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ABSTRACT    

Although the concept of statistical tolerance limits has been well recognized for long time, surprisingly, 

it seems that their applications remain still limited. Analytic formulas for the tolerance limits are 

available in only simple cases, for example, for the upper or lower tolerance limit for a univariate 

normal population. Thus it becomes necessary to use new or innovative approaches which will allow 

one to construct tolerance limits on future order statistics for many populations. In this paper, a new 

approach to constructing lower and upper tolerance limits on order statistics in future samples is 

proposed. Attention is restricted to invariant families of distributions under parametric uncertainty. 

The approach used here emphasizes pivotal quantities relevant for obtaining tolerance factors and is 

applicable whenever the statistical problem is invariant under a group of transformations that acts 

transitively on the parameter space. It does not require the construction of any tables and is applicable 

whether the past data are complete or Type II censored. The proposed approach requires a quantile 

of the F distribution and is conceptually simple and easy to use. For illustration, the normal distribution 

is considered. The discussion is restricted to one-sided tolerance limits.  A practical example of finding 

a warranty assessment of image quality is given. 

Keywords: Order Statistics, F Distribution, Lower Tolerance Limit, Upper Tolerance Limit, Normal 

Distribution. 

1 Introduction  

Statistical tolerance limits are an important tool often utilized in areas such as engineering, 

manufacturing, and quality control for making statistical inference on an unknown population. As 

opposed to a confidence limit that provides information concerning an unknown population 

parameter, a tolerance limit provides information on the entire population; to be specific, one-sided 

tolerance limit is expected to capture a certain proportion or more of the population, with a given 

confidence level. For example, an upper tolerance limit for a univariate population is such that with a 

given confidence level, a specified proportion or more of the population will fall below the limit. A 

lower tolerance limit satisfies similar conditions. 

It is often desirable to have statistical tolerance limits available for the distributions used to describe 

time-to-failure data in reliability problems. For example, one might wish to know if at least a certain 

proportion, say , of a manufactured product will operate at least T hours. This question can not 

usually be answered exactly, but it may be possible to determine a lower tolerance limit L(X1, …, Xn), 
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based on a preliminary random sample (X1, …, Xn), such that one can say with a certain confidence  

that at least 100 % of the product will operate longer than L(X1, …, Xn). Then reliability statements 

can be made based on L(X1, …, Xn), or, decisions can be reached by comparing L(X1, …, Xn) to T. 

Tolerance limits of the type mentioned above are considered in this paper. That is, if f (x) denotes the 

density function of the parent population under consideration and if S is any statistic obtained from 

the preliminary random sample (X1, …, Xn) of that population, then L(S) is a lower  probability 

tolerance limit for proportion  if 

    
( )

Pr ( ) ,
L S

f x dx  (1) 

and U(S) is an upper  probability tolerance limit for proportion  if  

    

( )

Pr ( ) ,
U S

f x dx  (2) 

where  is the parameter (in general, vector). 

The common distributions used in life testing problems are the normal, exponential, Weibull, and 

gamma distributions [1]. Tolerance limits for the normal distribution have been considered in [2], [3], 

[4], and others.  

Tolerance limits enjoy a fairly rich history in the literature and have a very important role in 

engineering and manufacturing applications. Patel [5] provides a review (which was fairly 

comprehensive at the time of publication) of tolerance limits for many distributions as well as a 

discussion of their relation with confidence intervals for percentiles and prediction intervals. 

Dunsmore [6] and Guenther, Patil, and Uppuluri [7] both discuss 2-parameter exponential tolerance 

intervals and the estimation procedure in greater detail. Engelhardt and Bain [8] discuss how to modify 

the formulas when dealing with type II censored data. Guenther [9] and Hahn and Meeker [10] discuss 

how one-sided tolerance limits can be used to obtain approximate two-sided tolerance intervals by 

applying Bonferroni's inequality. Tolerance limits on order statistics in future samples coming from a 

two-parameter exponential distribution have been considered in [11]. 

