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A NEW APPROACH TO CONSTRAINED FUNCTION OPTIMIZATION.'

K. Martensson

ABSTRACT.

A new approach to the constrained function optimiza-
tion problem is presented. It is shown that the ordi-
nary Lagrange multiplier method and the penalty func-
tion method may be generalized and combined, and the
new concept "multiplier function" is introduced. The
problem may then be converted into an unconstrained

well-conditioned optimization problem. Methods for

numerical solution are discussed, and new algorithms

are derived.

T This work was supported by the Swedish Board for
Technical Development (Contract 70-337/U270).
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1. INTRODUCTION.

In this paper new methods and algorithms for const-
rained function optimization are presented. The prob-
lem considered is minimization of a function f(u)
subject to the equality constraint g(u) = 0, where
g(u) is an m~dimensional vector with components gi(u).
(The superscript will be used to denote components of

a vector. This will simplify the notations later.)

Many methods for solving this problem have been pub-
lished, but generally they are based on one of two

main ideas.

One is the Lagrange multiplier technique, where the
constraints are adjoined to the function by means of

multipliers X, to form a new function

m . o
LCu,r\) = £(u) + Y atghuw)
iz1

generally called the Lagrangian of the problem. The
problem is then reduced to finding a saddle-point of
L(u,2) in the u-) space, and thus the dimension of

the problem is increased from n to n+m.

The other basic approach is the penalty function me-
thod. A function including the constraints in a pro-

per manner is adjoined to the original function f(u),

e.g.

flu) + ch(u)g(u)

where ¢ is a positive real-valued parameter. Under

very mild conditions, the solution of




min{£(u) + cg(wglu))
u

tends to the solution of

min{f(u)}
u

subject to g(u) = 0, as ¢ tends to infinity. However,
the penalty function method is not very attractive
from a numerical point of view, since the functions
created become very badly conditioned for numerical
optimization. Different ways to overcome this diffi-
culty have been suggested, e.g. by Fiacco and McCor-
mick [1] and by Powell [2]. The basic idea in these
papers is to change the penalty function in an itera-
tive way, so as to make the optimum of the penalty
function agree with the optimal solution of the prob-
lem. However, this requires introduction of & new set
of parameters to be iterated on, again increasing the

dimension of the minimization problem,

These two basic ideas are combined by Hestenes in [3].

The function

m . o
F(u,0) = £(u) + J alghu) + gt (wgluw)
i=1

ig introduced, and it is shown that for nonsingular
problems, F(u,2*), where A¥ are the optimal multipli-
ers, has a local minimum for u=u¥*, provided that c>cy.
S is a finite real-valued parameter. This is a con-
siderable improvement over both the original Lagrange
multiplier technique, and the penalty function methods.
The reasons are that cg is finite in contrast to the
penalty function methods, and that u¥ constitutes a

minimum of F(u,x*), while the extremum of L(u,x*) could




have any character. However, it still remains to de-

termine the optimal multipliers A%,

The method presented in this paper is a generaliza-
tion of Hestenes' method. We will introduce the con-
cept "multiplier function", and the m-dimensional vec-
tor function u(u) is called an admissible multiplier
function if it satisfies some simple conditions. The
basic condition is that u(u®*) = A%, We also define a

"generalized Lagrangian" as
_ T T
H(u,c) = £(u) + p (wglu) + cg (wWgu)

Using wellknown results, which are briefly stated as
lemmas in Section 2, properties of H(u,c) are estab-
lished in Section 3. It is shown that H(u,c) has an
extremum at u=u¥, and that there is a finite real-valued
Cy» such that H(u,c) for nonsingular problems has an

isolated local minimum for u=u¥X if cso Properties of

0"
H(u,c) for singular problems are also investigated in

Section 3.

In Section 4 the multiplier function concept is illust-
rated with some simple examples. The choice of u(u) is
discussed, and it is shown that the particular multip-
lier functions u(u) = A¥®, which is chosen by Hestenes,
and u(u) = —[gu(u_)gg(u)] “le (Wil(w), which has been
investigated by M&rtensson [4] and Fletchex [5], may

be considered as special cases of this general approach.

Numerical methods for the minimization of H(u,c) are con-
sidered in Section 5. Straightforward minimization of

the generalized Lagrangian with ordinary function mini-
mization methods, is compared with new algorithms based

on properties of the multiplier function u(u).




