were discussed briefly (see 

chapter six for a discussion of how this hierarchy might be modified in future work). There 

are several uses of the hierarchy that have not yet been carried forward from the 

discussions in [Harlow, et. al]. One such use is storing knowledge about the spatial 

relations among the low level objects. This would be knowledge such as "carports located 

next to buildings" and "sidewalks located next to roads." Figure 4.1.A illustrates these 

concepts. These are examples of some of the powerful knowledge imbedded into each 

position in the hierarchy that can aid and direct the low level operators. Some of the 

systems described in chapter 2 used knowledge similar to this. Those systems, however, 

expressed that knowledge as special rules in low level operators - not as part of the total 

system framework. This use of the hierarchy has not yet been implemented in the current 

system because it is essentially a feature used by low level operators. The slots for this 

information are in the frames and will be incorporated in the future (see chapter 6 for this 

discussion).

Appendix 2 lists the DMA hierarchy and figure 4.2 shows the top four levels. The 

hierarchy has at least one more level lower than figure 4.2 shows. The DMA hierarchy is 

quite extensive and has 247 nodes in the hierarchy and 207 leaf nodes or final labels.



w o r l d

l a n d s c a p e  c u l t u r e

t r a n s p o r t a t I o n /  l a n d m a r k /  u r b a n  
n a v i g a t i o n  r u r a l  f e a t u r e s

u r b a n

b l _ b u i l d i n g  g l _ g a r a g e  p l _ p a r k i n g _ l o t

n e x t  t on e x t  t o

m p l i e s

m p l i e s

Figure 4.1.A - Adding a Vision Hierarchy to the DMA Hierarchy
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Eveiy non-leaf node in the hierarchy has a corresponding frame.

Each frame has two types of information. The first type of information is a list of 

intrinsic characteristics. Intrinsic characteristics distinguish a node from the other nodes in 

the hierarchy having the same parent. The second type of information lists the node’s sub 

nodes. It also gives a data driven operator which will generate an initial belief vector about 

the sub nodes. In general, each frame is as shown in figure 4.3. Appendix 3 lists the 

frames.

is_a ... 
is_part_of ... 
level_in_tree ... 
goal_of_analysis ... 
intrinsic characteristics ...

distinguishing characteristics and 
assertions of belief 

sub node names ... 
sub_node_operator(s) ...

Figure 4.3 - Frames

The is_a slot gives the name of the frame. The is_part_of slot ties the frame to the 

node above it in the hierarchy. This demonstrates one of the major advantages that frames 

have over IF...THEN production rules. Rules in a production system do not express the 

hierarchical nature of scenes as well as frames.

The level_in_tree slot gives the distance down in the hierarchy from the root node. 

This helps to direct the control mechanism. When the level in tree = "root," the node 

does not have any intrinsic characteristics. This is because the root has no siblings from 

which it must be distinguished. When the level_in_tree = "leaf," then the processing on 

that area in the image has finished.

The goal_of_analysis slot describes the desired output from this stage of analysis. 

The goal is usually to give a single label to the area under investigation. When the 

processing reaches the bottom of the hierarchy the goal changes to labeling the individual 

objects in the area. The intrinsic characteristics list information that distinguishes the node 

from the other nodes in the hierarchy with the same parent node. Figure 4.4 show a
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world
—  culture

—  urban (built up areas)
—  industry/utility
—  commercial/residential
■—  institutional/governmental

—  transportation/navigation
—  railroads
—  roads
—  aeronautical/aerospace
—  naval/marine
—  associated transportation features

—  landmark/rural features
—  communication/transportation
—  storage
—  agricultural
—  recreational
—  miscellaneous

—  landscape
—  hydrography

|—  water 
*—  snow/ice

—  physiography
I—  exposed soils (surface composition) 
'—  landforms

—  phytography
—  cropland
—  rangeland
—  woodland
—  wetland

Figure 4.2 - DMA Hierarchy (top portion)
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possible form of these characteristics.

has bl_building
has pl_parking_lot
has 040 apartments/hotel
has 041 house (single family dwelling)

Figure 4.4 - Example Intrinsic Characteristics

The intrinsic characteristics cause the control mechanism to call the proper low level 

image processing operators. The characteristics listed here would cause the control 

mechanism to call the object detector operator (see section 4.5.2). The frames store 

assertions of belief with the intrinsic characteristics. An assertion of belief is in the form 

of a basic probability assignment (bpa) as described in chapter three.

The low level image processing operators are known as attached procedures. They 

are procedures that are connected to the data structure of the frame (recall this is one of 

the advantages of using frames for knowledge representation). It is easy to attach any 

procedure to the frame. This allows the system to incorporate operators developed by 

other researchers. The details of this are (1) take the operator written in C, (2) compile 

and link it to the system software, (3) put its name in the frame at the intrinsic 

characteristic slot, and (4) modify the control mechanism code to call it when its name 

appears in the frame. The most difficult step in the process is (1). Many operators 

produced in research efforts are not portable.

If the object detector finds an intrinsic characteristic, then the control mechanism 

asserts a bpa that is favorable to this frame. If the object detector does not find an 

intrinsic characteristic, then the control mechanism asserts a bpa that is unfavorable to this 

frame. For example, figure 4.5 gives a portion of the culture frame. The first intrinsic 

characteristic is "blbuilding." If the object detector operator finds objects meeting the 

description of "bl building," then the system would make the positive assertions. If the 

system did not find such objects, then the system would make the negative assertions. The 

positive assertion says that place=2, i.e. node 2 culture, receives 0.8 belief and place=1, i.e. 

node 1 world or 0, receives 0.2. Please note the descriptions of the objects for which the
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object detector searches. This is another major knowledge base the system uses. Refer 

to section 4.5.2 for details. An expert photointerpreter creates the assertions in a purely 

subjective manner. He bases them on experience and judgment. The author created the 

assertions in this work.

The frame.is_a is:
-> culture

characteristic[0] is ->bl_building

characteristic[0].positive_assertion[0].place=2
characteristic[0].positive_assertion[0].belief=0.8
characteristic[0].positive_assertion[l].place=l
characteristic[0].positive_assertion[l].place=0.2

characteristic[0].negative_assertion[0].place=3 
characteristic[0].negative_assertion[0].belief=0.6 
characteristic^] .negative_assertion [ 1] .place=1 
characteristic[0].negative_assertion[l].belief=0.4

Figure 4.5 - Portion of Culture Frame

The sub node names slots list the names of the nodes branching downwards from 

this node in the hierarchy. The sub_node_operator specifies a simple, data driven operator 

that will help to distinguish the sub nodes. This operator is some type of statistics based 

operator. TDBU uses the simple average of the gray levels for this operator (see section 

4.5.2).

Figure 4.6 shows another portion of the culture frame. This portion lists the 

sub node operator and the sub nodes. The operator is the simple average_of_pixels (see 

section 4.5.2). Each sub_node has a mean value associated with it. The average_of_pixels 

operator calculates the mean gray level of the area and then uses each sub node’s mean 

value to calculate an assertion of belief. The system gives each sub node a measure of 

belief based on the distance between the mean gray level of the area and the sub node’s 

mean value.

The frames are implemented using the database program PC-FILE (ButtonWare, 

Inc. Bellevue, Washington). PC-FILE is a simple yet capable database program that runs
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on IBM PC’s and compatibles. The author uses PC-FILE to enter and modify the frames.

Portions of the TDBU system’s code reads the database files into C language 

structures. A utility program uses some of the same code to read the files and print them 

in the form of appendix 3. Appendix 4 describes the implementation details of the 

database files.

The frame.is_a is:
-> culture

The frame has 3 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is ->urban (built up areas) 
Sub node[0].bel_element_number is 4 
Sub node[0].mean is 90.0

Sub node[l].is_a is -> transportation/navigation 
Sub node[l].bel_element_number is 5 
Sub node[l].mean is 60.0

Sub node[2].is_a is -> landmark/rural features 
Sub node[2].bel_element_number is 6 
Sub node[2].mean is 40.0

Figure 4.6 - Portion of Culture Frame

43  - The Control Mechanism

The control mechanism directs the overall flow of the image analysis process. The 

perceptual psychology principles described in chapter two and the combination top-down 

and bottom-up processing described in chapter three form the foundation of the control 

algorithm. Figure 4.7 shows the basic control algorithm (the <- symbol indicates 

assignment).

There are two frame pointers used in the analysis. They are (1) the Top_Frame 

and (2) the CandidateFrame. The Top Frame is the frame that is the current label of the 

area. The Candidate Frame is the frame that has the highest probability of being the new



54

1) Given a desired level of analysis

2) Top_Frame <- frarae_named(World)

3) CandidateJFrame.isa <- nothing

4) While
Top_Frame.level_in_tree != leaf

OR
Top_Frame.level_in_tree < =  desired level 
of analysis 

Do steps 5) to 9)

5) If
first pass through While loop of step 4)

Then
apply Top_Frame.sub_node_operator to initialize 
the belief_vector

6) Mostjprobable label <- Maximum_of(belief_vector)

7) If
Most_probable_label != Candidate_Frame.is_a

8) Then
Candidate Frame <- frame_named(Most_probable_label) 
Investigate area using intrinsic characteristics 
of Candidate Frame
8A) Loop over the number of intrinsic characteristics 
8B) object detector looks for object
8C) set assertion of belief
8D) alter belief vector using Dempster’s

rule of combination 
8E) end loop

9) Else
Region_label <- CandidateFram e.isa 
Top Frame <- frame named(Region label)
Candidate Frame.is a <- nothing

10) If Top_frame.level_in_tree = leaf 
Then

10A) find and label the lowest level objects 
10B) move on to the next area to analyze

Figure 4.7 - Control Algorithm
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label of the area. The Candidate Frame is below the Top_Frame in the hierarchy and is 

a sub node of the Top_Frame.

Step 1) - The user specifies how far down into the tree he wants the analysis to 

proceed.

Step 2) - The analysis of an area begins at the top of the hierarchy. The frame 

world is the label of the area when the analysis begins.

Step 3) - The Candidate_Frame is the most likely sub node of the Top Frame. 

Since analysis has not started, the Candidate Frame is set to nothing.

Step 4) - This test checks the level of analysis. The system analyzes and labels the 

area on through the hierarchy until it reaches the desired level of analysis.

Step 5) - The first stage of investigation uses the data driven sub node operator. 

The goal of analysis is to label the area as one of the Top_Frame’s sub nodes. The sub 

node operator uses known statistical properties of the sub nodes. It generates a basic 

probability assignment or assertion about the sub nodes (see section 4.5.2). This is the data 

driven first step of analysis described in chapter three. The simple operator is chosen using 

selective attention. It is not an all around general purpose operator. It is one chosen 

specifically for this situation because of its ability to give an estimate at a glance.

Step 6) - The system sets The Most_probable_label to the is_a slot of the node with 

the highest belief. The system determines the node with the highest belief by using the sub 

node operator in step 5).

Step 7) - The system performs the test for conclusion. If the Most_probable_label 

is the same as the Candidate_Frame.is_a, then proceed to step 9) to label the area.

If the analysis is on the first pass of the WHILE statement of step 4), the 

Candidate_Frame.is_a = nothing so the analysis will proceed to step 8).

If the analysis is on a subsequent pass of the WHILE statement of step 4), then 

detailed analysis of the area has taken place. If the Most_probable_label is the same 

before and after detailed analysis, then label the area with the MostjprobableJabel in step

9).

Step 8) - At this point, the system sets the Candidate_Frame equal to the 

Most_probable_label. The analysis now uses the intrinsic characteristics of 

Candidate_Frame to investigate the area. The results of the investigation will alter the
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beliefvector and control will go back to step 4).

This implements the goal driven second step of the analysis mentioned in chapter 

three. Expectations drive the analysis in this step. Using selective attention, the system 

does not spend equal time on all areas and objects in the area. It processes only a small 

percentage of objects in the area. The context of the frame and the frame’s location in 

the hierarchy limits the number of processed objects.

This is the segmentation process. The interpretation of the first, simple 

segmentation of step 5) guides the process. That interpretation greatly simplifies this one. 

Steps 8A) through 8E) describe this process in detail. The Candidate_Frame has a given 

number of intrinsic characteristics. In step 8B), the object detector looks for the object 

listed in the intrinsic characteristic. The results of the object detector set an assertion of 

belief in step 8C) (see section 4.2). The system alters the belief_vector using Dempster’s 

rule of combination in step 8D) (see section 4.4 for details). The process of investigate and 

alter the belief vector repeats itself in step 8E).

Step 9) - Analysis at this level in the hierarchy ends. The system labels the area 

CandidateFram e.isa. The Top Frame now becomes the Candidate Frame and the 

Candidate Frame.is a again becomes nothing. Control goes back to step 4) and analysis 

continues at a lower level in the hierarchy.

Step 10) - At this point the system reaches the bottom of the hierarchy. At step 

10A) the system tries to find and label the lowest level objects, i.e. the leaf nodes. The 

system uses the object detector and the object enhancement functions to do this. The 

system now departs from the usual top down traversal of the hierarchy. It uses all leaf 

nodes on this level of the hierarchy as possible objects. If the system did not do this, then 

it would detect only one type of object. If the system had labeled an area as 

commercial/residential, then it would only try to detect types of buildings. It would leave 

out streets, sidewalks, and other common objects found in residential areas.

Figure 4.8 shows all of the leaf nodes found on the same level as the leaf nodes of 

the commercial/residential frame. When the system reaches this level of analysis, it uses the 

object detector to look for each object shown in figure 4.8. It also uses the object 

enhancement functions to clean up the object detector’s results (see section 4.5.2). Step 

10A) ends the analysis of an area. Step 10B) resets the system, adjusts the coordinates of
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039 commercial buildings
040 apartments/hotel
041 house (single family dwelling
042 mobile homes
043 barracks
044 display sign (large billboard, highway sign)

045 governmental administration building
046 military admin/operations building
047 capitol building
048 hospital
049 prison
050 palace
051 museum
052 observatory
053 church/tabernacle
054 mosque
055 cemetery building

056 single track railway
057 double track railway
058 multiple track railway
059 RR yard/siding
060 tramway/inclined railway
061 monorail
062 RR storage/repair building
063 RR terminal building
064 RR station/depot
065
066 roundhouse

067 multi lane, divided (grass median) highway
068 multi lane highway
069 primary road (dual lane, hard surface)
070 secondary road (dual lane, loose/dirt surface)
071 trail/track (one lane)
072 toll gates
073 cloverleaf/interchange
074 garage, service/repair facilities (landmark)

Figure 4.8 - All Leaf Nodes on the Same Level as commercial/residential Leaf Nodes
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4.4 - The Belief Maintenance System

The belief maintenance system uses a form of the Dempster-Shafer (D-S) theory 

of evidence described in chapter three. The belief maintenance system comprises many 

subroutines that implement Dempster’s rule of combination (the intersection tableau). This 

was a significant software effort in itself. The subroutines are tailored to the DMA 

hierarchy. These subroutines use and implement the advantages inherent when employing 

the D-S theory on a hierarchy of hypotheses (labels or frames). These advantages 

significantly reduce the amount of computations. As discussed in section 3.3, there are 247 

nodes in the hierarchy so there are that many places for computations. If a hierarchy were 

not used, then there would be a flat list of 29 labels. This would mean 229 or 536,870,912 

computations whenever the system combined two simple assertions. The subroutines in the 

system are custom written for just this hierarchy.

The belief maintenance system uses one belief vector. There is an element in the 

belief vector for each non-leaf node in the hierarchy. Figure 4.6 shows that each node has 

its own belief element number. For example, urban (built up areas) is belief element 

number 4, transportation/navigation is belief element number 5, and landmark/rural features 

is belief element number 6.

The low level operators (see section 4.5.2) pass their results to the belief 

maintenance system in the form of assertions or basic probability assignments. Figure 4.5 

shows how each intrinsic characteristic has positive and negative assertions. If the operator 

finds the cue for which it is searching, it passes the positive assertions to the belief 

maintenance system. If it does not find the cue, it passes the negative assertions to the 

belief maintenance system.