In contrast to other statistical limits commonly used for statistical inference, the tolerance limits 

(especially for the order statistics) are used relatively rarely. One reason is that the theoretical concept 

and computational complexity of the tolerance limits is significantly more difficult than that of the 

standard confidence and prediction limits. Thus it becomes necessary to use new or innovative 

approaches which will allow one to construct tolerance limits on future order statistics for many 

populations. 

In this paper, a new approach to constructing lower and upper tolerance limits on order statistics in 

future samples is proposed. For illustration, the normal distribution is considered. It is a commonly 

used model in reliability and risk theory. Although the concept of statistical tolerance limits has been 

well recognized for long time, surprisingly, it seems that their applications remain still limited. 
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2 Mathematical Preliminaries 

2.1 Probability Distribution Function of Order Statistic 

Theorem 1. If there is a random sample of m ordered observations Y1…Ym from a known distribution 

(continuous or discrete) with density function f (y), distribution function F (y), then the probability 

distribution function of the kth order statistic Yk, k{1, 2, …, m}, is given by 

2( 1),2

1 ( ) 2

( ) 2( 1)

( | ) ( ) ,

k

k

k k m k k

F y k

F y m k

P Y y m f x dx









 



 

  

 

(3) 

where 

2( 1)/2 1

2( 1),2

2( 1) 2( 1)1
( )

2 22( 1) 2
,

2 2

m k

m k k

m k m k
f x x

k km k k  

 

 [2( 1) 2 ]/2
2( 1)

 1 ,    0,
2

m k k
m k

x x
k

 (4) 

is the probability density function of an F distribution with 2(mk+1) and 2k degrees of freedom. 

Proof. Suppose an event occurs with probability p per trial. It is well-known that the probability P of 

its occurring k or more times in m trials is termed a cumulative binomial probability, and is related to 

the incomplete beta function Ix(a, b) as follows: 

    (1 ) ( , 1).
m

j m j
p

j k

m
P p p I k m k

j
 (5) 

It follows from (5) that  

( )
{ | } [ ( )] [1 ( )] ( , 1)

k

m
j m j

k k k k F y
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m
P Y y m F y F y I k m k
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1 2 2
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2( 1)/2
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2( 1)/2 1

1 ( ) 2

( ) 2( 1)

2( 1)

2 2( 1)
1 ,

22( 1) 2
,

2 2
k

k

m k

m k k

m k

F y k

F y m k

m k

k m k
x x dx

km k k
 (6) 

where 
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1 2

.
2( 1)

u k
x

u m k
 (7) 

This ends the proof. 

Corollary 1.1. 
1 ( ) 2

( ) 2( 1)

2( 1),2

0

( | ) 1 { | } ( ) .

k

k

F y k

F y m k

k k k k m k k
P Y y m P Y y m f x dx

 

(8) 

Corollary 1.2. If yk,m; is the quantile of order  for the distribution of Yk, we have from (8) that yk,m; is 

the solution of 

, ;

2( 1),2 ;1

( ) ,
( 1)k m

m k k

k
F y

k m k q
 (9) 

where 𝑞2(𝑚−𝑘+1),2𝑘;1− is the quantile of order 1 for the F distribution with 2(mk+1) and 2k 

degrees of freedom. 

2.2 Normal Distribution 

The normal distribution is perhaps the most commonly used probability distribution in both statistical 

theory and applications. For example: 1) many classical statistical tests are based on the assumption 

that the data follow a normal distribution (this assumption should be tested before applying these 

tests); 2) in modeling applications, such as linear and non-linear regression, the error term is often 

assumed to follow a normal distribution with fixed location and scale; 3) the normal distribution is 

used to find significance levels in many hypothesis tests and confidence intervals. 

Physical measurements in areas such as meteorological experiments, rainfall studies, and 

measurements of manufactured parts are often more than adequately explained with a normal 

distribution. In addition, errors in scientific measurements are extremely well approximated by a 

normal distribution.  

In 1733, Abraham DeMoivre developed the mathematical equation of the normal curve. It provided a 

basis for which much of the theory of inductive statistics is founded. The normal distribution is often 

referred to as the Gaussian distribution, in honor of Karl Gauss (1777-1855), who also derived its 

equation from a study of errors in repeated measurements of the same quantity. Properties of the 

normal distribution have been well developed (e.g., see Johnson et al. [12], Patel and Read [13], 

Balakrishnan and Nevzorov {14], Kotz and Vicari [15].  