2. NECESSARY AND SUFFICIENT CONDITIONS FOR A CONST-
RAINED LOCAL MINIMUM.

In this section we state the necessary and sufficient
conditions for a local isolated minimum. For proofs

and a more detailed treatment, see e.g. [1]1, [61].

Introduce the Lagrangian L(u,\) associated with the

minimization problem formulated in Section 1.

mo. .
LCu,A\) = £(u) + ) atgh(w)
i=1

A1 are components of the m-dimensional vector A, ge-

nerally called the Lagrange multipliers.

We then have

Lemma 1 (First order necessary condition)

If

i) f has a local minimum at u® subject to the
constraints g(u) = 0,

ii) f and g are once differentiable at u¥%,

iii) ga, i=1, ..., m, are linearly independent at
u¥, ’

then there exists a unique m-dimensional vector i¥%,
such that

Lu(u“,kx) = 0

Notice that i) = iii) are sufficient conditions for
the existence of finite Lagrange multipliers ¥,
The constraint qualification i1ii) may for some prob-

lems be replaced by weaker conditions that are




sufficient for the existence of A*.However, iii) is
very useful from a computational point of view, and

is assumed to hold in the sequel.

A stronger necessary condition for a minimum is gi-

ven by the following second-order condition.

Lemma 2

If £ and g are twice continuously differentiable at
u®, and if the constraint qualification of Lemma 1
holds at u¥, then a necessary condition for u¥ to be
a local minimum, is the existence of a vector A%,
such that

g(u*) = 0

Lu(u“,xx) =0

Further, for every n-dimensional vector y such that

gu(ux)y = 0,

T

YR

u(u”,xx)y 2 0

This can be strengthened to second-order sufficient

conditions.

Lemma 3

Sufficient conditions for u¥® to be an isoclated local

minimum, are that

i) the necessary conditions of Lemma 2 hold,
ii) for every non-zero vector y such that gu(ux)y =
:O,

yTLuu(u”,Ax)y > 0




3. LAGRANGE MULTIPLIER FUNCTIONS.

We now introduce the concept '"Lagrange multiplier

function'.

Definition 1

Let p(u) be a real-valued m~-dimensional vector defined
on R, Then p(u) is a Lagrange multiplier function for

the minimization problem if and only if

i) p(u) exists and is twice differentiable in a
neighbourhood of u¥#,
ii) p(u®) = ¥,

iii) for every ye R, such that y}0, gu(u”)y = 0,
and yTLuu(u“,A“)y = 0, u(u) satisfies

. 4 P AP .
{gu(u")Luu(u",A") + gu(u")gu(u")uu(u")}y =0

Condition iii) will prove to be necessary to handle
singular problems. In iii) it is also assumed that
f(u) and g(u) are at least twice differentiable at
usu®. We assume throughout the paper that this holds

in a neighbourhood of u®.

With the properties of u(u) established, we define a

"generalized Lagrangian" H(u,c) as follows.

Definition 2

The generalized Lagrangian H(u,c) associated with the

minimization problem, is defined as

H(u,c) = £(u) + uT(u)g(u) + ch(u)g(u)




where u(u) is an arbitrary multiplier function and ¢

is a real-valued parameter.

With the assumptions made about f(u), g(u) and u(u),
H(u,c) exists and is twice differentiable in a neigh-

bourhood of u®,

In the following theorems we will establish some im-

portant properties of H.

gheorem 1

For any value of the parameter c, the generalized

Lagrangian H(u,c) has a stationary point at u=u¥®.
Proof: A straightforward differentiation yields

- T T T
H, = fu ugy teu 2cg gy
Since g(u®) = 0, and, according to Lemma 1 and to the

definition of wu(u),
£o(ux) + uT(ut)g (ux) = £ (u¥) + (Ax)Tg (ux) = 0
u gu u gu

it follows that Hu(u“,c) = 0, ¥c

Intuitively it now seems reasonable that the statio-
nary point u=u® can be made a minimum point by choo-
sing the parameter c¢ large enough. To prove this, we
have to distinguish between nonsingular and singular

problems.




Theorem 2

Let u® be a local isolated minimum of f(u) subject to
the constraints g(u) = 0, and assume that the suffi-
cient conditions of Lemma 3 are satisfied. Then there
exists a real-valued parameter Cyo such that Hu(u“,c) =

= 0 and Huu(u“,c) > 0 for c>cy.