The results of the low level operators are pieces of evidence. Examples of evidence 

are "found concrete in the area" or "located several parking lots." As stated above, the 

operators state these pieces of evidence in the form of assertions. The pieces of evidence 

can be suspicious or incorrect depending on the ability of the low level operator. The 

pieces of evidence can also be contradictory. The histogram analyzer (see section 4.5.2) 

can return a statement "found concrete" which indicates man made objects. It can then
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return a statement "did not find any roofing materials" which indicates a natural area. This 

contradicts the first piece of evidence. The belief maintenance system takes the pieces of 

evidence, in the form of assertions, and combines them to draw a conclusion. The 

conclusion depends on the ability of the operators and the relative beliefs in the assertions.

The belief maintenance system uses Dempster’s rule of combination to pool the 

assertions with the belief vector. This alters the contents of the belief vector. The belief 

maintenance system contains a large set of subroutines that implement the intersection 

tableau. There is one subroutine for each belief element number. Given the "place" shown 

in figure 4.5, the belief maintenance system calls the subroutine of the same number. That 

subroutine implements the intersection tableau to combine that place with all of the other 

places in the belief vector.

The belief maintenance system returns the altered belief vector to the control 

mechanism. After the object detector finishes looking for each intrinsic characteristic, the 

control mechanism uses the altered belief vector. The control mechanism either labels the 

area or it selects another frame to be the candidate frame and analysis continues.

4.5 - The Image Processing Interface

The image processing interface is a set of functions that operates directly on the 

image. There are two types of functions. There are functions used to read and write the 

images from disk and there are functions which operate on the image.

4.5.1 - Image Processing Read/Write Functions

These functions read and write images from and to disk. The images are in a 

format tied to the ELAS [NASA] image processing system. Special C functions were 

written to perform the read and write functions. This is because the author does not have 

an ELAS system on the IBM-PC compatible machine used in this research.

An ELAS image is divided into two parts. They are (1) the image header and (2) 

the image data. The image header is 1024 bytes long and contains information such as the 

size of the image, the number of spectral channels, and the x and y spot size of each pixel. 

The format stores the multi-channel image data row by row. The first row of the first 

channel is followed by the first row of the second channel and the first row of the third
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channel. Next is the second row of the first channel, the second row of the second 

channel, and the second row of the third channel and so on.

4.5.2 - Image Processing Operators

The system contains four types of operators. These are (1) Distance Based 

Operator, (2) Histogram Analyzer, (3) Object Detector, and (4) Object Enhancement 

Functions. These operators are basic and simple. They are neither as complex nor as 

capable as the operators described in chapter two. As stated in chapter one, the 

development of low level signal processing operators is not the objective of this dissertation. 

These operators are attached procedures. They are attached or linked to the intrinsic 

characteristic slots of the frame. It is easy to add new operators to the system. This is one 

of the advantages of this computer vision system. Operators produced by other researchers 

can be incorporated into the system.

In the following discussion, please note how the system employs different operators 

looking for different cues at different levels in the hierarchy. There are several advantages 

to this. One of the biggest advantages is the reduction in computational expense. There 

is no reason to use complex, computationally expensive operators to solve simple problems. 

At the highest level of analysis the system uses a histogram analyzer. This is a simple and 

quick operator. It determines the presence or absence of materials (concrete, roofing, 

etc.) by examining the histogram of the area. At the next level of analysis the system uses 

an object detector applied to a reduced resolution image. The reduced resolution image 

used 1 pixel to represent a 4x4 pixel area from the original image. This speeds up 

operation. At the next level down the system again uses an object detector applied to a 

reduced resolution image. The reduced resolution at this level uses 1 pixel to represent 

a 2x2 area in the original image. Again, this speeds up operation and still retains enough 

ability to solve the problem at hand.

Distance Based Operator

The distance based operator calculates the mean gray level of an area and uses this 

to initialize the belief vector. This performs the role of the sub_node_operator in the 

frames. The sub_node_operator generates an initial belief vector when the analysis of an 

area begins. The distance based operator measures the distance from the mean gray level 

of the area to the means of each sub node. It uses this distance to assign a measure of
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Given: N sub nodes
mean = mean gray level of area

1. Calculate distancej = | mean - mean of sub nodej | for i= l,N

2. Set distanceMIN = minimum of distancej for i= l,N
•min = i f°r distancej = distanceMIN

3. Calculate denominator = Sum for i= l,N  of distanceMIN/distancej

4. Set m(THETA) = 0.1 for arbitrary ignorance
m(iMiN) = 0.9/denominator

5. Calculate for i= l,N  i != iMIN
m(i) = (distanceMIN/distancej) * m(iMIN)

Figure 4.10 - Sub Node Operator Algorithm

Figure 4.11 gives an example that demonstrates the operator. The sub node names 

and means come from figure 4.6. The result is that the transportation/navigation sub node 

receives the highest measure of belief. The operator bases the measure of belief given to 

each sub node on the distance from that sub node’s mean to the mean of the area. 0 

receives an arbitrary measure of belief.

Histogram Analyzer

The system uses the histogram analyzer to investigate the intrinsic characteristics of 

an area when the level of analysis is 2. At this level of analysis the system must 

differentiate between culture and landscape. This decision is basic enough that the system 

can use a histogram analyzer.

The histogram analyzer takes the histogram of an area, smoothes it, and then 

examines the peaks in the smoothed histogram. The frame tells the histogram analyzer 

what material should be present. The histogram analyzer looks up the spectral properties
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Node is culture

sub node1 is urban (built up areas) 
mean of sub nodej=90

sub node2 is transportation/navigation 
mean of sub node2=60

sub node3 is landmark/rural features 
mean of sub node3=40

Given mean = 70

1. distance! = | 70 - 90 | = 2 0
distance2 = j 70 - 60 j = 1 0
distance3 = j  70 - 40 j  = 3 0

2. distanceMIN = 10 *min= ^

3. denominator = 10/20 + 10/10 + 10/30 = 11/6

4. m(THETA) = 0.1
m(2) = 0.9 / (11/6) = 0.49

5. m (l) = 10/20 * 0.49 = 0.25 
m(3) = 10/30 * 0.49 = 0.16

Result: m(THETA) = 0.1 m (l) = 0.25
m(2) = 0.49 m(3) = 0.16

Figure 4.11 - Example Sub Node Operator Calculation

of that material (see the description of the spectral information in the next section). These 

spectral properties contain information that reveals what peaks should be in the histogram. 

If the desired peaks are in the histogram, then the material is present in the area of the 

image. The results of the histogram analyzer determine which assertions the belief 

maintenance system will make.

Note the culture and landscape frames at the beginning of Appendix 3. The 

characteristics portions of the frames hold a material name. The histogram analyzer takes
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this name, reads the spectral information for that material, and examines the histogram. 

The culture frame lists asphalt roofing in two spectral channels (the red and the thermal 

IR channels) and aluminum roofing as its characteristics. These materials have unique 

spectral properties that stand out in the histogram.

Object Detector

The most often employed operator is an object detector. Given spectral and spatial 

information, the operator locates and calculates the parameters of the objects. Figure 4.12 

shows the basic algorithm.
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1. Given:
A. Area to analyze
B. Spectral Properties

1. Number of spectral channels for object
2. Gray level thresholds

C. Spatial Properties
1. Limits on size of object
2. Limits on height of object
3. Limits on width of object
4. Limits on width to height ration
5. Limits on principle axis of object

2. Using properties B.l. and B.2. above, threshold the image
into a 1 0 image.

3. Grow regions (see figure 4.13).

4. Compute the principle axis, height, and width of
each region of step 3 (see figure 4.14 for 
principle axis algorithm).

5. Eliminate any region whose parameters fall
outside the limits of C.l. through C.5. above.

6. Results:
List each object giving the area, height, width, 

width to height ratio, and principle axis.
Create an output 1 0 image showing the detected 

objects.

Figure 4.12 - Basic Object Detector Algorithm

Figure 4.13 shows the region growing algorithm of figure 4.12 step 3.
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1. Segment the image (m x n). Assume a picture function
g(i,j) for i= l,m  j= l,n  
g(i,j) = 1 for object

= 0 for background

2. set g_label=2 this is the label value

3. for i= l  to m do 
begin scanning ith row

for j= l  to n do 
begin checking jth element 

stackempty = true 
if g(ij) = 1 then 

begin
label_and_check_neighbor(g(i,j),g_label)
end

while stack_empty = false do 
begin
pop on element (i,j) off the stack 
label_and_check_neighbor(g(i,j),gjabel) 
end

g_label = g jabel + 1 
end of checking j,h element 

end of scanning ith row

procedure label_and_check_neighbor(g(i,j), gjabel) 
begin
g(r,e) = gjabel
check g(R,E) where R = r-l,r,r+ l and E = e-l,e ,e+ l 
if g(R,E) = 1 then 

begin
push (R,E) onto the stack 
stack_empty = false 
end

end procedure label and check neighbor

The procedure label_and_check_neighbor also calculates 
the max and min x and y coordinates of each object found.

Figure 4.13 - Region Growing Algorithm
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Figure 4.14 shows the principle axis calculation of figure 4.12 step 4. The principle 

axis algorithm is from [Castleman].

The formula for the principle axis $ is:

tan(2$) = 2Mn /(M20 - M02) 

where:
fj,n  = Sum over x,y in object [(x - center_x)(y - center_y)]

H20 = Sum over x,y in object [(x - center_x)(x - center_x)] 

fj,02 = Sum over x,y in object [(y - center_y)(y - center_y)] 

center_x = (Sum of x over x,y in object)/(no. of points in object) 

center_y = (Sum of y over x,y in object)/(no. of points in object)

Figure 4.14 - Principle Axis Algorithm

An object descriptor describes each object. Figure 4.15 shows the C structures used 

in the object descriptor. Figure 4.16 shows the object descriptor for the object 041 house 

(single family dwelling). The descriptors express dimensions in feet and angles in degrees.
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struct spectral_structure{ 
short channel; 
short lowthreshold; 
short highthreshold;

};
struct spectral_signature{

char is_a [MAX_NAMELEN GTH]; 
short num_of_channels;
struct spectral_structure spectrum[SPECTRUM_LENGTH];

};

struct spatial_structure{
char is a[MAX NAME LENGTH];
char raaterial[MAX_NAME_LENGTH];
long min_area;
long maxarea;
long min_width;
long max_v/idth;
long min_height;
long max_height;
float m in w to h ra t io ;
float max_w_to_h_ratio;
float minangle;
float max_angle;

};

struct descriptor_structure{
char is_a[MAX_NAME_LENGTH]; 
short num ofchannels;
struct spectralstructure spectrum[SPECTRUM_LENGTH];
long min_area;
long maxarea;
long min_width;
long max_width;
long minheight;
long maxheight;
float min_w_to_h_ratio;
float max_w_to_h_ratio;
float min angle;
float max_angle;

Figure 4.15 - C Structures for the Object Descriptor
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strcpy(d.is_a,"041 house (single family dwelling)");
strcpy(d.material, "roofing");

d.m inarea = 56;
d.max_area = 840;
d.minwidth = 7;
d.max_width = 46;
d.min_height = 11;
d.max_height = 68;
d.min_w_to_h_ratio = 0.3;
d.max_w_to_h_ratio = 1.0;
d.minangle = -90.0;
d.max_angle = 90.0;

Figure 4.16 - Object Descriptor for 041 house (single family dwelling)

Figure 4.16 clearly shows the separation of spectral and spatial information in the 

object descriptor. The material slot ("roofing" for this example) contains the spectral 

information. The remaining slots (min_area down though max_angle) contain the spatial 

information. The descriptor expresses the spatial information in feet. Therefore, this 

information will not change from image to image (an image contains a header that allows 

the system to transform feet to pixels).

The only portion of the knowledge base that changes from image to image is the 

spectral information. This may change if you obtain different images from different 

scanners and under different atmospheric conditions. Nevertheless, the system keeps this 

changeable information in one, easy to find, and easy to modify location.
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strcpy(s.is_a, "roofing"); 
s.num_of_channels = 1;
s.spectrum[0].channel = 2;
s.spectrum[0].low_threshold = 185;
s.spectrum[0].high_threshold = 255;

Figure 4.17 - Spectral Information for "roofing" Material

Figure 4.17 shows the spectral information for the "roofing" material for the primary 

image (photographs 1, 2, and 3). The system used different spectral information for the 

images of photographs 7, 8, and 9. Each new image required modifications to the spectral 

knowledge base. The spatial information did not change. Appendix 5 lists the object 

descriptors used in the system. Appendix 6 lists the spectral information used for the first 

image (photographs 1, 2, and 3).

The object detector can function at different resolutions. When the level of analysis 

is 3, the object detector uses a reduction in resolution of four, i.e. 1 pixel represents a 4x4 

area of pixels in the full resolution image. Photograph 4 shows the same channel as 

photograph 2 with a reduction in resolution of four. When the level of analysis is 4, the 

object detector uses a reduction in resolution of two, i.e. 1 pixel represents a 2x2 area of 

pixels in the full resolution image. Photograph 5 shows the same channel as photograph 

2 with a reduction in resolution of two.

Object Enhancement Functions

The object enhancement functions are a set of functions used to enhance the 

output of the object detector. The system uses them to improve the accuracy and 

presentability of the object detector output. The system uses different functions depending 

on the type of object the object detector processes. There are three uses for them. The 

uses are (1) with buildings, (2) with roads, and (3) with sidewalks.

The enhancement used with buildings fills them out to their actual edges. The 

object detector uses spectral qualities of the buildings to threshold and merge the pixels 

into a building. There are, however, several problems in this process. The biggest problem 

is the shadows on the rooftops of buildings. These shadows distort the spectral properties
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of the buildings and the object detector output often yields only half a building. The 

system attempts to compensate for this by using several object enhancement functions. The 

most important of these is an edge detector. The system uses an edge detector known as 

the Kirsch operator [Levine]. It is a compass gradient operator. It convolves eight 

different 3x3 masks with each pixel in the area. Figure 4.18 shows the eight convolution 

masks. This is a computationally expensive edge detector, but it is used sparingly and is 

worth the expense.

Directions 
7 0 1
6 x 2  
5 4 3

0 direction mask 4 direction mask
5 5 5 -3 -3 -3

-3 0 -3 -3 0 -3
-3 -3 -3 5 5 5

1 direction mask 5 direction mask
-3 5 5 -3 -3 -3
-3 0 5 5 0 -3
-3 -3 -3 5 5 -3

2 direction mask 6 direction mask
-3 -3 5 5 -3 -3
-3 0 5 5 0 -3
-3 -3 5 5 -3 -3

3 direction mask 7 direction mask
-3 -3 -3 5 5 -3
-3 0 5 5 0 -3
-3 5 5 -3 -3 -3

Figure 4.18 - Convolution Masks for Kirsch Edge Detector

The following figures lead through the process of enhancing the buildings detected 

by the object detector. These examples are from the lower right hand corner of the image. 

Figure 4.19 shows the raw output of the object detector (the remainder of the figures in 

this chapter are at the end of the chapter). The operator did detect the buildings, but the 

edges are rough. Figure 4.20 shows the output of the Kirsch edge detector. This is also 

rough. Note the edge running through the middle of one of the buildings. This is the
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dividing line of the roof caused by a shadow. There are edges in this figure that do not 

relate to buildings. The next step will eliminate these.

Figure 4.21 shows the result of overlaying the output of the object detector with 

that of the edge detector. This is still incomplete, but it smoothes out most of the edges 

from the object detector. It still has several edges produced by the edge detector that are 

not related to the buildings. Therefore, the next step is to remove these edges. An 

operator takes the pixels produced by the edge detector and merges them with the output 

of the object detector. If an edge pixel is adjacent to an object pixel, then the operator 

changes the edge pixel to an object pixel. The is an iterative operator that runs over and 

over until there are no more edge pixels to convert to object pixels. After this operation 

finishes, the operator eliminates the remaining edge pixels that were not converted to object 

pixels. Figure 4.22 shows the result of this. The buildings are almost complete.

The final enhancement operation removes the holes inside the buildings. This 

operator looks at zero pixels and counts the number of non-zero neighbor pixels. If this 

count is greater than a threshold value, the operator changes the zero pixel to a non-zero 

pixel. Figure 4.23 shows the final result. This is a definite improvement over figure 4.19.

The enhancement used with roads performs the operations used with buildings and 

it also separates the roads from sidewalks. Roads and sidewalks have the same spectral 

intensities. Therefore, the object detector tends to join the two objects. Figure 4.24 shows 

the output of the object detector. This shows sidewalks as roads. The first object 

enhancement function removes the sidewalks from the roads by rejecting parts of the 

detected object that are "thin." It does this by examining each non-zero pixel and the 

surrounding pixels. It counts the number of non-zero pixels in the 12 foot by 12 foot area. 