The normal distribution plays a vital role in many applied problems of biology, economics, engineering, 

financial risk management, genetics, hydrology, mechanics, medicine, number theory, statistics, 

physics, psychology, reliability, etc., and has been extensively studied, both from theoretical and 

applications point of view, by many researchers, since its inception. 

Thus, the normal distribution is a widely used and widely known distribution. It is characterized by the 

probability density function of a continuous random variable Y, 

    
2

2

( )1
( ) exp ,   ,

22

y
f y y  (10) 
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that is, Y ~ N(,2), where  = (,),  <  <  is the location parameter and  > 0 is the scale 

parameter. These parameters are assumed to be unknown. The cumulative distribution function of 

the normal distribution is given by 

   
2

2

( )1
( ) exp .

22

y
y

F y dy  (11) 

It is known (Nechval and Vasermanis [16]) that the complete sufficient statistic for the parameter, 

based on observations in a random sample (X1, ..., Xn) of size n from the normal distribution (10) is 

given by 

    
2 2
1

1 1

/ ,  ( ) / ( 1) .
n n

i i
i i

S X X n S X X n  (12) 

Here the following theorem takes place. 

Theorem 2. Let (X1, ..., Xn) be a preliminary random sample from the normal distribution (10) , where 

it is assumed that the parameter  = (,) is unknown. Then the joint probability density function of 

the pivotal quantities, 

     
1

( )
,

n X
V






    

2

1
2 2

( 1)
,

n S
V






 
(13) 

is given by 

     1 1 2 2( ) ( ) ( ),f v f v f v  (14) 

where  

   1 2( , ),V V V   (15) 

  

2

1
1 1 1

1
( ) exp ,    ,

22

v
f v v



 
     

   

(16) 

 
( 1)/2 1

2 2 2 2 2( 1)/2

1
( ) exp( / 2),    0.

2 ( 1) / 2

n

n
f v v v v

n

 


  

 
 

(17) 

Proof. The joint density of X1, ..., Xn is given by 

2 1/2 2

1 2
1 1

1
( ,  ..., ) ( ) (2 ) exp ( )

2

r n

n i i

i i

f x x f x x   




 

 
    

 
   

 

2 /2 2

2
1

1
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2

n
n

i

i
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(18) 

Using the invariant embedding technique [17]-[19], we transform (18) to 

2 2 /2 2 2

1 1 12
1

1
( ,  ..., ) (2 ) exp ( )

2

n
n

n i

i

f x x dxds x x x dxds  






 
     

 
  

2 /2 2 2 2
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1

1
(2 ) exp [( ) 2( )( ) ( ) ]

2

n
n

i i

i

x x x x x x dxds  
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(19) 

Normalizing (19), we obtain (14). This ends the proof. 

Thus,  

     
2

1 2 1~ (0,1),    ~ ,nV N V    
(20) 

where V2 is statistically independent of V1. 

Corollary 2.1. If V1 is a normally distributed random variable with unit variance and zero mean, 

and V2 is a chi-squared distributed random variable with n1 degrees of freedom that is statistically 

independent of V1, then 

 

1 1
1,

2

~ ( ),    ,
/ ( 1)

n

V V
T f t t

V n W
 

   
    


 

(21) 

is a non-central t-distributed random variable with n1 degrees of freedom and non-centrality 

parameter , where  
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(23) 

is the probability density function of T, 
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2 ( 1) / 2

n
n
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n
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(24) 

is the cumulative distribution function of T. (x) is the standard normal distribution function. Note 

that the non-centrality parameter  may be negative. 