Proof: In Theorem 1 it was shown that Hu(u“,c) = 0 in-

dependent of c¢. Then consider Huu(u,c).

m
- 11 T

Ho(u,e) = £+ iz1 LIS - SO S - S R - S0 T

2 i i T i i

* .2 g Huy to2ogygy, t 2¢ .z & &uu

i=1 i=1

For u=zu®, this reduces to
vooid T T T
H o (u¥,e) = £+ iz1 MU, Y MuBy o8ty T 2egLE,
or
« ) - T T T

Huu(u ,C) = Luu(u SJAF) 4 oy et 2cgugu

Now let Q be the subspace of R" spanned by the rows
of gu(u“), and let Ql be the orthogonal complement.
Since the constraint qualifications are assumed to
hold at u*, Q has dimension m. If y,€ 0 and Y,€ Ql,
we t;en have y?y2 = 0, gy = 0 and yq = gzu, where
oe R is uniquely determined by Yqe Similarly, we can

choose an arbitrary basis €15 ey © in Ql. Then

n-m
any y,e Ql may be written




Vy = Z B.e. or y, = GB

=m

where BE€ rRD and G is an nx(n-m)-dimensional matrix

of rank n-m. Conversely, Yo = GR lies in Ql for any
e R™™ ™, Then we may write an arbitrary vector ye rRM

in the form

y = ggu + GB

Now consider yTH (u¥,a)y
uu ? :

T .
y Huu(u",c)y

1

T T y T )
(gua+GB) Huu(u',c)(guu+GB) =

T T T T
- {2Cgugugugu * eutuuBu

T T T T
B BBy Y guguuugu}a ¥

+

T T

o {guLuuG + guguuuG}B +
Ti,T T T T T

g {G byuBu * 6 “ugugu}a *

BT{GTL G}B
uu

where all quantities are evaluated at u=u®,

-

+

To get a better survey, we introduce

T T T T T T T
Ale) = 2Cgugugugu + guLngu + guuugugu + guguuugu

} T -
B = guLuuG * guguuuG

D = GL G
uu




10.

Then

} (7 1] (ace)  B][o]
H (u* 5 ) = 5B
u u cly LOL J L BT b BJ

It now remains to prove the existence of a parameter

Cqs such that
A(c) B
> 0
BT D
for c>cO.

This will be done in three steps. First A(c) is con-
sidered, and it is shown that for every real k>0,
there exists a co(k), such that A(c)>kIm for c>c0(k).
Then we will prove that D>0, and finally it will be
shown that

kI B
m

Bl D

for k large enough.

Consider

- T T T
A(c) - kI = ZC(gugu)(gugu) + guLuugu +

T T T
¥ gu”ugug t BBty T Ky

Since the constraint quallflcatlons hold at u®*, g gT
is nonsingular, and (g wBu )(g uBu ) is positive deflnlte
symmetric. Then there ex1sts a nonsingular transforma

tion S(k) such that [7]




11.

2<gug$><gug§> = ST (K)S(K)

and

T T T T T .
gulyusy * g 08By T BuBytuBu kI =

a1(k) 0
T
= S (k) t . S(k)
0 a (k)
m J

This yields

c+a1(k) 0
Ae) - kI = sT(x) C S(k)

0 g+am(k)

and thus A(c) =~ kIm > 0 for

c>—m%n ai(k).
i

Next consider the matrix D. For every V€ Ql, yzfo,

we have

T v )
yzLuu(un,)\ n)yz > O

according to Lemma 3. But any y, in Ql may be written

Y, * GB, and any vector GB lies in QL. Then
T.T T
B°G Luu(un,kn)GB >0

. T
for B#O, which proves that D = G Luu(ux,kx)e is posi-

tive definite.




12.

Finally we will consider the matrix

KT B|
gL DJ

Introduce the nonsingular transformation

Im -.]E B
L(k) =
0 T
n-m
Then
KT B I 0
T m m
LY (k) L(k) =
BT D 0 %(kD~BTB)

and thus it is sufficient to prove that kD - BTB > 0
for k large enough. But D is positive definite, and
then there exists a nonsingular transformation T,
such that

D= TIT
and
b1 0
BB = 7T T
0 b
m

Thus we have kD - BTB > 0 for

k>max b.
i 1
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This completes the proof of the existence of a finite

¢y, such that Huu(u",c) > 0 for c>cg.

The theorem evidently breaks down if the problem is
singular, i.e. D is only nonnegative definite. To be
able to extend the multiplier function concept to

this case, it is natural to require that H(u,c) should

have the properties
Hu(ux,c) = 0

Huu(u",c) 2 0

independent of the character of the optimal solution.
We will now prove, that this is attained by including
the condition iii) in the definition of the multiplier

functions.

gheoremmi

Let u* be a local minimum of f(u) subject to the

constraints g(u) = 0. Then there exists a c such

09
that Hu(u",c) = 0 and Huu(u“,c) > 0 for c>cg.