If this count is less than a threshold, then the pixel under examination is part of a thin 

object and it is set to zero. Figure 4.25 shows the result of this operator. The sidewalks 

are gone. The operator also thinned the road a small amount.

Next, the system uses the Kirsch edge detector mentioned earlier. Figure 4.26 

shows the result of the edge detector. This shows edges of the road and also edges not 

associated with the road. Figure 4.27 shows the result of overlaying the output of the 

object detector with the edge detector. This fills out some of the road edges the previous 

operator thinned. Figure 4.27 also shows unwanted edges that are not related to the road.
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The next step must remove them. Figure 4.28 shows the final result of road enhancement. 

The final operator merged the output of the edge detector with that of the object detector. 

This operator eliminated edge detector pixels that were not adjacent to object detector 

pixels. It is the same operator described earlier that operated on the buildings to produce 

figure 4.22. Figure 4.28 gives an accurate representation of the road.

The final usage of enhancement functions is with sidewalks. As stated earlier, the 

spectral properties of roads and sidewalks are the same. The object detector joins the two 

so the enhancement functions must separate them. Figure 4.29 shows the output of the 

object detector. This is the same as figure 4.24.

Eliminating roads from sidewalks is similar to eliminating sidewalks from roads. An 

object enhancement function rejects parts of the sidewalk and road object that are "wide." 

The function looks at each non-zero pixel and the surrounding pixels. It counts the 

number of non-zero pixels in the 12 foot by 12 foot neighborhood. If the number is 

greater than a threshold, then the pixel under investigation is part of a "thick" object and 

is set to zero. Figure 4.30 shows the results of this function. This is the final output for 

the sidewalks. This is an accurate depiction of the sidewalk.
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Figure 4.19 - Raw Output of the Object Detector (Building Example)
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Figure 4.20 - Output of Kirsch Edge Detector (Building Example)
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Figure 4.21 - Overlaying the Object Detector and Edge Detector Outputs (Building 
Example)
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Figure 4.22 - Result of Removing Non-Object Pixels (Building Example)
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Figure 4.23 - Final Result of Building Object Enhancement (Building Example)
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Figure 4.24 - Raw Output of the Object Detector (Road Example)
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Figure 4.25 - Sidewalks Removed from Roads (Road Example)
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Figure 4.26 - Output of Kirsch Edge Detector (Road Example)
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Figure 4.27 - Overlaying the Object Detector and Edge Detector Outputs (Road Example)
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Figure 4.28 - Final Result After Removing Non-Object Pixels (Road Example)
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Figure 4.29 - Raw Output of the Object Detector (Sidewalk Example)
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Figure 4.30 - Final Result After Removing Non-Object Pixels (Sidewalk Example)



5 - Discussion of Approach

This chapter takes a close look at the approach proposed in this dissertation. Two 

vastly different types of images were examined successfully. This demonstrates the approach 

and system can analyze aerial photographs. This chapter closes with a section discussing 

the advantages this approach has over other approaches and systems. That section points 

out several unique abilities of this system.

5.1 - Examples of Image Analysis

The analysis of an image proceeds in a raster scan of 100x100 areas. The first area 

analyzed is in the upper left corner of the image. The next area is to the right of the first 

and so on. Figure 5.1 shows this. This figure shows how the system divides a 500x500 

pixel image into 100x100 pixel areas. It also shows them numbered in order of analysis. 

The system analyzes the first area completely (it works its way down through the hierarchy 

and then finds the low level objects) before moving on to the second area and so on until 

it finishes the entire image. Analysis only works on 100x100 pixels at a time. This is a 

limitation of the compiler, personal computer technology, and operating system. The 

TDBU software uses an array of short type (8 bits per pixel) for the images. Because of 

the 64K byte limit on a single item of data, it is not practical to have arrays larger than 

100x100. Therefore, the system restricts image analysis to 100x100 areas. The limitation 

had a major influence on the current implementation of the system. The 100x100 areas 

hold only a single type of area, i.e. they hold only an apartments area or only a wooded 

area but not both. If the limitation were not present, the system would analyze the entire 

512x512 image at once. This would mean there would be more than one type of urban 

area in the image being analyzed. The basic structure of the system would not change. 

The implementation details, however, would change drastically. The system would have to 

look at cues from the entire image and then work to partition the image into naturally 

bounded areas, i.e. separate the housing areas from the wooded areas. This would be a 

challenging but welcome problem and will be addressed in the future.

Photograph 6 shows the final results of the analysis of the images shown in 

photographs 1, 2, and 3. Photographs 10, 11, and 12 show the results of analysis of the 

images in photographs 7, 8, and 9. These are the result of the combination top-down and
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Figure 5.1 - Image Analysis Proceeds in a Raster Scan of 100x100 Pixel Areas
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bottom-up processing approach applied throughout the levels of the DMA hierarchy. They 

are deceptive in that they appear to be the result of a simple object detector. They are 

the result of the system working its way down through the hierarchy until it reaches either 

the commercial/residential or woodland nodes. The object detector locates the final low 

level objects. The system could have stopped analysis of the areas in the image at any 

desired level. If the user desired analysis to the first level, then the system would have 

labeled each area culture or landscape as shown in figure 5.2. If the user desired analysis 

to the second level, then the system would have labeled each area urban or phytography as 

shown in figure 5.3. If the user desired analysis to the third level, then the system would 

have labeled each area commercial/residential or woodland as shown in figure 5.4.
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Figure 5.2 - Image Analysis to the First Level of the Hierarchy
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Figure 5.3 - Image Analysis to the Second Level of the Hierarchy



90

commercial/
residential

commercial/
residential

commercial/
residential

commercial/
residential

commercial/
residential

commercial/
residential

commercial/
residential

commercial/
residential

commercial/
residential

commercial/
residential

woodland commercial/
residential

commercial/
residential

commercial/
residential

commercial/
residential

woodland commercial/
residential

woodland commercial/
residential

commercial/
residential

woodland commercial/
residential

woodland woodland commercial/
residential

Figure 5.4 - Image Analysis to the Third Level of the Hierarchy
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In photograph 6, the small blocks are buildings. The system correctly labeled them 

as 041 house (single family dwelling). The larger rectangular blocks are larger buildings. 

The system correctly labeled them as 040 apartments/motel. The large areas are woods and 

the system correctly labeled them as 200 deciduous. The roads are 069 primary road (dual 

lane, hard surface) and the sidewalks are 097 footpath/trail.

The residential area in the lower right hand corner of photographs 1, 2, and 3 will 

serve as an example of the analysis process. The first level of analysis labels the area as 

culture. This is because data-driven and goal-driven analysis finds man made materials. 

These man made materials differentiate between culture and landscape. Figure 5.5 shows 

this situation. The lower right hand corner of figure 5.5 gives a sketch showing houses, 

carports, sidewalks, and streets.
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Figure 5.5 - First Level of Analysis
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At the beginning of analysis, the TopFram e or label was world and the choice for 

the next label was between culture and landscape. The sub node operator pointed to 

culture as the Candidateframe. Therefore, the goal-driven investigation of the area used 

the intrinsic characteristics of culture. Figure 5.6 shows the intrinsic characteristics of 

culture. These are three man made materials. The histogram analyzer (described in section 

4.5.2) takes these materials, looks up their spectral properties, and looks for the peaks of 

those properties in the smoothed histogram. The histogram analyzer detected these peaks 

in the smoothed histogram of the area. The presence of these peaks altered the belief 

vector in favor of culture. The system labeled the area culture.

The frame.is_a is:
-> culture 

The frame.is_part_of is:
-> world 

The frame.goal_of_analysis is:
-> region label 

The frame.level in tree is ->2

characteristic[0] is -> roofing 
characteristic[0] function is -> histogram

characteristic^] is ->2roofing 
characteristic!^ 1] function is -> histogram

characteristic^] is -> aluminum 
characteristic^] function is -> histogram

Figure 5.6 - Intrinsic Characteristics of the culture Frame

The context makes the decision process simple. Expectations direct the operators 

to look for specific properties. Selective attention limits the processing to only the 

necessary parts of the area.

The first operator, an initial "segmentation," gave an interpretation. This 

interpretation directed the second segmentation. The second segmentation gave a second 

interpretation. This, when combined with the first interpretation, gave a final
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interpretation. The segmentation and interpretation processes worked together step by step 

through the analysis. This is top-down and bottom-up processing.

The next level of analysis labels the area urban (built up areas). Figure 5.7 shows 

this situation. At the start of analysis the Topfram e was culture and the choices were 

urban (built up areas), transportation/navigation, and landmark/rural features. The sub node 

operator attributes more belief to urban (built up areas) than to transportation/navigation 

and landmark/rural features. The Candidate_frame becomes urban (built up areas) and goal 

driven analysis begins with the intrinsic characteristics of urban (built up areas). Figure 5.8 

shows the intrinsic characteristics of urban (built up areas). These are simple, generic 

objects found in an urban area and neither in a transportation network nor a rural area. 

Since urban (built up areas) is on level three of the hierarchy, the object detector works 

on a reduced resolution image. The system reduces the resolution by a factor of four, i.e. 

the system represents a 4x4 pixel area with 1 pixel.
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Figure 5.7 - Second Level of Analysis
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The frame.isa is:
-> urban (built up areas)

The frame.is_part_of is:
-> culture 

The frame.goalofanalysis is:
-> region label 

The frame.level_in_tree is ->3

characteristic[0] is ->bl_building 
character is tic[l] is ->pl_parking_lot 
characteristic^] is ->gl_garage

Figure 5.8 - Intrinsic Characteristics of the urban (built up areas) Frame

The object detector located the objects. Appendix 7 section 1 lists the output of 

the object detector. The presence of the objects altered the belief vector in favor of urban 

(built up areas). The system labeled the area urban (built up areas).

The next level of analysis labels the area commercial/residential. Figure 5.9 shows 

this situation. At the start of the analysis the Top_Frame was urban (built up areas) and 

the choices were industry/utility, commercial/residential, and institutional!governmental. The 

sub node operator attributes more belief to commercial/residential. The Candidate_frame 

becomes commercial/residential and the system investigates the area using the intrinsic 

characteristics of commercial/residential.
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Figure 5.9 - Third Level of Analysis
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Figure 5.10 shows the intrinsic characteristics of industry/utility, 

commercial/residential, and institutional/governmental. Note that industry/utility has sub nodes 

below it in the hierarchy, but commercial/residential and institutional/governmental do not. 

These two, commercial/residential and institutional/governmental, are at the bottom of the 

hierarchy (level in tree is 99) and their sub nodes are individual objects.
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The frame.is_a is: 
->industry/utility 

The frame.is_part_of is:
->urban (built up areas)

The frame.goal_of_analysis is:
-> region label 

The frame.level_in_tree is ->4

characteristic^] is ->b4_building 
characteristic!!] is ->dl_disposal

The frame.isa is:
->commercial/residential 

The frame.is_part_of is:
->urban (built up areas)

The frame.goal_of_analysis is:
-> objects label 

The frame!evel_in_tree is ->99

characteristic[0] is ->040 apartments/hotel 
characteristic!!] is ->041 house (single family dwelling)

The frame.is a is:
->institutional/govemmental 

The frame.is_part_of is:
->urban (built up areas)

The frame.goal_of_analysis is:
-> region label 

The frame.level in tree is ->99

characteristic[0] is ->045 governmental administration building 
characteristic!!] is ->046 military admin/operations building

Figure 5.10 - Intrinsic Characteristics of Frames industry/utility, commercial/residential, and 
institutional/governmental
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Using the intrinsic characteristics of commercial/residential, the object detector 

located several instances of 041 home (single family dwelling). Appendix 7 section 2 lists 

the output of the object detector. This altered the belief vector in favor of 

commercial/residential. The system labeled the area commercial/residential.

The final level of analysis finds and labels the objects or leaf nodes in the hierarchy. 

Figure 5.11 shows this situation. As discussed earlier, at this point the system departs from 

the top down traversal of the hierarchy. The system used the leaf nodes of 

commercial/residential and the leaf nodes of the other frames on the same level of the 

hierarchy. Figure 5.12 shows these objects. In this part of the image, the system found 041 

house (single family dwelling), 069primary road, and 097footpath/trail. Appendix 7 section 

3 lists the output of the object detector. At this final level, the object detector also inserts 

the objects into the output image. Photograph 6 shows this output image. This explains 

the appearance of photograph 6. It is the final output of the object detector at the lowest 

level of analysis.
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Figure 5.11 - Fourth Level of Analysis
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The system has the ability to move up and down the branches of the hierarchy. 

The above example was a simple downward traversal of the hierarchy. There are, however, 

cases where the labeling process is not so simple. Suppose the analysis was at the culture 

node. If the first step data-driven operator pointed to transportation/navigation, then it 

would become the candidate node. Analysis would move down to transportation/navigation. 

The system would use the intrinsic characteristics of transportation/navigation to investigate 

the area closely. The close investigation could produce evidence unfavorable to 

transportation!navigation. In that case the analysis would go back up to culture and then 

down to another sub node such as urban (built up areas). The system would then 

investigate the area using the intrinsic characteristics of urban (built up areas). Depending 

on the evidence returned at this point, the system could decide to label the area urban 

(built up areas) or it could move back up to culture and then down to another sub node.

It is important to realize that the system also labels areas of woods and finds the 

trees. The large white sections of photograph 6 are wooded areas. The system correctly 

analyzed these areas as woodland and then labeled the patches of trees. The reader should 

not be mislead by the title of this dissertation. "Urban" areas are not limited to just 

housing areas. A city is an urban area. A city usually has parks, woods, factories, and 

transportation networks as well as residential areas. Photographs 1, 2, and 3 show an urban 

area that has single family homes, apartments, and woods. The system correctly finds the 

commercial/residential areas and the woodland areas.

The areas in the lower left hand corner of photographs 1, 2, and 3 serve as an 

example of labeling a woodland area. Figure 5.13 shows the hierarchy traversal for a 

wooded area. The first level of analysis labels the area landscape. The data-driven and 

goal-driven analysis could not find any man made materials. At the beginning of analysis, 

the Top_Frame was world and the choice was between culture and landscape. The first step 

operator pointed to landscape. Closer investigation, at this level the histogram analyzer, 

agreed with this and the system labeled the area landscape.
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Figure 5.13 - Hierarchy Traversal of Wooded Area
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The next level of analysis labeled the area phytography. At the start of analysis at 

this level, the Top_Frame was landscape and the choices were hydrography, physiography, 

and phytography. The first data-driven operator pointed to phytography. The careful, goal- 

driven analysis found wooded type objects (various foliage). The combination of these 

processes caused the system to label the area phytography.

The next level of analysis labeled the area woodland. At the start of analysis at this 

level, the Top_Frame was phytography and the choices were cropland, rangeland, woodland, 

and wetland. Again the analysis began with a first, data-driven operator and ended with 

careful investigation by a goal-driven object detector. The result was the system labeled the 

area woodland.

Now the system is at the bottom of the label hierarchy. The final step is to have 

the object detector locate the individual objects pertaining to this type of area. The 

woodland node of the hierarchy is node 29 in appendix 2. The individual objects below it 

are different types of trees. The system directs the object detector to look for these. The 

object detector found a large area of deciduous trees. This is the final output of the 

system for the woodland areas.

The system also analyzed the images shown in photographs 7, 8, and 9. These 

images came from a color aerial photograph. A Hewlett-Packard ScanJet Plus desktop 

scanner produced the separate images by scanning separate areas of the original 

photograph. The scanner produced 256 gray levels. The spectral properties of the 

different areas were vastly different from the 3 channel image described earlier and slightly 

different from each other. Because of this, the spectral part of the knowledge base was 

changed. That, however, was the only change required in the entire system.

Photograph 10 shows the results of analysis of photograph 7 (note, in photographs 

10, 11, and 12 the black objects are 041 house (single family dwelling), the dark gray objects 

are 097footpath/trail, and the light gray objects are 069 primary road). The system correctly 

labeled the areas as commercial/residential. The object detector labeled the homes, 

sidewalks, and roads.

Photograph 11 shows the results of analysis of photograph 8. The system correctly 

labeled the areas as commercial/residential. The object detector labeled the homes,
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sidewalks, and roads. The object detector incorrectly labeled four homes as sidewalks. This 

shows the weakness of the object detector currently used by the system. Again, developing 

accurate low level operators is not the purpose of this dissertation.

Photograph 12 shows the results of analysis of photograph 9. The system correctly 

labeled the areas as commercial/residential. The object detector labeled the homes, 

sidewalks, and roads.
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039 commercial buildings
040 apartments/hotel
041 house (single family dwelling
042 mobile homes
043 barracks
044 display sign (large billboard, highway sign)

045 governmental administration building
046 military admin/operations building
047 capitol building
048 hospital
049 prison
050 palace
051 museum
052 observatory
053 church/tabernacle
054 mosque
055 cemetery building

056 single track railway
057 double track railway
058 multiple track railway
059 RR yard/siding
060 tramway/inclined railway
061 monorail
062 RR storage/repair building
063 RR terminal building
064 RR station/depot
065
066 roundhouse

067 multi lane, divided (grass median) highway
068 multi lane highway
069 primary road (dual lane, hard surface)
070 secondary road (dual lane, loose/dirt surface)
071 trail/track (one lane)
072 toll gates
073 cloverleaf/interchange
074 garage, service/repair facilities (landmark)

Figure 5.12 - Sub Nodes of the commercial/residential frame
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5.2 - Advantages of Approach

A key question in the development of this approach and system is "given an aerial 

photograph of a known urban area, what is the difference between this approach and 

system and other systems?" The following pages discuss the advantages that this approach 

and system has over other systems. These were mentioned briefly in chapter 1.

A major advantage is that each point in the hierarchy has implicit knowledge 

imbedded in it because of the context and framework of the hierarchy. The amount and 

power of this knowledge cannot be underestimated. This knowledge frees the low level 

operators from worrying with unnecessary details. For example, suppose the system was at 

the urban (built up areas) node (refer to figure 5.14) and it was looking for linear features. 

The linear features here would be sidewalks and roads. The linear feature detector would 

not consider things such as streams, runways, or rows of crops. This would free the 

detector from large amounts of details and complications. In simple terms, if the linear 

feature detector was a rule-based operator employing 10,(XX) rules, then it could eliminate 

9000 of those rules because of the implicit knowledge imbedded in the position in the 

hierarchy.

Some of the major advantages to this approach are in the area of reducing the 

computational complexity. This is to be expected since a key to the approach is the 

hierarchy of labels. In general, hierarchies reduce the complexity of problems so an 

approach based on a high level hierarchy would have reduced complexity.

First, the system uses different operators at different levels of analysis. At the top 

level of analysis, the system uses a histogram analyzer. This is a simple and quick operator 

yet it is sufficient for the task at that level. At the next level of analysis the system uses 

an object detector working on a reduced resolution image. At this level each pixel 

represents a 4x4 pixel area in the original image. Therefore, the system reduces the size 

of the problem by one fourth. At the next level of analysis the system uses an object 

detector working on a reduced resolution image. At this level each pixel represents a 2x2 

pixel area in the original image. Therefore, the system reduces the size of the problem by 

one half.

A major reduction in complexity comes in the way in which the system uses the
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Dempster-Shafer (D-S) theory of evidence. The D-S theory has a number of advantages 

as described in section 3.3. There are, however, computational problems with the D-S 

theory. Simplifications exist if the hypotheses are in a hierarchy. This approach uses the 

hierarchy of labels (hypotheses) and takes advantage of these simplifications. Therefore, 

the number of meaningful hypotheses is 247 (the number of nodes in the hierarchy). If 

the hierarchy were not used, a flat set of final hypotheses would be required. There would 

be 29 singleton hypotheses and 229 or 536,870,912 meaningful hypotheses. The combination 

of two simple assertions would require this many floating point multiplication, addition, and 

division operations. This reduction in complexity simply comes from the use of the 

hierarchy.

Another reduction in complexity comes from the object models used by the object 

detector. In the higher levels of the hierarchy the system uses generic object models. At 

the lowest level of analysis the system uses specific objects such as 040 house (single family 

dwelling) or 041 apartments/motel. In the higher levels the system uses generic objects such 

as bl_building, b2_building, or ll_lawn. These are simple, flexible models that do not 

require a high degree of accuracy or complexity from the operators.

An advantage to this approach is it can label all types of urban areas - not just one. 

It can label areas such as woods, residential, airports, and transportation networks. The 

system demonstrated this in chapter five. It successfully analyzed a multi-spectral image 

containing three types of urban areas - a single family home area, an apartments area, and 

a wooded area. It also successfully analyzed three other images containing a fourth type of 

urban area - a house trailer park. The current implementation, however, cannot analyze 

all types of areas given in the DMA hierarchy. The limiting factor is the availability of 

images with which to experiment. Other research systems could make the same claim. If 

they were given an image, they could write new code and adapt their system to the new 

image. There is a major difference in this point. The system in this dissertation has a 

framework for the entire world (at least as seen by the Defense Mapping Agency). The 

hierarchy of frames and labels is all inclusive. The frames for icebergs and railroad yards 

haven’t been created, but places are available for them. Other research systems are built 

to label the objects in a known image type. They would need new operators and models 

for each particular image.
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The next two unique abilities of the approach concern working on real world 

problems involving hundreds and thousands of images. These abilities are (1) stopping 

analysis at any level in the hierarchy and (2) finding target type images and eliminating non

target images.

This approach can stop its analysis at any level in the DMA hierarchy. The system 

can label an area with any intermediate node. For example, if the desired level of analysis 

is two, the system would label an area culture or landscape (refer to figure 5.14). If the 

desired level of analysis is three, the system would label the area urban (built up areas), 

transportation/navigation, landmark/rural features, hydrography, physiography, or phytography.

This ability is crucial for automated aerial photograph analysis systems. Suppose 

you were given 10,000 images on a magnetic tape and were required to label them to level 

3 (listed above). This problem requires neither a set of complex, state of the art operators 

nor a costly, expert, human photointerpreter. The approach is uniquely suited for this 

practical, real world task. It can quickly work its way down to this level of the hierarchy 

using the simple histogram analyzer and the object detector employing a reduced resolution.

This approach can quickly locate target type images and eliminate all non-target 

images. For example, suppose a special interest group desires to find the 

aeronautical/aerospace images from a group of 10,(XX) images (again refer to figure 5.14). 

Using this approach, the system would start at the world node and work its way down 

through the hierarchy in each image. If the system branches down the landscape side of 

the hierarchy, then it would eliminate that image at this point. Further processing on that 

image is not necessary. If the image was classified as culture, then the processing would 

continue. If the next classification was urban (built up areas) or landmark/rural features, 

then the system would stop processing the image at that point. The calculations performed 

to this point are quick and simple. The effort expended to eliminate non-target images is 

small. Using these techniques, the system could quickly find the target images and 

eliminate the non-target ones. It could work through thousands of images in short order.

Other systems cannot perform this type of task this quickly and cheaply. If a system 

was designed to detect runways, airplanes, and buildings in an airport, it would have a long, 

difficult time eliminating non-airport images. If it was given a forest image, it would work 

for hours on the hundreds of confusing line segments found in the forest image. It would
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have such problems because researchers tailor the operators in airport analysis systems to 

the regular, straight, connecting lines in airport images.

Another advantage of this system is the ease of adding operators from other 

research efforts. All of the operators are linked to the system as attached procedures. 

They are attached to the frame that needs them. Each frame at each level of the hierarchy 

has different goals and needs. They can each have a different operator attached to meet 

these goals and needs. The commercial/residential frame needs operators that can find 

houses, sidewalks, yards, and streets. The woodland frame needs texture operators to 

indicate the texture of a wooded area.

Since the operators are attached procedures, it is easy to attach or remove them 

from the system. Section 4.2 discussed this process. The major problem in the process is 

obtaining research operators in the form of portable, usable C language functions. Most 

researchers do not develop their operators in this manner.

Another advantage to the approach is that it strongly couples the segmentation and 

interpretation processes in the high level analysis. Segmentation and interpretation cannot 

be separated. The current state of the art in segmentation operators cannot segment the 

image data well enough for interpretation systems to work with their results. The 

interpretation process must guide and direct the segmentation operators, use their results, 

and then direct them again. The system in this dissertation uses such an idea. Its basis is 

the perceptual cycle.

A major advantage to this system is it is portable. It can move easily from image 

type to image type and from computer system to computer system. It can move from image 

type to image type because the knowledge is located in a separate, easy to modify portion 

of the knowledge base. The spectral information is the relative reflectance of the materials 

in the images. This information may change from image type to image type. It changes 

because of different types of scanners and atmospheric conditions. The two vastly different 

types of images analyzed in chapter five demonstrated how easy it is to move the system 

from one image type to another.

The system is written in the C language. This is a common, inexpensive language 

that is standard in most computing environments. Many research systems are written in 

custom languages or using rare, hard to find, and expensive artificial intelligence dialects.
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The system is not tied to a host image processing software system. Therefore, it can be 

ported to any computer system with a C compiler.

This final advantage may be the most important because it makes the system 

something that the vast majority of research systems are not - practical. The system was 

created in a practical environment with real economic and computer constraints. The author 

was forced to move the system among computers, compilers, and operating systems. These 

moves made the author consider problems and constraints that usually do not enter into 

a dissertation project.



6 - Conclusions

This dissertation presented a new approach to analyzing aerial photographs and 

described a system created around this approach. There are several different problems in 

the analysis of aerial photographs. These problems include ambiguities, guiding low level 

operators, processing only the salient features, linking operators together to help themselves 

and other operators, explaining the results of less than perfect operators, and tying the 

system together with an overall theme. Ambiguities in aerial photograph interpretation 

systems relate to the explosion of possible objects in possible scenes. The system must 

select and guide low level operators. The system must apply them to the image only if they 

are appropriate for the given situation. The operators must process certain salient features 

that contain the minimum information required to recognize something. The system must 

link the different operators together to feed information to each other and direct one 

another. The low level operators need to work with the understanding portion of the 

system to improve the accuracy of their results.

This dissertation presented three basic ideas as the foundation for a new analysis 

approach. The ideas are (1) the use of selective attention, expectations, context, and the 

perceptual cycle, (2) analyzing the image through a hierarchy of increasingly specific labels, 

and (3) the interplay between the segmentation and interpretation processes. These 

concepts have been expressed in many ways in the perceptual psychology, artificial 

intelligence, and computer vision literature. Nevertheless, they have never been tied 

together as the basis for an approach to analyzing aerial photographs.

Humans use selective attention. We direct our attention to only those items which 

interest us and ignore all else. Expectations play an important role in perception because 

they guide our attention. Context works closely with expectations in driving human 

perception. The context of a situation limits the number of alternatives and, thereby, 

reduces the difficulty in decision making. Humans perceive things using the perceptual 

cycle. This is a simple feedback system. The point is that knowledge of the world directs 

our exploration. The findings modify the knowledge which then directs the exploration in 

a modified manner.

A key to the overall approach is the hierarchy of labels. The hierarchy of labels 

allows the system to work gradually to the point where it knows the type of scene in the

113
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image. At this point, it is ready to identify the pertinent objects. Each node in the 

hierarchy has only a few possible choices. This greatly reduces the complexity of the 

problem. It also reduces the required capabilities of the system.

These concepts drove the creation of a computer vision system. The computer 

vision system created using this approach is simple and modular. It has four basic parts: 

(1) the knowledge base, (2) the belief maintenance system, (3) the control mechanism, and 

(4) the image processing interface. The control mechanism implements the cycle and the 

interpretation part of the interpretation and segmentation interplay. The knowledge base 

is the hierarchy and also imbeds the ideas of expectations, selective attention, and context. 

The belief maintenance system works with the control mechanism to draw conclusions from 

the analysis. The image processing interface is the segmentation portion of the 

segmentation and interpretation interplay.

The approach described in this dissertation and the system created herein have 

several advantages over other systems. A major advantage is the implicit knowledge 

imbedded in each point in the hierarchy. This frees low level operators from trying to solve 

problems that are more difficult than exist. Among other advantages is the reduction in 

the computational complexity of several aspects of the system. The system is based on a 

hierarchy of labels. Hierarchies inherently reduce the complexity of problems. Therefore, 

it is no surprise that the hierarchy brings several advantages. The system uses different 

operators at different levels of analysis. The operators at the higher levels of analysis are 

simple and quick yet effective. The Dempster-Shafer theoiy of evidence receives several 

simplifications from the use of a hierarchy that reduces the computations. In this case the 

reduction is from approximately 500,000,000 to 247.

Before closing, a few words must be directed towards the DMA hierarchy. This 

hierarchy was chosen for this project back in 1986. Several weaknesses surfaced as the 

project progressed. The greatest weakness is at the bottom of the hierarchy. Suppose the 

system labels an image as commercial/residential (see node 11 in Appendix 2). You would 

expect to find objects such as roads, yards, trees, homes, offices, sidewalks, etc. in this area 

and spatial relationships among the objects. These would help describe the objects and 

help the low level operators find them. You would also expect to find these objects under 

the commercial/residential node in the hierarchy. This, however, is not the case. As was
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pointed out in chapter four, the system must break from the DMA and reach out across 

the hierarchy at this point. This introduced an unwanted inconsistency into the system.

As stated at the beginning, analyzing aerial photographs is beyond the scope of a 

single dissertation. There is much work yet to be done. The future work concerns more 

images, better computing resources, operators from other researchers, work on the belief 

maintenance system, modifications to the DMA hierarchy, and the inclusion of spatial 

relationships in the frames.

The system needs low level operators from other researchers. One of the 

advantages of this system is that it can accept new operators easily - if they are portable 

operators. If the operators are not portable, then this author must work on them either 

as sent by other researchers or by writing them from descriptions in the literature. Creating 

low level operators was not the goal of the dissertation. The system’s current operators are 

not the best. Incorporating other operators can only improve the system and also prove 

the flexibility of this system.

The belief maintenance system needs expanding. The current system implements 

the D-S theory only for those portions of the hierarchy used in the example images. Code 

must be written for the remainder of the hierarchy. That would be a sizeable programming 

effort (over 10,000 lines of code). Another possibility is to revise completely the manner 

in which the D-S theory is implemented. This would be interesting research into the 

implementation details of the D-S theory.

The DMA hierarchy needs modifications. This dissertation pointed out several 

weaknesses of the hierarchy with the main weakness at the bottom of the hierarchy. 