Proof: It is necessary and sufficient to prove that

for k large enough. The theorem will then follow from

the proof of Theorem 2.

Since D may be singular, a necessary condition obvious-

ly is

B = 0




.

for every Be»Rn_m, such that

But from the definition of B, D and B follows that

this is equivalent to

T -
(gulyu * BuByHy?Y = O

for every y € Rn, such that

uu

Thus condition iii) is a necessary condition for
Huu(u“,c) > 0. To prove that iii) is a sufficient con-
dition (together with i) and ii)), and to get a mea-
sure of k, assume that rank D = r, 0 < r < (n-m).

Then D may be written

where D1 is an rx{(n-m) matrix of rank r. Let P be the

subspace of RN spanned by the rows of D1, and let
PL be the orthogonal complement. Then every g€ r-M

may be uniquely decomposed into

-l
B = D1Y + 82

where D?ye P and B,e Pl, Since D162 = 0, VBQe pl, it

T
follows that 32D?D132 = BéDB2 = 0, and thus B82 = 0




15.

according to condition iii). Then

sT¢xp - BTB)g (wa ¥ B?)T(kD?D BTB><DfY +8,) =

§]

1

T T T T_.T
Y [k(D1D1)(D1D1) - D,B BD1]Y

i

But (D1D?)(D1D?) is positive definite symmetric and
then there exists a nonsingular transformation V such

that

T

T Ty _

and

s1 0
p,BTept = yT| - v

1 1
0 8
r

Thus

eT(xp - BYB)s 2 0, geRr
for

k 2 max s..
3 i

We have then proved the existence of a finite Cqo

such that H_(u¥,c) 2 0 for c>c..
uu 0
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4., EXAMPLES.

To illustrate the multiplier function concept, some
particular choices of u(u) are investigated in this
section. We will also try to make clear by examples,
how different choices of u(u) may result in different
properties of the generalized Lagrangian. The possi-
bility to generate different generalized Lagrangians
is of great importance for the numerical solution of

the optimization problem.

Example 1

Assume that the optimal multipliers A¥ are & priori
known. A simple choice of the multiplier function
might then be

p(u) = A% = const.

This special case has been considered by Hestenes [3].
It may seem strange to assume the optimal multipliers
to be & priori known, when the optimal solution is
not known. The reason for this will become clear in
the next section, where computational methods based
on successive estimations of A¥ are considered. It is

then important to establish properties of
- T T
Hi(u,c) = f(u) + Aig(u) + cg (u)g(u)

as A tends to the optimal multipliers i¥.

For nonsingular problems, y(u) = A% obviously is an
admissible multiplier function since it trivially sa-
tisfies conditions i) and ii) of the multiplier func-
tion definition. In the singular case, however, it

depends on the particular problem whether plu) = A%
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satisfies condition iii) or not. This condition be-
comes particularly simple for this multiplier func-

tion. Consider

T _ -
(guLuu * guguuu)yQ - guLuuyz =0

Thus Luuy2€ Qi, where Ql is the orthogonal complement
of the subspace spanned by the rows of gu° But in the
singular case, there exists Yoe Ql, Yo $ 0, such that

T -
Yolyuye = 0

and thus Luuy2e Q. Since QN ol = {0}, the condition

iii) then reduces to Luuy2 = 0.

Consider the following simple singular problem. Mini-

mize

f(u) = (u1-u2)2

subject to the constraint

glu) = uy ~u, =0 (Problem 1)

. T _ - T - .
Choosing Yy = (a,a), gy * 0 and yQLuuy2 = 0 for any
value of a. But L vy, = 0 and thus u(u) = A¥ = 0 is
an admissible multiplier function. In this case the
(1+c)(u1—u2)2.

generalized Lagrangian is H(u,c)

For the following problem u(u) = A% is not a multiplier

function. Minimize

. 2 2
f(u) = uy - us
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subject to
g(u) = u; *u, =0 (Problem 2)

Choosing yg = (a,-a), g9 0, ygLuuy2 = 0 but

Luuy2 $ 0, 0$0. The generalized Lagrangian becomes

2 2 " 2
H(u,c) = uy - ou, + A"(u1+u2) + c(u1+u2) , Or

1 (2c+2 2¢c

H(u,c) = = (u—u“)T[

5 }(u—u“)

2c 2¢=2

where u® is the optimal solution corresponding to
the particular choice of X¥ (A¥ turns out to be ar-
bitrary). It is easily verified, that for this prob-
lem, the optimal solution u¥ cannot be made a mini-
mum of H(u,c) by choosing c¢ large enough. To prove
this, choose ol = (u? - 2ca/(2c+2), uj + @) .Then

H(u,c) - H(u®,c) =-la?

for any finite ¢, and thus H(u®,c) > H(u,c) if a#0.