Modifications would include tying the low level objects in the DMA hierarchy to more than 

one parent. This would allow searching for the objects regardless of the final label for an 

area under investigation. This would remove the inconsistency in the system’s analysis 

algorithm. A major modification would be the inclusion of spatial relationships among the 

low level objects. This is part of the implicit knowledge imbedded in each node in the 

hierarchy. This concept was used in [Harlow, et. al.], but has not yet been incorporated 

into the current system. This would help direct the low level operators and would prevent 

the omission of fuzzy or occluded low level objects in the final results.
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APPENDIX 1 - Photographs

Photograph 1 - Green Channel .5 - .55 /xm Band
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Photograph 2 - Red Channel .65 - .69 fim Band



Photograph 3 - Thermal IR Channel 8.5 - 13.0 jum Band



Photograph 4 - Same Image as Photograph 2 with a Reduction in Resolution of 4
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Photograph 5 - Same Image as Photograph 2 with a Reduction in Resolution of 2



Photograph 6 - Results of Analyzing Photographs 1, 2, and 3



Photograph 7 - Second Example Image
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Photograph 8 - Third Example Image
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Photograph 9 - Fourth Example Image
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Photograph 10 - Results of Analyzing Photograph 7
L e g e n d :
B l a c k  = 0 4 1  h o u s e  ( s i n g l e  f a m i l y  d w e l l i n g )  
D a r k  G r a y  = 0 9 7  f o o t p a t h / t r a i l  
L i g h t  G r a y  = 0 6 9  p r i m a r y  r o a d  
White = background
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Photograph 11 - Results of Analyzing Photograph 8
L e g e n d :
B l a c k  = 0 4 1  h o u s e  ( s i n g l e  f a m i l y  d w e l l i n g )  
D a r k  G r a y  = 0 9 7  f o o t p a t h / t r a i l  
L i g h t  G r a y  = 0 6 9  p r i m a r y  r o a d  
White = background
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Photograph 12 - Results of Analyzing Photograph 9
L e g e n d :
B l a c k  = 0 4 1  h o u s e  ( s i n g l e  f a m i l y  d w e l l i n g )  
D a r k  G r a y  = 0 9 7  f o o t p a t h / t r a i l  
L i g h t  G r a y  = 0 6 9  p r i m a r y  r o a d  
White = background
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APPENDIX 2 - The Defense Mapping Agency Hierarchy

Node Title 

1 world - level 1
culture - see node 2 

landscape - see node 3

2 culture - level 2

part of world - see node 1 
urban (built up areas) - see node 4 

transportation/navigation - see node 5 

landmark/rural features - see node 6

3 landscape - level 2

part of world - see node 1 

hydrography - see node 7 

physiography - see node 8 

phytography - see node 9

4 urban (built up areas) - level 3

part of culture - see node 2 

industry/utility - see node 10 

commercial/residential - see node 11 

institutional/governmental - see node 12

5 transportation/navigation - level 3 

part of culture - see node 2 

railroads - see node 13 

roads - see node 14
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aeronautical/aerospace - see node 15
naval/marine - see node 16

associated transportation features - see node 17

6 landmark/rural features - level 3

part of culture - see node 2 

communication/transmission - see node 18 

storage - see node 19 

agricultural - see node 20 

recreational - see node 21 

miscellaneous - see node 22
7 hydrography - level 3

part of landscape - see node 3 

water - see node 23 

snow/ice - see node 23

8 physiography - level 3

part of landscape - see node 3

exposed soils (surface composition) - see node 25
landforms - see node 26

9 phytography - level 3

part of landscape - see node 3 

cropland - see node 27 

rangeland - see node 28 

woodland - see node 29 

wetland - see node 30
10 industry/utility - level 4

part of urban (built up) areas - see node 4

extraction - see node 31 

processing - see node 32
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power generation - see node 33 

fabrication industry - see node 34 

disposal - see node 35

associated industrial structures - see node 36

11 commercial/residential - level 4

part of urban (built up) areas - see node 4

039 commercial buildings

040 apartments/hotel

041 house (single family dwelling

042 mobile homes

043 barracks
044 display sign (large billboard, highway sign)

12 institutional/governmental - level 4

part of urban (built up) areas - see node 4

045 governmental administration building
046 military admin/operations building

047 capitol building

048 hospital

049 prison

050 palace

051 museum

052 observatory

053 church/tabernacle

054 mosque

055 cemetary building

13 railroads - level 4

part of transportation/navigation - see node 5

056 single track railway

057 double track railway

058 multiple track railway
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059 RR yard/siding
060 tramway/inclined railway

061 monorail
062 RR storage/repair building

063 RR terminal building
064 RR station/depot

065

066 roundhouse

14 roads - level 4

part of transportation/navigation - see node 5

067 multi lane, divided (grass median) highway
068 multi lane highway
069 primary road (dual lane, hard surface)

070 secondary road (dual lane, loose/dirt surface)

071 trail/track (one lane)
072 toll gates

073 cloverleaf/interchange

074 garage, service/repair facilities (landmark)

15 aeronautical/aerospace - level 4

part of transportation/navigation - see node 5

075 runway/taxiway

076 aircraft parking area/apron

077 airport/airbase control tower

078 hangar

079 terminal/base operations building

080 aerospace assembly building

081 missile launch pad/gantry facility

082 engine test cell

083 wind tunnel

084 hellioport



085 seaplane base 

naval/marine - level 4
part of transportation/navigation - see node 5

086 breakwater/jetty

087 wharf/pier/quay

088 dam locks

089 canal locks
090 sea wall

091 ramp/slip/ferry landing

092 dock/dry-dock

093 light ship

094 light house

095 off-shore loading facility

096 exposed wreck

associated transportation features - level 4

part of transportation/navigation - see node 5
097 footpath/trail

098 tunnel

099 underpass

100 ferry

101 aerial cableway/skilift

102 bridge

communication/transmission - level 4

part of landmark/rural features - see node 6 

electrical/electronic - see node 37 

fluid conduits - see node 38

storage - level 4

part of landmark/rural features - see node 6
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tanks - see node 39 

closed storage - see node 40 

open storage - see node 41

20 agricultural - level 4

part of landmark/rural features - see node 6
128 farm buildings (house/shed)
129 barn

130 greenhouse

131 windmill-truss
132 windmill-solid

133 feedlot/stockyard/feeding pen

134 circular irrigation system

21 recreational - level 4

part of landmark/rural features - see node 6

135 racetrack
136 stadium
137 grandstand

138 athletic field

139 ampitheater

140 drive-in theater screen

141 fairground

142 campground/campsite

143 amusement park

144 roller coaster
145 ferris wheel

146 artificial mountain

22 miscellaneous landmarks - level 4

part of landmark/rural features - see node 6
147 ruins

148 fort
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149 observation/lookout tower

150 watermill/gristmill

151 wall
152 fence

153 monument/oblisk

154 arch

155 pyramid

156 castle

157 dam

158 cemetery

159 fish pond/hatchery

160 sewage disposal pools

161 filtration/aeration beds
162 salt pan/evaporators

163 sluice gate 

23 water - level 4
part of hydrography - see node 7

164 sea/ocean (sea state)

165 lake/pond/reservoir

166 river/stream

167 canal irrigation ditch

168 waterfall

169 rapids

24 snow/ice - level 4

part of hydorgraphy - see node 7

170 perennial (permanent) snowfield

171 perennial ice (glacier/ice cap)

172 glacial maraine

173 seasonal ice pack (limits)

174 polar ice pack (permanent)



exposed soils (surface composition) - level 4 

part of physiography - see node 8

175 dry land (bare/barren soil/non-cultivated)
176 open cultivated ground

177 desert sand

178 sand dunes

179 exposed smooth (solid) rock

180 boulder field/lava

181 rock, rough area/region
182 dry lake/salt flat
183 mud/tidal flat

184 wet sand (beach/sand bar)

landforms - level 4

part of physiography - see node 8

185 levee/embankment/fill

186 cut

187 cliff/bluff/escarpment

188 reef shoals/rocks (in water)
189 terrace 

cropland - level 4

part of phytography - see node 9

190 orchard/plantation

191 shelterbelt/hedgerow

192 nursery/grove

193 vineyard

194 crop (cultivated)

195 cranberry bog
196 rice paddy

rangeland - level 4



part of phytography - see node 9

197 herbaceous (grassland)

198 shrub/brush

199 mixed (shrub/brush and grass)

woodland - level 4

part of phytography - see node 9

200 decidous

201 caniferous
202 mixed (decidous and caniferous)

203 mangrove

204 nipa palm 

wetland - level 4

part of phytography - see node 9

205 swamp (trees, brush/shrubs in water)

206 marsh (grass, cat tails, etc in water)
207 peat bog/cuttings

extraction - level 5

part of industry/utility - see node 10

001 quarry

002 sand/gravel/clay pit
003 gas/oil well

004 gas/oil rig with derrick

005 gas/oil rig offshore platform

006 gas/oil rig offshore platform with derrick

007 mine shaft superstructure

008 open-pit/strip mine 

processing - level 5

part of industry/utility - see node 10
009 chemical plant
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010 metal processing plant

011 sewage treatment plant

012 evaporative mining

013 coke plant

014 blast furnace

015 refinery
016 catalytic cracker

017 flare pipe

33 power generation - level 5

part of industry/utility - see node 10

018 hydroelectric power plant

019 thermal power plant

020 transformer yard

021 substation
022 windmotor
023 solar electric panels

024 solar heat panels

34 fabrication industry - level 5

part of industry/utility - see node 10

025 building
35 disposal - level 5

part of industry/utility - see node 10

026 oil sump/sludge pit
027 scrap yard

028 metal ore slag dump

029 tailings/mine dump

030 tailings pond

36 associated industrial structures - level 5



part of industry/utility - see node 10

031 buildings

032 smoke stack

033 conveyor

034 bridge crane

035 rotating crane

036 cooling tower

037 hopper

038 dredge/power shovel/dragline

electrical/electronic - level 5

part of communication/transmission - see node 18

103 microwave communication tower

104 radio/tv antenna tower/mast
105 telephone/telegraph lines

106 power transmission line

107 relay station/communication building 

fluid conduits - level 5

part of communication/transmission - see node 18

108 pipeline (landmark)

109 penstock/flume

110 aqueduct

111 pumping station

tanks - level 5

part of storage - see node 19

112 tank

113 telescoping gasholder (gasometer)

closed storage - level 5

part of storage - see node 19



114 water tower building

115 ordinance storage bunker/mounds

116 grain elevator

117 grain bin

118 upright silo

119 warehouse

120 depot 

open storage - level 5

part of storage - see node 19
121 trench silo

122 mineral pile
123 oil storage pit

124 vehicle storage/motor pool

125 vehicle parking area

126 aircraft storage area

127 ship storage area



APPENDIX 3 - Frames
world Frame

The frame.is_a is:
-> world 

The frame.is_part_of is:
-> nothing 

The frame.goal_of_analysis is:
-> region label 

The frame.level_in_tree is ->1

This frame has 2 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is ->culture

Sub node[0].bel_element_number is 2 
Sub node[0].mean is 88.000000

Sub node[l].is_a is -> landscape

Sub node[l].bel_element_number is 3 
Sub node[l].mean is 44.000000

culture Frame
The frame.is_a is:

-> culture 
The frame.is_part_of is:

-> world 
The frame.goal_of_analysis is:

-> region label 
The fram e.levelintree is ->2

This frame has 3 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is -> urban (built up areas)

Sub node[0].bel_element_number is 4 
Sub node[0].mean is 90.000000

Sub node[l].is_a is -> transportation/navigation

Sub node[l].bel_element_number is 5 
Sub node[l].mean is 60.000000
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Sub node[2].is_a is -> landmark/rural features

Sub node[2].bel_element_number is 6 
Sub node[2].mean is 40.000000

characteristic^] is -> roofing 

characteristic[0] function is -> histogram

characteristic[0].positive_assertion[0].place=2
characteristic[0].positive_assertion[0].belief=0.800000
characteristic[0].positive_assertion[lj.place=l
characteristic[0].positive_assertion[l].belief=0.200000

characteristic[0].negative_assertion[0].place=3
characteristic[0].negative_assertion[0].belief=0.600000
characteristic[0].negative_assertion[l].place=l
characteristic[0].negative_assertion[l].belief=0.400000

characteristicfl] is ->2roofing 

characteristic[l] function is -> histogram

characteristic[l].positive_assertion[0].place=2 
characteristic[l].positive_assertion[0].belief=0.800000 
characteristic[lj.positive_assertion[l].place=1 
characteristic! 1 ].positive_assertion [1 ].belief=0.200000

characteristic[l].negative_assertion[0].place=3 
characteristic! 1 ].negative_assertion [0]. belief=0.600000 
characteristic!l].negative_assertion[l].place=1 
characteristic[l].negative_assertion[l].belief=0.400000

characteristic^] is -> aluminum 

characteristic^] function is -> histogram

characteristic[2].positive_assertion[0].place=2



characteristic[2].positive_assertion[0].belief=0.800000 
characteristic[2j.positive_assertion[l j.place=1 
characteristic[2].positive_assertion[l].belief=0.200000

characteristic[2].negative_assertion[0].place=3 
characteristic[2j.negative_assertion[0j.belief=0.600000 
characteristic [2 j.negativeassertion [ 1 j.place=1 
characteristic[2j.negative_assertion[lj.belief=0.400000

landscape Frame
The frame.is_a is:

-> landscape 
The frame.is_part_of is:

-> world 
The frame.goal_of_analysis is:

-> region label 
The frame.level_in_tree is ->2

This frame has 3 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is -> hydrography

Sub node[0].bel_element_number is 7 
Sub node[0].mean is 180.000000

Sub node[l].is_a is -> physiography

Sub node[l].bel_element_number is 8 
Sub node[l].mean is 100.000000

Sub node[2].is_a is -> phytography

Sub node[2].bel_element_number is 9 
Sub node[2].mean is 50.000000

characteristic[0] is -> roofing 

characteristic[0] function is -> histogram

characteristic[0].positive_assertion[0].place=2
characteristic[0j.positive_assertion[0j.belief=0.700000
characteristic[0].positive_assertion[l].place=l



characteristic[0].positive_assertion[l].belief=0.300000

characteristic[0].negative_assertion[0].place=3 
characteristic[0j.negative_assertion[0j.belief=0.800000 
characteristic[Oj.negative_assertion[ 1 j.place=1 
characteristic[0j.negative_assertion[lj.belief=0.200000

characteristic[l] is -> aluminum 

characteristic!!] function is -> histogram

characteristic[l].positive_assertion[0].place=2
characteristic[lj.positive_assertion[0j.belief=0.700000
characteristic[lj.positive_assertion[lj.place=l
characteristic[lj.positive_assertion[lj.belief=0.300000

characteristic[l].negative_assertion[0].place=3 
characteristic[lj.negative_assertion[0j.belief=0.800000 
characteristic[lj.negative_assertion[lj.place=l 
characteristic! 1 j .negative_assertion[l j.belief=0.200000

characteristic^] is -> concrete 

characteristic^] function is -> histogram

characteristic!2].positive_assertion!0].place=2 
characteristic[2j.positive_assertion!0j.belief=0.700000 
characteristic^ j .positive_assertion [ 1 j.place=1 
characteristic[2j.positive_assertion!lj.belief=0.300000

characteristic!2].negative_assertion!0].place=3 
characteristic!2j.negative_assertion!0].belief=0.800000 
characteristic[2j.negative_assertion[l j.place=1 
characteristic[2j.negative_assertion!lj.belief=0.200000

urban (built up areas) Frame 
The frame.is a is:

-> urban (built up areas) 
The frame.is_part_of is:

-> culture
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The frame.goalofanalysis is:
-> region label 

The frame.level_in_tree is ->3

This frame has 3 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is -> industry/utility

Sub node[0].bel_element_number is 10 
Sub node[0].mean is 80.000000

Sub node[l].is_a is ->commercial/residential

Sub node[l].bel_element_number is 11 
Sub node[l].mean is 85.000000

Sub node[2].is_a is -> institutional/governmental

Sub node[2].bel_element_number is 12 
Sub node[2].mean is 90.000000

characteristic[0] is ->bl_building 

characteristic^] function is ->grow

characteristic[0].positive_assertion[0].place=4
characteristic[0].positive_assertion[0].belief=0.800000
characteristic[0].positive_assertion[l].place=l
characteristic[0].positive_assertion[l].belief=0.200000

characteristic[0].negative_assertion[0].place=248
characteristic[0].negative_assertion[0].belief=0.600000
characteristic[0].negative_assertion[l].place=l
characteristic[0].negative_assertion[l].belief=0.400000

characteristic[l] is ->pl_parking_lot 

characteristicfl] function is ->grow

characteristic[l].positive_assertion[0].place=4



characteristic[l].positive_assertion[0].belief=0.800000
characteristic[l].positive_assertion[l].place=l
characteristic[l].positive_assertion[l].belief=0.200000

characteristic[l].negative_assertion[0].place=248 
characteristic[l].negative_assertion[0].belief=0.600000 
characteristic[l].negative_assertion[l].place=l 
characteristic! 1 j.negative_assertion[ 1 j.belief=0.400000

characteristic^] is ->gl_garage

characteristic^] function is ->grow

characteristic[2].positive_assertion[0].place=4 
characteristic[2].positive_assertion[0].belief=0.800000 
characteristic[2].positive_assertion[l].place=l 
characteristic[2].positive_assertion [ 1 j.belief=0.200000

characteristic[2].negative_assertion[0].place=248 
characteristic[2].negative_assertion[0].belief=0.700000 
characteristic[2].negative_assertion[l].place=1 
characteristic[2].negative_assertion[l].belief=0.300000

transportation/navigation Frame 
The frame.is a is:

- > transportation/navigation 
The frame.isjpart of is:

-> culture 
The frame.goal of analysis is:

-> region label 
The frame.level in tree is ->3

This frame has 5 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is ->railroads