Example 2

To avoid the trouble associated with singular prob-
lems, one obviously should look for a multiplier func-
tion that satisfies the conditions i) - iii) for any
character of the problem. One possibility to achieve

this is to choose
T -1 T
p(u) = - (gu(u)gu(u)) g, (WE (w)

This multiplier function has been investigated by

Martensson [4] and Fletcher [5]. Assuming f(u) and
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g(u) three times differentiable in a neighbourhood
of u*, it can be shown [41, that u(u) exists and is
twice differentiable in a neighbourhood of u*, that

" . ” w4 x wy LT, o
p(u®*) = A¥, and that gu(u")Luu(u",X") + g (uf)g (u¥)e
> uu(u“) = 0. Thus u(u) is an admissible multiplier

function for both singular and nonsingular problems.

With this choice of multiplier function, we get the
same generalized Lagrangian for Problem 1 as in the
previous example, namely H(u,c) = (1+c)(u1—u2)2. How-
ever, for Problem 2, the generalized Lagrangian now
becomes H(u,c) = c(u1+u2)2, and this possesses all

the desired properties.

We will illustrate the multiplier function concept
with one more simple problem. This also illustrates
the possibility of handling inequality constraints

by means of slack variables. Minimize

flu) = - 16 u3 - 2u2

7= Uy + 2u

—

subject to the constraint

ug - 1 ¢ 0 (Problem 3)

The problem has two local isolated minima, one at the
constraint u1=1, and one at u,=-0.5. The inequality
constraint may be transformed into an equality const-
raint by adding a slack variable U, in such a way that
the constraint qualifications of Lemma 1 are satisfied,

e.g.
= - 2
glu) = u, T +u; =0

In Fig. 1, contour levels of H(u,c) are drawn for c=0,

1.0 and 5.0. Since H is symmetric with respect to u,,
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the contour levels are drawn only for uzzD. From the
figure it is clear that any minimization method should
be able to reach one of the minima if we choose c
large enough, and if the initial guess is not too far
from the curve representing the equality constraint
g(u) = 0. For further examples of the slack variable

technique, we refer to [UW].

Examgle 3

In this example we will indicate some obvious genera-

lizations of the preceding example.

One drawback of the multiplier function

b = - (gug) g I

is that (gugz) may be singular for some u outside the
equality constraint. A possible way to overcome this,

is to choose

T T -1 T
u(u) = - (gugu + g g Im) gufu

It is easily verified that this is an admissible mul-
tiplier function for both singular and nonsingular

problems.

It is also clear from Fig. 1, that one may get into
trouble if the initial guess of the optimal solution
is too far away from the curve representing the
constraint. To get the right slope of H(u,c), but
preserving its smooth character around the optimal

solution, one could select

b = - (ge g e+ (5Te) e
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The multiplier functions considered in this section
have been explicite functions with similar basic
structure. An interesting problem is then, whether
there exist multiplier functions with different
structures or not. It may also be of great interest
to try to define the multiplier function implicitely.

These problems have not yet been investigated.
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5. ALGORITHMS AND COMPUTATIONAL ASPECTS.

A number of different algorithms can be designed for
the minimization of the generalized Lagrangian H(u,c).
Roughly they can be separated into two major classes,
direct minimization of H(u,c) with ordinary function
minimization methods, and iterative estimation of the
multiplier function u(u). Although the latter methods
require iteration in a larger space, they can be made
very efficient by using the function properties of

the multiplier u(u).

Direct Minimization Methods.

A straightforward way to minimize H(u,c) is to use a
minimization method where only function value evalua-
tions are required, e.g. the methods of Powell [8]
and Stewart [9]. Stewart's method, which is a modifi-
cation of Davidon's method [101, is generally consi-
dered to be somewhat more efficient since difference
approximations of the derivatives can be used. How-
ever, as was illustrated in Section 4, the multiplier
functions must be chosen carefully since we do not

have any a priori estimate of the parameter c.

This problem can to some extent be avoided if it is

possible to evaluate wu . Then the derivative

Hy = &y ¥ uTgu ¥ gTuu ¥ 2Cngu

of H(u,c) can be computed, and a more efficient mini-
mization method can be used, e.g. the method of Flet-
cher and Powell [11]. But it will also be possible to
get an a priori estimate of c, and thereby make the
minimization of H(u,c) less sensitive to the particu-

lar choice of u(u).
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Consider the quantity gT(u)g(u), which equals zero
if and only if the constraints are satisfied. If it

is required that H(u,c) has the property

El——-'(g;Tg) B > 0
du b

then the magnitude of ng can be decreased by moving
in the direction opposite to Hu’ that is, in the steep-

est descent direction. But

T

fa , T T T T T T
[g;(g g)}Hu = 2g gu(fu tutg, togiu t 2cg gu)

and then this condition i1s satisfied if

T T T T
grg, (f, g + u8)

P Y
2 8,8,8

for g(u) # 0. Further properties of this measure are

discussed in [h4].

Multiplier Estimation Methods.

An obvious disadvantage of direct minimization methods
is the time-consuming function and gradient evalua-
tions that have to be carried out for every step. It
then seems reasonable that methods based on iterative
estimation of the optimal multipliers could be made

more efficient than the direct minimization methods.

In this section, different estimation algorithms are
derived, and they will be classified according to
their convergence properties for quadratic functions

with linear constraints.
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Consider the following simple iteration scheme:

Make an initial guess of )*, say My (subscripts will
be used to denote the iteration step). Then minimize
Flu,uy) = £(u) + ug(w) + cgl(uW)g(u) with an effici-
ent minimization method. Assume that the minimum oc-

et s TE 8l
quantity, then Uy q is the optimal solution. Other-

curs for u = u ) ¢ §, where § is a small
wise compute a new estimate Hicpq = u(uk+1) and repeat

the procedure,

Notice that the algorithm does not depend on any par-
ticular choice of the multiplier function p(u). It is
then natural to examine if u(u) can be selected so

that the algorithm is further simplified.

Assume that u minimizes F(u,uk). Then

+1

T T _
fu(uk+1) + “kgu(uk+1) + 2cg (uk+1)gu(uk+1) = 0

-1

and post-multiplying by gT(u )[gu(u )gz(u 1,

u T k+1 k+1 k+1

we get

-1
T T T T _
fu(uk+1)gu(uk+1)[gu(uk+1)gu(uk+1)} + uy t+ 2cg (uk+1) = 0

From this we conclude that w(u) = - (gugi)_1gufz is a
suitable choice of the multiplier function, since the

new estimate M 41 then satisfies

T T T -
= Mg Foupt 2cg (uk+1) = 0
or
Miepq = Py +o2egluy )
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This will drastically reduce the computations involved.
It is also interesting to notice, that this recursive
relation, which also has been suggested by Hestenes
[3], can be considered as a special case of a more ge-

neral estimation algorithm.
The algorithm can then be summarized as follows:

First order algorithm:

a) Set My F 0

b)  Minimize F(u,w) = £(u) + pig(w) + cg (wgw)
with an ordinary function minimization algorithm,
e.g. Fletcher-Powell. Notice that the evalua-
tions of the function value and of the gradient
are very simple. Assume that the minimum occurs

for u = u

k+1°
c) It || g(uk+1) || ¢ 6, where 8 is a small quanti-
ty, then u® = Uy g e
d) If || g(uk+1) [l > &, set Mipq 7 Myt ch(uk+1)

and return to b).

It is possible to establish convergence properties of
the algorithm for quadratic functions with linear

constraints.

Theorem U

Let f(u) be quadratic, and assume that the constraint
g(u) is linear. If u(u) = A* is an admissible multi-
plier function for the problem, the algorithm conver-

ges to the optimal solution for c > max(O,QcO).

Proof: Consider the situation at stage k. Since Uyiq

minimizes F(u,u, ), we have
2 k 9
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T T, 3
£ty + e () + 202 (o 0g (uyyq) = 0

or

T -
FalUppq ) * w18y (uygq) = 0

At stage k+1, minimizes F(u,uk+1), and

uk+2

£ (

T T
ulen? ¥ M8, () + 2e87 (U

)gu(uk+2) =0

k+2
Combining these conditions, and expanding f(u) and

g(u) yields

T T

T _ _ - T
2cg gy © (uk+1 uk+2) fuu 20uk+2gugu

where all quantities are evaluated at u=0. Then con-

sider the identity

T T i}
C[% (up 8l ) - 8 (uk+1)g(uk+1)] §

T T T v 200 s C _ ;
= CU 08B0k +2 T Y1808 0tk Cg Zu g™ Yieut

Insert the expression for 2chgu and rearrange the

terms to get

T T
c{% (uk+2)g(uk+2) - g (uk+1)g(uk+1)}

T

) (f

) T
== (o 7 Uy au Foegpg) (yn = Uy )

Since u(u) = A¥% is assumed to be an admissible mul-

tiplier function,
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T
fuu g g, 2 0

for c>2c0 according to Theorem 3, and we then have to

investigate two different cases separately.