Sub node[0].bel_element_number is 13 
Sub node[0].mean is 22.000000

Sub node[l].is_a is ->roads

Sub node[l].bel_element_number is 14



Sub node[l].mean is 22.200001

Sub node[2].is_a is -> aeronautical/aerospace

Sub node[2].bel_element_number is 15 
Sub node[2].mean is 22.200001

Sub node[3].is_a is -> naval/marine

Sub node[3].bel_element_number is 16 
Sub node[3].mean is 22.200001

Sub node[4].is_a is -> associated transportation features

Sub node[4].bel_element_number is 17 
Sub node[4].mean is 22.200001

characteristic[0] is ->rl_runway 

characteristic[0] function is ->grow

characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0].belief=0.200000 
characteristic[0].positive_assertion[l].place=5 
characteristic[0].positive_assertion [ 1 ].belief=0.800000

characteristic[0].negative_assertion[0].place=1 
characteristic[0].negative_assertion[0].belief=0.300000 
characteristic[0].negative_assertion[l].place=249 
characteristic[0].negative_assertion[l].belief=0.700000

characteristic^] is ->hl_hanger 

characteristic[l] function is ->grow

characteristic[l].positive_assertion[0].place=l
characteristic[l].positive_assertion[0].belief=0.200000
characteristic[lj.positive_assertion[l].place=5
characteristic[l].positive_assertion[l].belief=0.800000

characteristic[l].negative_assertion[0].place=1 
characteristic[l].negative_assertion[0].belief=0.300000



characteristic[l].negative_assertion[l].place=249
characteristic[l].negative_assertion[lj.belief=0.700000

landmark/rural features Frame 
The frame.isa is:

-> landmark/rural features 
The frame.is_part_of is:

-> culture 
The frame.goal_of_anaIysis is:

-> region label 
The frame.level_in_tree is ->3

This frame has 5 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is -> communication/transmission

Sub node[0].bel_element_number is 18 
Sub node[0].mean is 22.200001

Sub node[l].is_a is ->storage

Sub node[l].bel_element_number is 19 
Sub node[l].mean is 22.200001

Sub node[2].is_a is -> agricultural

Sub node[2].bel_element_number is 20 
Sub node[2].mean is 22.200001

Sub node[3].is_a is -> recreational

Sub node[3].bel_element_number is 21 
Sub node[3].mean is 22.200001

Sub node[4].is_a is -> miscellaneous

Sub node[4].bel_element_number is 22 
Sub node[4].mean is 22.200001

characteristic^] is ->sl_storage 

characteristic]!)] function is ->grow



characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0].belief=0.200000 
characteristic[0].positive_assertion[l].place=6 
characteristic[0].positive_assertion[l].belief==0.800000

characteristic[0].negative_assertion[0].place=1 
characteristic[0].negative_assertion[0].belief=0.200000 
characteristic[0].negative_assertion[l].place=250 
characteristic[0].negative_assertion[l].belief=0.800000

characteristic[l] is ->sl_stockyard 

characteristic]!] function is ->grow

characteristic[l].positive_assertion[0].place=l 
characteristic[l].positive_assertion[0].belief=0.200000 
characteristic[l].positive_assertion[l].place=6 
characteristic[ 1 ].positive_assertion [ 1 ].belief=0.800000

characteristic[l].negative_assertion[0],place=l
characteristic[l].negative_assertion[0].belief=0.200000
characteristic[l].negative_assertion[l].place=250
characteristic[lj.negative_assertion[l].belief=0.800000

hydrography Frame
The frame.is a is:

-> hydrography 
The frame.is_part_of is:

->  landscape 
The frame.goal of analysis is:

-> region label 
The frame.level in tree is ->3

This frame has 2 sub nodes
The sub node operator is ->  average of pixels

Sub node[0].is_a is -> water

Sub node[0].bel_element_number is 23 
Sub node[0].mean is 22.000000



Sub node[l].is_a is ->snow/ice

Sub node[l].bel_element_number is 24 
Sub node[l].mean is 222.000000

characteristic^] is ->sl_snow 

characteristic^] function is ->grow

characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0].belief=0.200000 
characteristic[0].positive_assertion[l].place=7 
characteristic[0].positive_assertion[l].belief=0.800000

characteristic[0].negative_assertion[0].place=1 
characteristic[0].negative_assertion[0].belief=0.400000 
characteristic[0].negative_assertion[l].place=251 
characteristic[0].negative_assertion[l].belief=0.600000

characteristic[l] is ->wl_water 

characteristic[l] function is ->grow

characteristic[l].positive_assertion[0].place=l 
characteristic[l].positive_assertion[0].belief=0.200000 
characteristic[ 1 j .positive_assertion [ 1 ].place=7 
characteristic[l].positive_assertion[l].belief=0.800000

characteristic[l].negative_assertion[0].place=l
characteristic[l].negative_assertion[0].belief=0.400000
characteristic[l].negative_assertion[l].place=251
characteristic[l].negative_assertion[l].belief=0.600000

physiography Frame
The frame.is_a is:

-> physiography 
The frame.is__part_of is:

-> landscape 
The frame.goal of analysis is: 

-> region label



The frame.level_in_tree is ->3

This frame has 2 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is ->exposed soils (surface composition)

Sub node[0].bel_element_number is 25 
Sub node[0].mean is 22.000000

Sub node[l].is_a is ->landforms

Sub node[l].bel_element_number is 26 
Sub node[l].mean is 33.000000

characteristic[0] is ->sl_soil 

characteristic[0] function is ->grow

characteristic[0].positive_assertion[0].place=l
characteristic[0].positive_assertion[0].belief=0.800000
characteristic[0].positive_assertion[l].place=8
characteristic[0].positive_assertion[l].belief=0.000000

characteristic[0].negative_assertion[0].p!ace=l
characteristic[0].negative_assertion[0].belief=0.400000
characteristic[0].negative_assertion[l].place=252
characteristic[0].negative_assertion[l].belief=0.600000

phytography Frame
The frame.is_a is:

-> phytography 
The frame.is_part_of is:

-> landscape 
The frame.goal of analysis is:

-> region label 
The frame.level_in_tree is ->3

This frame has 4 sub nodes
The sub node operator is -> average of pixels



Sub node[0].is_a is ->  cropland

Sub node[0].bel_element_number is 27 
Sub node[0].mean is 80.000000

Sub node[l].is_a is -> rangeland

Sub node[l].bel_element_number is 28 
Sub node[l].mean is 85.000000

Sub node[2].is_a is -> woodland

Sub node[2].beI_eIement_number is 29 
Sub node[2].mean is 60.000000

Sub node[3].is_a is -> wetland

Sub node[3].bel_element_number is 30 
Sub node[3].mean is 95.000000

characteristic[0] is ->tl_tree 

characteristic[0] function is ->grow

characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0].belief=0.200000 
characteristic[0].positive_assertion[l].place=9 
characteristic[0].positive_assertion[l].belief=0.800000

characteristic[0].negative_assertion[0].place=1 
characteristic[0].negative_assertion[0].belief=0.400000 
characteristic[0].negative_assertion[l].place=253 
characteristic[0].negative_assertion[l].belief=0.600000

characteristic[l] is ->ll_lawn 

characteristic^] function is ->grow

characteristic[l].positive_assertion[0].place=l 
characteristic[l].positive_assertion[0].belief=0.200000 
characteristic[l].positive_assertion[l].place=9 
character istic[ 1 j .positiveasser tion[ 1 ] .belief=0.800000



characteristic[l].negative_assertion[0].place=l
characteristic[l].negative_assertion[0].belief=0.400000
characteristic[l].negative_assertion[l].place=253
characteristic[lj.negative_assertion[l].belief=0.600000

industry I utility Frame
The frame.is_a is:

-> industry/utility 
The frame.is_part_of is:

-> urban (built up areas)
The frame.goal_of_analysis is:

-> region label 
The frame.level_in_tree is ->4

This frame has 6 sub nodes
The sub node operator is ->  average of pixels

Sub node[0].is_a is -> extraction

Sub node[0].bel_element_number is 31 
Sub nodejoj.mean is 22.000000

Sub node[l].is_a is ->processing

Sub node[l].bel_element_number is 32 
Sub node[l].mean is 32.000000

Sub node[2].is_a is -> power generation

Sub node[2].bel_eIement_number is 33 
Sub node[2].mean is 33.000000

Sub node[3].is_a is -> fabrication industry

Sub node[3].bel_element_number is 34 
Sub node[3].mean is 34.000000

Sub node[4].is_a is ->disposal

Sub node[4].bel_element_number is 35 
Sub node[4].mean is 35.000000

Sub node[5].is_a is -> associated industrial structures



Sub node[5].bel_element_number is 36 
Sub node[5].mean is 36.000000

characteristic^] is ->b4_building 

characteristic[0] function is ->grow

characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0].belief=0.200000 
characteristic[0].positive_assertion[l].place=10 
characteristic[0].positive_assertion[l].belief=0.800000

characteristic[0].negative_assertion[0].place=1 
characteristic[0].negative_assertion[0].belief=0.300000 
characteristic[0].negative_assertion[l].place=254 
characteristic[0].negative_assertion[l].belief=0.700000

characteristic[l] is ->dl_disposal 

characteristic^] function is ->grow

characteristic[l].positive_assertion[0].place=l
characteristic[l].positive_assertion[0].belief=0.200000
characteristic[l].positive_assertion[l].place=10
characteristic[l].positive_assertion[l].belief=0.800000

characteristic[l].negative_assertion[0].place=1 
characteristic[l].negative_assertion[0].belief=0.300000 
characteristic[l].negative_assertion[l].place=254 
characteristic[ 1 ].negative_assertion[l ].belief=0.700000

commercial/residential Frame 
The frame.is_a is:

- > commercial/residential 
The frame.is_part_of is:

-> urban (built up areas)
The frame.goal_of_analysis is: 

-> objects label 
The frame.level in tree is ->99



This frame has 6 sub nodes
The sub node operator is -> average of piXvis

Sub node[0].is_a is ->039 commercial buildings

Sub node[0].bel_element_number is 37 
Sub node[0].mean is 37.000000

Sub node[l].is_a is ->040 apartments/hotel

Sub node[l].bel_element_number is 38 
Sub node[l].mean is 38.000000

Sub node[2].is_a is ->041 house (single family dwelling)

Sub node[2].bel_element_number is 39 
Sub node[2].mean is 39.000000

Sub node[3].is_a is ->042 mobile homes

Sub node[3].bel_element_number is 40 
Sub node[3].mean is 40.000000

Sub node[4].is_a is ->043 barracks

Sub node[4].bel_element_number is 41 
Sub node[4].mean is 41.000000

Sub node[5].is_a is ->044 display sign (large billboard, high)

Sub node[5].bel_element_number is 42 
Sub node[5].mean is 42.000000

characteristic[0] is ->040 apartments/hotel 

characteristic^] function is ->grow

characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0).belief=0.200000 
characteristic[0].positive_assertion[l].place=11 
characteristic[0].positive_assertion[lj.belief=0.800000

characteristic[0].negative_assertion[0].place=1



characteristic[0].negative_assertion[0].belief=0.300000
characteristic[0].negative_assertion[l].place=256
charaeteristie[Q].negative_assertion[l].be!ief=0.7Q0000

characteristic!!] is ->041 house (single family dwelling) 

characteristic!!] function is ->grow

characteristic[l].positive_assertion[0].place=1 
characteristic!! j.positive_assertion[0].belief=0.200000 
characteristic[l].positive_assertion[l].place=11 
characteristic[l].positive_assertion[l].belief=0.800000

characteristic[l].negative_assertion[0].place=1 
characteristic[l].negative_assertion[0].belief=0.300000 
characteristic[l].negative_assertion[l].place=256 
characteristic[l].negative_assertion[l].belief=0.700000

institutional/governmental Frame 
The frame.is_a is:

- > institutional/governmental 
The frame.is_part_of is:

-> urban (built up areas)
The frame.goal_of_analysis is:

-> region label 
The frame!evel_in_tree is ->4

This frame has 11 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is ->045 governmental administration building

Sub node[0].bel_element_number is 43 
Sub nodejoj.mean is 43.000000

Sub node[l].is_a is ->046 military admin/operations building

Sub node[l].bel_element_number is 44 
Sub node[l].mean is 44.000000

Sub node[2].is_a is ->047 capitol building



Sub node[2].bel_element_number is 45 
Sub node[2].mean is 45.000000

Sub node[3].is_a is ->048 hospital

Sub node[3].bel_element_number is 46 
Sub node[3].mean is 46.000000

Sub node[4].is_a is ->049 prison

Sub node[4].bel_element_number is 47 
Sub node[4].mean is 47.000000

Sub node[5].is_a is ->050 palace

Sub node[5].bel_element_number is 48 
Sub node[5].mean is 48.000000

Sub node[6].is_a is ->051 museum

Sub node[6].bel_element_number is 49 
Sub node[6].mean is 49.000000

Sub node[7].is_a is ->052 observatory

Sub node[7].bel_eIement_number is 50 
Sub node[7].mean is 50.000000

Sub node[8].is_a is ->053 church/tabernacle

Sub node[8].bel_element_number is 51 
Sub node[8].mean is 51.000000

Sub node[9].is_a is ->054 mosque

Sub node[9].bel_element_number is 52 
Sub node[9].mean is 52.000000

Sub node[10].is_a is ->055 cemetary building

Sub node[10].bel_element_number is 53 
Sub node[10].mean is 53.000000

characteristic[0] is ->b4_building



characteristic^] function is ->grow

characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0].belief=0.200000 
characteristic[0].positive_assertion[l].place=12 
characteristic[0].positive_assertion[l].belief=0.800000

characteristic[0].negative_assertion[0].place=1 
characteristic[0].negative_assertion[0].belief=0.300000 
characteristic[0].negative_assertion[lj.place=255 
characteristic[0].negative_assertion[l].belief=0.700000

characteristic[l] is ->p3_parking_lot 

characteristic]!] function is ->grow

characteristic[l].positive_assertion[0].p!ace=1 
characteristic[l].positive_assertion[0].belief=0.200000 
characteristic[ 1 ].positive_assertion[ 1 j.place=12 
characteristic[l].positive_assertion[l].belief=0.800000

characteristic[l].negative_assertion[0].place=1 
characteristic[l].negative_assertion[0].belief=0.300000 
characteristic[l].negative_assertion[l].place=255 
characteristic[l].negative_assertion[l].belief=0.700000

cropland Frame
The frame.is a is:

-> cropland 
The frame.is_part_of is:

-> phytography 
The frame.goal_of_analysis is:

-> object label 
The frame.level in tree is ->99

This frame has 7 sub nodes
The sub node operator is ->  average of pixels

Sub node[0].is_a is ->190 orchard/plantation



Sub node[0].bel_element_number is 167 
Sub node[0].mean is 167.000000

Sub node[l].is_a is ->191 shelterbelt/hedgerow

Sub node[l].bel_element_number is 168 
Sub node[l].mean is 168.000000

Sub node[2].is_a is ->192 nursery/grove

Sub node[2].bel_eIement_number is 169 
Sub node[2].mean is 169.000000

Sub node[3].is_a is ->193 vineyard

Sub node[3].bel_element_number is 170 
Sub node[3].mean is 170.000000

Sub node[4].is_a is ->194 crop (cultivated)

Sub node[4].bel_element_number is 171 
Sub node[4].mean is 171.000000

Sub node[5].is_a is ->195 cranberry bog

Sub node[5].bel_element_number is 172 
Sub node[5].mean is 172.000000

Sub node[6].is_a is ->196 rice paddy

Sub node[6].bel_element_number is 173 
Sub node[6].mean is 173.000000

characteristic[0] is ->cl_crops 

characteristic^] function is ->grow

characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0].belief=0.200000 
characteristic[0].positive_assertion[l].place=27 
characteristic[0].positive_assertion[l].belief=0.800000

characteristic[0].negative_assertion[0].place=1
characteristic[0].negative_assertion[0].belief=0.100000
characteristic[0].negative_assertion[l].place=267



characteristic[0].negative_assertion[l].belief=0.900000

rangeland Frame
The frame.is_a is:

-> rangeland 
The frame.is__part_of is:

-> phytography 
The frame.goal_of_analysis is:

-> object label 
The fram e.Ievelintree is ->99

This frame has 3 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is ->197 herbaceous (grassland)

Sub node[0].bel_element_number is 174 
Sub node[0].mean is 50.000000

Sub node[l].is_a is ->198 shrub/brush

Sub node[l].bel_element_number is 175 
Sub node[l].mean is 40.000000

Sub node[2].is_a is ->199 mixed (shrub/brush and grass)