T
Assume that fu tcg8y 0 for c>200. Then

u
T T
g (uy 8l o) < g (u gl )

for ¢ > max(O,?cO) provided that u Since

T a2 F Ui
[l gCo) || 20, g (ui)g(ui) will converge either to
zero or to a finite G>0. In the latter case we get
),

= u, and u ., But wu. = U, + 2cg(ui+

Yi42 i+l i+2 T Viete i42 i+1 2
which proves that Usyp 5 Uiy if and only if g(ui+2) =
= g(ui+1) = 0. Thus the algorithm converges for non-
singular problems.
Then consider the singular case, that is, there

. T T
exists y, £ 0, such that yolf y * C8,80Y9 = 0
c > max(D,?cO). Then, according to the multiplier
function definition and to Theorem 3, g9 ° 0 and
Luqu fuuy2 = 0. This implies that

_ _ T _ T T

2egigy = (g = W) E Ly T 200,088,
reduces to

T -
2cg (uk+2)gu = 0
and then g(uk+2) = 0, c>0, since g, is assumed to sa-

tisfy the constraint qualifications, i.e. to have full

rank. This completes the convergence proof of algorithm.
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It is instructive to verify the convergence for the

following simple example. Minimize

22
fF(u) = uy u;

subject to

uy - 2u2 - 2 =0

For this problem cy = %, and for c > % the algorithm
: . S n

converges to the optimal solution Uy = T3, Uy =7 o3

For ¢ <« % the algorithm diverges, while for c = % the

quantity gT(ui)g(ui) is constant.

The convergence rate depends on the choice of c. Int-
roduce g, = | g(uk) || and choose c=1. The following

residuals are then obtained:

1
€41 T 7 Fx €1

Increasing ¢ to c=5, convergence is improved conside-

rably, and the residuals are

1 1
T fx €9

C)e1 T 177

So far, the multiplier function concept has been used
only for estimation of the optimal multipliers. The
properties of u(u) will now be exploited to develop
second order algorithms, that is, algorithms with one-
step convergence for linear-quadratic problems. The

following theorem will be required.
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‘Theorem 5

Let u® minimize f(u) subject to the constraints g(u) =
= 0, and assume that the sufficient conditions of Lem-

ma 3 are satisfied. Define the projection P (u) as

-1
P = . T
(u) In gu(u) {gu(u)gu(uﬂ gu(u)
Then
LY d as LYd T LY an
P(u )Luu(u JAR) 4 QCgu(u )gu(u )

is nonsingular for c}0.

Proof: The theorem is proved by contradiction. Assume
that PLuu + Qnggu is singular, and that there exists
z#0, such that ZT(PL au T ZCng ) = 0. Decompose z in-
to z = gTa 2,5 where g% € Q, the space qunned by

the rows of g, and Z,€ Ql . Then z (PL w T ch W&y ) =

= 0 is equivalent to

L =0

T
2 uu

T T
2co (gugu)gu + z

since guP = 0 and ng = zg. Now éssume that there
exists 22#0, such that 2caT(gugz)gu + ZZLuu = 0. Post-

multiplying by Z, then yields

T -
Z?Luu 2 - 0

which contradicts the assumption that szuuz2 > 0 for
22#0 (Lemma 3). If z

for c40, which contradicts the constraint qualifica-

T
, = 0, af0, then o" (g g lg, = 0

tion, i.e. the linear independence of the rows of g,
Thus, for c$0, there is no nonzero solution, and

P(u“)L G (u¥s s ) o+ QCgT(u')g (u¥®) is nonsingular.
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Corollary
If f(u) is quadratic and the constraints g(u) are li-

near, then

T
Pfuu + QCgUgu

is nonsingular for c#0.

Proof: Pfuu + 2cg$g is independent of u and is non-

u
singular for u=u®*.

Using these results, we will now design a second or-
der estimation method. Assume that an estimate Mo of
the optimal multipliers A% = My ¥ Guk is available.

Let u# = Uy 4 + 6uk+1, where Uy 44 Minimizes F(u,uk),
be the optimal solution. Approximate Fu(u”,kx) with

a first order series expansion about Uppqs Mo Then
Pl as) = Foluy qomd + By qom dduy g+

+ F = 0

up Mot 24 Sy
Since Fu(uk+1°“k) = 0, this reduces to

F + F =z 0

uu(uk+1’uk)6uk+1 uu(uk+1’“k)5uk

In contrast to the first order algorithm, the quanti-

ty Guk is now unknown. But u(u) is a function of u,

and so we make the following approximation of Sy e
Sup = uluy ) = )+ () suy g

Now choose the particular multiplier function p(u) =

= - (gugz)"1gufgf Then
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Guk = 2cg(uk+1) + uu<uk+1)6uk+1

Inserting this into the series expansion, we get

Fuuéuk+1 + Fuu6"k: Fuuéuk+1 + ZCFuug + Fuuuusuk+1 =0
where all quantities are evaluated at Uppqo My No-
ticing that Fuu = gi, this is equivalent to
GO T Tooid T
fuu ¥ iz "1Buu ¥ 2Cgugu to2e 121 & Buu * ByMy 6uk+1 ¥
+ 2cggg =0

or

f + % i i + 2¢ T + Tu S + 2c Te = 0
uu c Hk+18uu 8ubu BuMul “Vke+1 Bu& ~

), we have to differentiate the
k+1 1 T

multiplier function u(u) = - (gugz)- g.f - It is then

To evaluate uu(u

easily verified that

_ T, -1 T 3
uu(uk+1) - (gugu) gu[fuu * iz1 Uk+1guu]
and thus
m . .
1 1 T ‘ T _
P fuu * .21 Uk+1guu} ¥ 2Cgugu 6uk+1 * 2cgug =0
L 1= ) |

where P is the projection matrix
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) T T, -1
=1, gu(gugu) By

In Theorem 5 it was shown that P(u“)Luu(u“,A“) +

+ QCgE(u“)gu(u“) is nonsingular for c$0, so that for

Uyt sufficiently close to u¥, we get

su = - (P(u, )L ( ) +

k+1 k+1 7 uu Y1 M

-1
T T
+ chu(uk+1)gu(uk+1)) ZCgu(uk+1)g(uk+1)

For the linear-quadratic problem, this will yield the
optimal solution u* = Upgq + 6uk+1 in one step. Also
notice, that in case g4 is nonsingular, Suy g

_ -1 . w .
= - g, (uk+1)g(uk+1), that is, u* is determined by the

condition g(u¥*) = 0.

Summarizing, we get the following algorithm:

Second order algorithm I:

a) Select wy = 0.

b) Minimize F(u,uk) with an ordinary function mi-

nimization algorithm. Assume that the minimum

occurs for u = Uy
c) If || glu, 4 || < 6, where § is a small quan-
tity, then u¥® = Uy
a) Compute
M1 T Wy + 2cg(uk+1)
T
G = P(uk+1)Luu(uk+1’“k+1> + 2cgu(uk+1)gu(uk+1)
and
- . -1 T
Sup g = = 206 Tgr(uy g Cuy )

If G is singular, return to b) and minimize

F(u,uk+1).
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e) Estimate u + Su +1) and return to b).

ke = Mg Ik

Notice that this algorithm depends heavily on the par-
ticular choice of p(u). To allow for arbitrary multi-
plier functions, one possibility is to simply approxi-

mate p(u) by the series expansion

plu) = u(uk) + uu(uk)(u—uk)

We then have
Second order algorithm II:

a) Set u(u) = 0 and uu(uk) = 0,
b)  Minimize £(uw) + [u(u) + u (u)(u-u )1 glu) +
+ 2ch(u)g(u) with an ordinary minimization al-

gorithm. Assume that the minimum occurs for

U= Uy
c) If | glu,y) || < &, then u¥* = uy 4.
da) Compute u(uk+1) and w (uy  4) and return to b).

The function and gradient evaluations at stage b) are
still very simple, since u(uk) and uu(uk) are evalua-
ted only at the minimizing point Uy . The convergence
properties of the algorithm depend on the choice of
p(u). In particular, if u(u) = - (gugg)_jgufz the al-
gorithm has one-step convergence for linear-quadratic

problems for c»>c In this case the approximation of

O'
p(u) is exact.
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