Sub node[2].bel_element_number is 176 
Sub node[2].mean is 45.000000

characteristic^] is ->ll_lawn 

characteristic^] function is ->grow

characteristic[0].positive_assertion[0].place=l
characteristic[0].positive_assertion[0].belief=0.200000
characteristic[0].positive_assertion[l].place=28
characteristic[0].positive_assertion[l].belief=0.800000

characteristic[0].negative_assertion[0].place=1 
characteristic[0].negative_assertion[0].belief=0.300000 
characteristic[0].negative_assertion[l].place=268 
characteristic[0].negative_assertion[l].belief=0.700000



woodland Frame
The frame.is_a is:

-> woodland 
The frame.is_part_of is:

-> phytography 
The frame.goal_of_analysis is:

-> object label 
The frame.level_in_tree is ->99

This frame has 5 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is ->200 decidous

Sub node[0].bel_element_number is 177 
Sub node[0].mean is 45.000000

Sub node[l].is_a is ->201 caniferous

Sub node[l].bel_element_number is 178 
Sub node[l].mean is 50.000000

Sub node[2].is_a is ->202 mixed (decidous and caniferous)

Sub node[2].bel_element_number is 179 
Sub node[2].mean is 55.000000

Sub node[3].is_a is ->230 mangrove

Sub node[3].bel_element_number is 180 
Sub node[3].mean is 60.000000

Sub node[4].is_a is ->204 nipa palm

Sub node[4].bel_element_number is 181 
Sub node[4].mean is 65.000000

characteristic^] is ->200 decidous 

characteristic]!)] function is ->grow
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characteristic[0].positive_assertion[0].place=1 
characteristic[0].positive_assertion[0].belief=0.200000 
characteristic[0].positive_assertion[lj.place=29 
characteristic[0].positive_assertion[l].belief=0.800000

characteristic[0].negative_assertion[0].place=1 
characteristic[0].negative_assertion[0].belief=0.400000 
characteristic[0].negative_assertion[l].place=269 
characteristic[0].negative_assertion[l].belief=0.600000

wetland Frame
The frame.is a is:

-> wetland 
The frame.is_part_of is:

-> phytography 
The frame.goal_of_analysis is:

-> object label 
The fram e.levelintree is ->99

This frame has 3 sub nodes
The sub node operator is -> average of pixels

Sub node[0].is_a is ->205 swamp (trees, brush/shrubs in water)

Sub node[0].bel_element_number is 182 
Sub node[0].mean is 182.000000

Sub node[l].is_a is ->206 marsh (grass, cat tails, etc in wate

Sub node[l].bel_element_number is 183 
Sub node[l].mean is 183.000000

Sub node[2].is_a is ->207 peat bog/cuttings

Sub node[2].bel_element_number is 184 
Sub node[2].mean is 184.000000

characteristic^] is ->wl_water 

characteristic^] function is ->grow

characteristic[0].positive_assertion[0].place=1
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characteristic[0].positive_assertion[0].belief=0.200000



APPENDIX 4 - PC-FILE Database Implementation of Frames

In the TDBU system, the frame is a C data structure. Figure A4.1 shows the 

structure.

In the PC-FILE database program there is a limit to the number of fields in a data 

record. The frame data structure has far too many fields for a PC-FILE data record. To 

work around this limitation, TDBU uses multiple files. The following paragraphs describe 

the multiple files and how they fit together to form the frames.

There are three types of files; the frames file; the sub nodes file; and the 

characteristics file.

The principle file is frames.dta. It is the only file using the frames pattern. This 

file has one data record for each frame entered into the database. Each data record gives 

the frame and introduction. It also gives the names of the sub nodes file and the 

characteristics file for that frame. The system uses these file names to read that 

information.

Given in figure A4.2 is the data record for the world frame.

file frames.dta

is_a [world]
is_part_of [nothing]
level_in_tree [1]
goal_of_anal [region label] 
no_of_chars [0]
chars_file [c:\file\data\nochar.dta]
no_of_nodes [2]
op_name [average of pixels]
subs_file [c:\file | data\d lsub.dta]

Figure A4.2 - Data Record for the world Frame

Every frame uses the subs pattern. The subs pattern gives information regarding 

the sub nodes of a frame. Shown in figure A4.3 is the first entry in the sub nodes file for

181
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struct assertiontype! 
short place; 
float beliefvalue;

};

struct structural characteristics!
char is”a[MAX_NAME_LENGTHJ; 
short space;
char funct_name[MAX_NAME_LENGTH]; 
struct assertion_type positive_assertion[ASSERTION_LENGTH]; 
struct assertion_type negative_assertion[ASSERTION_LENGTH]; 
struct assertion type blind_pos_assertion[ASSERTION_LENGTH]; 
struct assertion_type blind_neg_assertion[ASSERT10N_LENGTH]; 
short result;
short other_objects[OTHERS_LENGTH];

};

struct class{
char is_a[MAX_NAME LENGTH]; 
short bel_element_number; 
float mean;

};

struct frame!
char is_a[MAX_NAME_LENGTH]; 
char isjpart_of[MAX_NAME_LENGTH]; 
short level_in_tree;
char goal_of_analysis[MAX_NAME_LENGTH]; 
short number_of_structural_characteristics;
struct structural_characteristics characteristic[CHARACTERISTIC_LENGTH];
short count_of_sub_nodes;
char op_name[MAX_N A M ELEN  GTH];
struct class sub_class[SUB_NODE_LENGTH];

};

Figure A4.1 - C Structure of a Frame

world. It shows that the first sub node is culture. It gives the information needed by the 

sub node operator. Since world has two sub nodes, there will be two data records in its



sub nodes file.

file dlsubs.dta

Record number 1

is_a [culture]
bel_el_no [2]
mean [88.0]

Figure A4.3 - First Entry of Sub Nodes File for Frame world

Every frame uses the chars pattern. It lists the intrinsic characteristics of a frame. 

The system will detect the object named here and will make the assertions listed here. If 

the system detects the object, then it will make the positive assertion. If the system does 

not detect the object, then it will make the negative assertion.

Shown in figure A4.4 is the first data record from the d2chars.dta file. This shows 

that bibuilding is the object of interest. The presence of a building is the first 

characteristic of the frame culture.
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file d2chars.dta

Record number 1

is_a [bl_building]
functnam e [grow]

pos_l_place [2] 
pos_l_belief [0.8] 
pos_2_place [1] 
pos_2_belief [0.2]

neg_l_place [3] 
neg_l_belief[0.6] 
neg_2_place [1] 
neg_2_belief[0.4]

Figure A4.4 - First Data Record of d2chars.dta File



APPENDIX 5 - Object Descriptors

strcpy(d.is_a,"040 apartments/hotel"); 
strcpy(d.material, "roofing"); 
d.min_area = 844;
d.max_area = 2025;
d.min_width = 3; 
d.max_width = 46;
d.minheight = 46;
d.max_height =  146;
d.min_w_to_h_ratio = 0.02; 
d.max_w_to_h_ratio = 1.0; 
d.minangle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"041 house (single family dwelling)");
strcpy(d.material, "roofing");
d.min_area = 56;
d.max_area = 840;
d.min_width = 7;
d.maxwidth = 46;
d.minheight = 1 1 ;
d.maxjheight = 68;
d.min_w_to_h_ratio = 0.3;
d.max_w_to_h_ratio = 1.0;
d.minangle = -90.0;
d.max_angle = 90.0;

strcpy(d.is_a,"069 primary road"); 
strcpy(d.material, "concrete"); 
d.m inarea = 400;
d.max_area =  40000;
d.minwidth = 0;
d.max_width = 203;
d.minheight = 0;
d.max_height = 203;
d . m i n w t o h r a t i o  = 0.0; 
d. m ax_w_to_h_r a t io = 1.0; 
d.minangle = -90.0;
d.maxangle = 90.0;
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strcpy(d.is_a,"097 footpath/trail"); 
strcpy(d.material, "concrete"); 
d.min_area = 5;
d.maxarea = 40000; 
d.minwidth = 0;
d.maxwidth = 82;
d.min_height = 0;
d.max_height = 82;
d.min_w_to_h_ratio = 0.0; 
d.max_w_to_h_ratio = 1.0; 
d.minangle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"200 decidous"); 
strcpy(d.material, "leaves"); 
d.min_area = 45;
d.max_area = 18225;
d.min_width = -1;
d.max_width = 248;
d.min_height = -1;
d.max_height = 248;
d . m i n w t o h r a t i o  = 0.0; 
d . m a x w t o h r a t i o  = 1.0;
d.min_angle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"bl_building"); 
strcpy(d.material, "roofing"); 
d.min_area = 113;
d.maxarea = 1350;
d.min_width = 0;
d.maxwidth = 101;
d.min_height = 0;
d.maxheight = 101;
d.min_w_to_h_ratio = 0.0; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0; 
d.max_angle = 90.0;
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strcpy(d.is_a,"b2_building"); 
strcpy(d.material, "roofing"); 
d.min_area = 225;
d.maxarea = 720;
d.min_width = 23;
d.maxwidth = 45;
d.minheight = 34;
d.max_height = 68;
d.min_w_to_h_ratio = 0.01; 
d.max_w_to_h_ratio = 1.0;
d.min_angle = -90.0; 
d.maxangle = 90.0;

strcpy(d.is_a,"b3_building"); 
strcpy(d.material, "roofing"); 
d.min_area = 720;
d.max_area = 1125;
d.min_width = 27;
d.max_width = 40;
d.min_height = 56;
d.max_height = 101;
d.min_w_to_h_ratio = 0.01; 
d.max_w_to_h_ratio = 1.0;
d.min_angle = -90.0; 
d.maxangle = 90.0;

strcpy(d.is_a,"b4_building"); 
strcpy(d.material, "roofing"); 
d.min_area = 8100;
d.max_area = 14400;
d.minwidth =135;
d.max_width = 180;
d.minheight =135;
d.max_height = 180;
d.min_w_to_h_ratio = 0.01; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = 0.0;
d.maxangle = 90.0;



strcpy(d.is_a,"cl_crops"); 
strcpy(d.material, "crops"); 
d.min_area = 225;
d.maxarea = 18225;
d.min_width = 23;
d.max_width = 203;
d.min_height =  23;
d.max_height = 203;
d.min_w_to_h_ratio = 0.01; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"dl_disposal"); 
strcpy(d.material, "waste"); 
d.min_area = 5625;
d.max_area = 11025;
d.min_width = 113;
d.max_width = 158;
d.min_height = 113;
d.max_height = 158;
d.min_w_to_h_ratio = 0.01; 
d.max_w_to_h_ratio = 0.2; 
d.min_angle = -90.0;
d.max_angle = 90.0;

strcpy(d.is_a,"rl_runway"); 
strcpy(d.material, "concrete"); 
d.min_area = 788; 
d.max_area = 4050;
d.min_width = 23;
d.max_width = 45;
d.min_height = 56;
d.max_height = 203;
d.min_w_to_h_ratio = 0.01; 
d . m a x w t o h r a t i o  = 0.2; 
d.min_angle = -90.0;
d.max_angle = 90.0;

strcpy(d.is_a,"hl_hanger");
strcpy(d.material, "roofing");



d.min_area = 8100;
d.maxarea = 14400;
d.min_width = 135;
d.max_width = 180;
d.min_height = 135;
d.max_height = 180;
d.min_w_to_h_ratio = 0.5: 
d.max_w_to_h_ratio = 1.0 
d.min_angle = -90.0
d.max_angle = 90.0

strcpy(d.is_a,"d l_driveway"); 
strcpy(d.material, "concrete"); 
d.min_area = 1125;
d.max_area = 18225;
d.minwidth = 23;
d.max_width = 203;
d.min_height = 23;
d.max_height = 203;
d . m i n w t o h r a t i o  = 0.01; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"gl_garage"); 
strcpy(d.material, "aluminum"); 
d.m inarea = 90;
d.max_area = 518;
d.min_width = 0;
d.maxwidth = 23;
d.min_height = 0;
d.maxheight = 45;
d.min_w_to_h_ratio = 0.0; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.max_angle = 90.0;

strcpy(d.is_a,"l 1 Jawn");
strcpy(d.material, "grass");



d.m inarea = 56;
d.maxarea = 18225;
d.min_width = 11;
d.max_width = 203;
d.min_height = 11;
d.max_height = 203;
d.min_w_to_h_ratio = 0.01; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.max_angle = 90.0;

strcpy(d.is_a,"pl_parking_lot"); 
strcpy(d.material, "concrete"); 
d.min_area = 23;
d.max_area = 18225;
d.min_width = 0;
d.max_width = 203;
d.min_height = 0;
d.max_height = 203;
d.min_w_to_h_ratio = 0.0; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"p2_parking_lot"); 
strcpy(d.material, "concrete"); 
d.min_area = 3600;
d.maxarea = 4300;
d.min_width = 68;
d.max_width = 135;
d.min_height = 135;
d.max_height = 225;
d.min_w_to_h_ratio = 0.01; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.max_angle = 90.0;

strcpy(d.is_a,"p3_parking_lot");
strcpy(d.material, "concrete");



d.min_area = 3600;
d.max_area = 8100;
d.min_width = 90;
d.maxwidth = 135;
d.min_height = 90;
d.max_height = 135;
d.min_w_to_h_ratio = 0.01; 
d . m a x w t o h r a t i o  = 1.0; 
d.min_angle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"s l_storage"); 
strcpy(d.material, "aluminum"); 
d.m inarea = 8100;
d.max_area = 18225;
d.min_width = 135;
d.maxwidth = 203;
d.minheight = 135;
d.max_height = 203;
d.min_w_to_h_ratio = 0.0; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"s lstockyard"); 
strcpy(d.material, "dirt"); 
d.min_area = 5625;
d.max_area = 11025;
d.minwidth = 113;
d.maxwidth = 158;
d.minheight = 113;
d.max_height = 158;
d.min_w_to_h_ratio = 0.5; 
d.max_w_to_h_ratio = 1.0; 
d.minangle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"s l_soil"); 
strcpy(d.material, "dirt"); 
d.m inarea = 8100;
d.maxarea = 18225;
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d.min_width = 23;
d.max_width = 203;
d.min_height = 23;
d.max_height = 203;
d.min_w_to_h_ratio = 0.0; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.max_angle = 90.0;

strcpy(d.is_a,"tl_tree"); 
strcpy(d.material, "leaves"); 
d.min_area = 45;
d.max_area = 18225;
d.min_width = -3;
d.max_width = 248;
d.min_height = -3;
d.max_height = 248;
d.min_w_to_h_ratio = 0.0; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.max_angle = 90.0;

strcpy(d.is_a,"wl_water"); 
strcpy(d.material, "water"); 
d.m inarea = 8100;
d.max_area = 18225;
d.minwidth = 23;
d.maxwidth = 203;
d.minheight = 23;
d.max_height = 203;
d.min_w_to_h_ratio = 0.0; 
d.max_w_to_h_ratio = 1.0; 
d.minangle = -90.0;
d.maxangle = 90.0;

strcpy(d.is_a,"s l_snow"); 
strcpy(d.material, "snow");
d.min_area = 8100;
d.max_area = 18225;
d.minwidth = 23;



d.maxwidth = 203;
d.min_height = 23;
d.max_height = 203;
d.min_w_to_h_ratio =  0.0; 
d.max_w_to_h_ratio = 1.0; 
d.min_angle = -90.0;
d.maxangle = 90.0;



APPENDIX 6 - Spectral Information

strcpy(s.is_a, "roofing"); 
s.num_of_channels = 1;
s.spectrum[0].channel = 2;
s.spectrum[0].low_threshold = 185;
s.spectrum[0].high_threshold = 255;

strcpy(s.is_a, "2roofing"); 
s.num_of_channels = 1;
s.spectrum[0].channel = 3;
s.spectrum[0].low_threshold = 30; 
s.spectrum[0].high_threshold = 50;

strcpy(s.is_a, "leaves"); 
s.numofchannels = 1;
s.spectrum[0].channel = 1;
s.spectrum[0].low_threshold = 0;
s.spectrum[0].high_threshold = 45;

strcpy(s.is_a, "crops"); 
s.numofchannels = 2;
s.spectrum[0].channel = 1;
s.spectrum[0].low_threshold = 30; 
s.spectrum[0].high_threshold = 50; 
s.spectrum[l].channel = 2;
s.spectrum[l].low_threshold = 75; 
s.spectrum[l].high_threshold = 95;

strcpy(s.is_a, "waste"); 
s.num_of_channels = 1;
s.spectrum[0].channel = 1;
s.spectrum[0].low_threshold = 75; 
s.spectrum[0].high_threshold = 150;

s.numofchannels = 1;
s.spectrum[0].channel = 1;
s.spectrum[oj.low_threshold = 75; 
s.spectrum[0].high_threshold = 175;
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strcpy(s.is_a, "aluminum"); 
s.num_of_channels = 1;
s.spectrum[0].channel = 1;
s.spectrum[0].low_threshold = 190; 
s.spectrum[0].high_threshold = 255;

strcpy(s.is_a, "gras"); 
s.num_of_channels = 2;
s.spectrum[0].channel = 1;
s.spectrum[0].low_threshold = 30;
s.spectrum[0].high_threshold = 70;
s.spectrum[lj.channel = 2;
s.spectrum[l].low_threshold = 65;
s.spectrum[l].high_threshold = 200;

strcpy(s.is_a, "dirt"); 
s.numofchannels = 1;
s.spectrum[0].channel = 1;
s.spectrum[0].low_threshold = 45; 
s.spectrum[0].high_threshold = 65;

strcpy(s.is_a, "water"); 
s.numofchannels = 1;
s.spectrum[0].channel = 2;
s.spectrum[0].low_threshold = 70; 
s.spectrum|0].high_threshold = 80;

strcpy(s.is_a, "snow"); 
s.numofchannels = 1;
s.spectrum[0].channel = 1;
s.spectrum[0].low_threshold = 225; 
s.spectrum[0].high_threshold = 255;



APPENDIX 7 - Output of the Object Detector

Section 1

REPRES> The descriptor was:
N ame-bl_building 
Number of channels~l 
Thresholds 185 255 
Areas 112 1350 (feet)
Widths 0 99 (feet)
Heights 0 99 (feet)
Ratios 0.000000 1.000000 
Angles -90.000000 90.000000

bl_building - Object number 1 
Center at x=1005 y=917 
Area=470 (feet)
Height=40 Width=18 (feet) 
Width to Height Ratio=0.444444

bl_building - Object number 2 
Center at x = l l l l  y=947 
Area=758 (feet)
Height=45 Width=22 (feet) 
Width to Height Ratio=0.500000

bl_building - Object number 3 
Center at x=935 y=1064 
Area=1010 (feet)
Height=54 Width=36 (feet) 
Width to Height Ratio=0.666667

bl_building - Object number 4 
Center at x=992 y=1070 
Area=578 (feet)
Height=36 Width=27 (feet) 
Width to Height Ratio=0.750000

bibuilding - Object number 5 
Center at x=1100 y=1115 
Area=938 (feet)
Height=63 Width=36 (feet) 
Width to Height Ratio=0.571429

Angle=81.907654

Angle=9.771790

Angle=43.494610

Angle=6.920860

Angle=85.148834
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REPRES> The descriptor was:
Name~pl_parking_lot 
Number of channels-1 
Thresholds 75 155 
Areas 22 18225 (feet)
Widths 0 202 (feet)
Heights 0 202 (feet)
Ratios 0.000000 1.000000 
Angles -90.000000 90.000000

pl_parking_lot - Object number 1 
Center at x=922 y=913 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 2 
Center at x=958 y=913 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 3 
Center at x=1032 y=1005 
Area=4898 (feet)
Height=58 Width=0 (feet)
Width to Height Ratio=0.000000 Angle=-38.920456

pl_parking_lot - Object number 4 
Center at x=976 y=931 
A rea=l 10 (feet)
Height=22 Width=4 (feet)
Width to Height Ratio=0.200000 Angle=1.341988

pl_parking_lot - Object number 5 
Center at x=994 y=931 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 6 
Center at x=1012 y=940 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 7



Center at x=1093 y=967 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 8 
Center at x = l l l l  y=976 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 9 
Center at x=1093 y=985 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 10 
Center at x=1129 y=985 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 11 
Center at x=940 y=1007 
Area=74 (feet)
Height=13 Width=4 (feet)
Width to Height Ratio=0.333333 Angle=3.562767

pl_parking_lot - Object number 12 
Center at x=967 y=1016 
Area=146 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=-58.045357

pl_parking_lot - Object number 13 
Center at x=922 y=1021 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 14 
Center at x=1001 y=1039 
Area=110 (feet)
Height=22 Width=13 (feet)
Width to Height Ratio=0.600000 Angle=27.536560



pl_parking_lot - Object number 15 
Center at x=1084 y=1075 
Area=38 (feet)
Height=4 Width=4 (feet)
Width to Height Ratio=1.000000 Angle=0.000000

pl_parking_lot - Object number 16 
Center at x=1120 y=1079 
Area=74 (feet)
Height=13 Width=4 (feet)
Width to Height Ratio=0.333333 Angle=3.562767

REPRES> The descriptor was:
Name—gl_garage 
Number of channels-1 
Thresholds 190 255 
Areas 90 517 (feet)
Widths 0 22 (feet)
Heights 0 45 (feet)
Ratios 0.000000 1.000000 
Angles -90.000000 90.000000

gl_garage - Object number 1 
Center at x=915 y=929 
Area=110 (feet)
Height=18 Width=13 (feet)
Width to Height Ratio=0.750000 Angle=90.000000

gl_garage - Object number 2 
Center at x=971 y=949 
Area=146 (feet)
Height=13 Width=9 (feet)
Width to Height Ratio=0.666667 Angle=32.401825

gl_garage - Object number 3 
Center at x=1001 y=960 
Area=254 (feet)
Height=18 Width=13 (feet)
Width to Height Ratio=0.750000 Angle=58.962204

gl_garage - Object number 4 
Center at x=938 y=985 
Area=506 (feet)
Height=0 Width=0 (feet)
Width to Height Ratio=0.750000 Angle=67.772232



glj>arage - Object number 5 
Center at x=1102 y=1001 
Area=218 (feet)
Height=22 Width=4 (feet)
Width to Height Ratio=0.200000 Angle=53.548679

gl_garage - Object number 6 
Center at x=992 y=1016 
Area=182 (feet)
Height=27 Width=18 (feet)
Width to Height Ratio=0.666667 Angle=71.563690

gl_garage - Object number 7 
Center at x=1093 y=1052 
Area=218 (feet)
Height=22 Width=18 (feet)
Width to Height Ratio=0.800000 Angle=87.855263

gl_garage - Object number 8 
Center at x=1124 y=1066 
Area=146 (feet)
Height=13 Width=9 (feet)
Width to Height Ratio=0.666667 Angle=32.401825

Section 2

REPRES> The descriptor was:
Name—041 house (single family dwelling)
Number of channels-1 
Thresholds 185 255 
Areas 54 839 (feet)
Widths 6 45 (feet)
Heights 9 67 (feet)
Ratios 0.300000 1.000000 
Angles -90.000000 90.000000

041 house (single family dwelling) - Object number 1 
Center at x=1010 y=920 
Area=315 (feet)
Height=31 Width=18 (feet)
Width to Height Ratio=0.571429 Angle=84.632584

041 house (single family dwelling) - Object number 2 
Center at x=1109 y=942



Area=672 (feet)
Height=54 Width=31 (feet)
Width to Height Ratio=0.583333 Angle=-3.658417

041 house (single family dwelling) - Object number 3 
Center at x=944 y=1066 
Area=612 (feet)
Height=54 Width=22 (feet)
Width to Height Ratio=0.416667 Angle=-1.597931

041 house (single family dwelling) - Object number 4 
Center at x=987 y=1064 
Area=546 (feet)
Height=27 Width=22 (feet)
Width to Height Ratio=0.833333 Angle=-87.948303

041 house (single family dwelling) - Object number 5 
Center at x=1086 y=1109 
Area=618 (feet)
Height=40 Width=31 (feet)
Width to Height Ratio=0.777778 Angle=12.047958

Section 3

REPRES> The descriptor was:
Name-041 house (single family dwelling)Number of channels—1 
Thresholds 185 255Areas 54 839 (feet)
Widths 6 45 (feet)Heights 9 67 (feet)
Ratios 0.300000 1.000000 
Angles -90.000000 90.000000

041 house (single family dwelling) - Object number 1 
Center at x=1010 y=920 
Area=315 (feet)
Height=31 
Width=18 (feet)
Width to Height Ratio=0.571429 
Angle=84.632584

041 house (single family dwelling) - Object number 2 
Center at x=1109 y=942 
Area=672 (feet)
Height=54 
Width=31 (feet)
Width to Height Ratio=0.583333



Angle=-3.658417

041 house (single family dwelling) - Object number 3 
Center at x=944 y=1066 
Area=612 (feet)
Height=54 
Width=22 (feet)
Width to Height Ratio=0.416667 
Angle=-1.597931

041 house (single family dwelling) - Object number 4 
Center at x=987 y=1064 
Area=546 (feet)
Height=27 
Width=22 (feet)
Width to Height Ratio=0.833333 
Angle=-87.948303

041 house (single family dwelling) - Object number 5 
Center at x=1086 y=1109 
Area=618 (feet)
Height=40 
Width=31 (feet)
Width to Height Ratio=0.777778 
Angle=12.047958

REPRES> The descriptor was:
Name-069 primary road 
Number of channels-1
Thresholds 75 175 Areas 398 39998 (feet)
Widths 0 202 (feet)
Heights 0 202 (feet)
Ratios 0.000000 1.000000 
Angles -90.000000 90.000000

069 primary road - Object number 1 
Center at x=1028 y=1003 
Area=4911 (feet)
Height=58 
Width=45 (feet)
Width to Height Ratio=0.769231 
Angle=-38.635651

REPRES> The descriptor was:
Name-097 footpath/trail
Number of channels-1
Thresholds 75 175 Areas 4 39998 (feet)
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Widths 0 81 (feet)Heights 0 81 (feet) 
Ratios 0.000000 1.000000 
Angles -90.000000 90.000000

097 footpath/trail - Object number 1 
Center at x=295823 y=590735 
Area=2 (feet)
Height=4 
Width=51 (feet)
Width to Height Ratio=0.000000 
Angle=0.000000

097 footpath/trail - Object number 2 
Center at x=295823 y = 1180559 Area=2 (feet) 
Height=9 
Width=112 (feet)
Width to Height Ratio=0.500000 
Angle=0.000000

097 footpath/trail - Object number 3 
Center at x=295823 y=295823 
Area=2 (feet)
Height=58 
Width=65 (feet)
Width to Height Ratio=0.769231 
Angle=0.000000

097 footpath/trail - Object number 4 
Center at x=911 y=911 
Area=294914 (feet) Height=0 
Width=94 (feet)
Width to Height Ratio=0.769231 
Angle=0.000000

097 footpath/trail - Object number 5 
Center at x=974 y=924 
Area=2 (feet)
Height=22 
Width=4 (feet)
Width to Height Ratio=0.000000 
Angle=0.000000



097 footpath/trail - Object number 6 
Center at x=989 y=931 
Area=2 (feet)
Height=9 
Width=96 (feet)
Width to Height Ratio=0.500000 
Angle=0.000000

097 footpath/trail - Object number 7 
Center at x=1010 y=938 
Area=2 (feet)
Height=18 
Width=83 (feet)
Width to Height Ratio=0.250000 
Angle=0.000000

097 footpath/trail - Object number 8 
Center at x=996 y=947 
A rea= ll  (feet)
Height=4 
Width=121 (feet)
Width to Height Ratio=0.000000 
Angle=0.000000

097 footpath/trail - Object number 9 
Center at x=1005 y=951 
Area=6 (feet)
Height=0 
Width=166 (feet)
Width to Height Ratio=0.000000 
Angle=0.000000

097 footpath/trail - Object number 10 
Center at x=1014 y=953 
Area=9 (feet)
Height=4 
Width=128 (feet)
Width to Height Ratio=0.000000 
Angle=58.250000

097 footpath/trail - Object number 11 
Center at x=1088 y=967 
Area=49 (feet)



Height=9 
Width=166 (feet)
Width to Height Ratio=1.000000 
Angle=-75.126465

097 footpath/trail - Object number 12 
Center at x=913 y=962 
Area=9 (feet)
Height=0 
Width=153 (feet)
Width to Height Ratio=1.000000 
Angle=58.280190

097 footpath/trail - Object number 13 
Center at x=1082 y=969 
Area=9 (feet)
Height=4 
Width=209 (feet)
Width to Height Ratio=0.000000 
Angle=0.000000

097 footpath/trail - Object number 14 
Center at x=1109 y=978 
Area=58 (feet)
Height=13
Width=162 (feet) Width to Height Ratio=0.333333 
Angle=7.338737

097 footpath/trail - Object number 15 
Center at x=1124 y=980 
Area=63 (feet)
Height=13 
Width=9 (feet)
Width to Height Ratio=0.333333 
Angle=-12.780914

097 footpath/trail - Object number 16 
Center at x=1093 y=983 
Area=9 (feet)
Height=0 
Width=213 (feet)
Width to Height Ratio=0.333333 
Angle=58.280190

097 footpath/trail - Object number 17



Center at x=911 y=985 
Area=6 (feet)
Height=0 
Width=22 (feet)
Width to Height Ratio=0.333333 
Angle=0.000000

097 footpath/trail - Object number 18 
Center at x=917 y=987 
Area=6 (feet)
Height=0 
Width=198 (feet)
Width to Height Ratio=0.333333 
Angle=0.000000

097 footpath/trail - Object number 19 
Center at x=929 y=987 
A rea= ll  (feet)
Height=4 
Width=40 (feet)
Width to Height Ratio=0.000000 
Angle=-67.498344

097 footpath/trail - Object number 20 
Center at x=922 y=1007 
Area=69 (feet)
Height=31 
Width=204 (feet)
Width to Height Ratio=0.142857 
Angle=-11.926117

097 footpath/trail - Object number 21 
Center at x=942 y=996 
Area=6 (feet)
Height=0 
Width=0 (feet)
Width to Height Ratio=0.142857 
Angle=0.000000

097 footpath/trail - Object number 22 
Center at x=1122 y=998 
Area=22 (feet)
Height=4 
Width=0 (feet)



Width to Height Ratio=0.000000 
Angle=84.847198

097 footpath/trail - Object number 23 
Center at x=933 y=1014 
Area=72 (feet)
Height=36 
Width=0 (feet)
Width to Height Ratio=0.000000 
Angle=-2.196289

097 footpath/trail - Object number 24 
Center at x=951 y=998 
Area=5 (feet)
Height=4 
Width=0 (feet)
Width to Height Ratio=0.000000 
Angle=0.000000

097 footpath/trail - Object number 25 
Center at x=962 y=1023 
Area=39 (feet)
Height=-2147483639 
Width=2 (feet)
Width to Height Ratio=0.500000 
Angle=0.000000

097 footpath/trail - Object number 26 
Center at x=976 y=1005 
Area=5 (feet)
Height=-2147483644 
Width=0 (feet)
Width to Height Ratio=0.000000 
Angle=0.000000

097 footpath/trail - Object number 27 
Center at x=915 y=10O7 
Area=3 (feet)
Height=-2147483644 
Width=-2147352570 (feet)
Width to Height Ratio=0.
Angle=0.



097 footpath/trail - Object number 28 
Center at x=994 y=1032 
Area=94 (feet)
Height=-2147483626 
W idth=131085 (feet)
Width to Height Ratio=0.600000 
Angle=0.

097 footpath/trail - Object number 29 
Center at x=1077 y=1039 
Area=5 (feet)
Height=4
Width=131072 (feet)
Width to Height Ratio=0.
Angle=0.

097 footpath/trail - Object number 30 
Center at x=1077 y=1064 
Area=29 (feet)
Height=-2147483639 
W idth=131072 (feet)
Width to Height Ratio=0.
Angle=-1.168732

097 footpath/trail - Object number 31 
Center at x=1120 y=1073 
Area=51 (feet)
Height=4
Width=131072 (feet)
Width to Height Ratio=0. 
Angle=-62.641972

097 footpath/trail - Object number 32 
Center at x=920 y=1124 
Area=26 (feet)
Height=-2147483630 
Width=-2147352576 (feet)
Width to Height Ratio=0. 
Angle=23.219749



097 footpath/trail - Object number 33 
Center at x=933 y=1109 
Area=3 (feet)
Height=-2147483644 
Width=131076 (feet)
Width to Height Ratio=1.
Angle=0.

097 footpath/trail - Object number 34 
Center at x=951 y=1115 
Area=3 (feet)
Height=4
W idth=131072 (feet)
Width to Height Ratio=0.
Angle=90.
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