3 Tolerance Limits on Order Statistic 

3.1 Lower Tolerance Limit 

Theorem 3. Let X1, …, Xn be observations from a preliminary sample of size n from a normal distribution 

defined by the probability density function (10). Then a lower one-sided -content tolerance limit at 

level , Lk Lk (S) (on the kth order statistic Yk from a set of m future ordered observations Y1…Ym also 

from the distribution (10) ), which satisfies 

    Pr ( | ) ,
k k

P Y L m  (25) 

is given by 

    1,k LL X S   (26) 

where  

   
, ;

,
r

L

t

n





   (27) 

is the lower tolerance factor, 𝑡𝑟,; is the quantile of order  for the non-central t-distribution with 

r=n1 degrees of freedom and non-centrality parameter 1 ,z n


  
 1z   denotes the 1 

quantile of a standard normal distribution,     

     
2( 1),2 ;

2( 1),2 ;

( 1)
,

( 1)
m k k

m k k

m k q

m k q k
 (28) 

𝑞2(𝑚−𝑘+1),2𝑘; is the quantile of order  for the F distribution with 2(mk+1) and 2k degrees of 

freedom. 

Proof. It follows from (8), (11) and (25) that 
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where   

     
1

,k
L

L X

S
 (30) 

is the lower tolerance factor,  

   1 ,    1,    .Lz n r n t n


        (31) 

It follows from (25), (29) and (31) that the lower tolerance factor L should be chosen such that 

      , , , , ;( ) ( ) ( ,) ,r r L r rF t F n F t          (32) 

where 𝑡𝑟,; is the quantile of order  for the non-central t-distribution with r degrees of freedom 

and non-centrality parameter . It follows from (32) that 

   
, ;

.
r

L

t

n





   (33) 

It follows from (30) that 1.k LL X S   This completes the proof. 

Corollary 3.1. It follows from (29) that  1 1Pr L n W V z n


    can be transformed as follows: 
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where 

     1,    .Lt n z n


       (35) 

Then it follows from (25) and (34) that t has to be found such that 
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where 
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is the probability density function of T, where 
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Corollary 3.2. If  
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This form of the density function is derived in Rao [20] and appears in Searle [21]. In both Rao and 

Searle,   is incorrectly omitted from the denominator. It should also be noted that the central t-

distribution is just a special case of the non-central t with  = 0.  

Corollary 3.3. If k=m=1, then 

   1,    .z n      
  

(42) 

3.2 Upper Tolerance Limit 

Theorem 4. Let X1, …, Xn be observations from a preliminary sample of size n from a normal distribution 

defined by the density function (10). Then an upper one-sided -content tolerance limit at level , Uk 
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Uk (S) (on the kth order statistic Yk from a set of m future ordered observations Y1…Ym also from 

the distribution (10) ), which satisfies 

    Pr ( | ) ,
k k

P Y U m  (43) 

is given by 
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𝑞2(𝑚−𝑘+1),2𝑘;1− is the quantile of order 1 for the F distribution with 2(mk+1) and 2k degrees of 

freedom. 

Proof. It follows from (3), (11) and (43) that 
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where   

    
1

,k
U

U X

S
 (48) 

is the upper tolerance factor,  

     
11 ,    1,    .Uz n r n t n
 

        (49) 

It follows from (43), (47) and (49) that the upper tolerance factor U should be chosen such that 

  , , , , ;1( ) ( ) ( ,) 1 ,r r U r rF t F n F t            (50) 

where 𝑡𝑟,;1− is the quantile of order 1 for the non-central t-distribution with r degrees of freedom 

and non-centrality parameter . It follows from (50) that 

    
, ;1

.
r

U

t

n




 
   (51) 

It follows from (48) that 1.k UU X S  This completes the proof. 

Remark 1. It will be noted that an upper tolerance limit may be obtained from a lower tolerance limit 

by replacing  by 1,  by 1.  

4 Practical Example of Finding a Warranty Assessment of Image Quality 

The image quality assessment (IQA) plays a very crucial role in image and video processing. The aim is 

to replace human judgment of perceived image quality with a machine evaluation. A large effort has 

been devoted to developing IQA measures that try to mimic human perception. While many methods 

and models still rely on simple measures, such as the peak-siqnal-to-noise-ratio (PSNR) and the mean-

squared error (MSE), many others use sophisticated signal processing techniques, such as multi-

channel filtering [22],[23], discrete cosine transform [24],[25], multi-scale wavelet decompositions 

[26],[27], and Wigner-Ville distribution [28]. To date, however, it has been very difficult to find a 

reliable objective measure that correlates very highly with human perception [29]. 

Digital images are subject to a wide variety of distortions during acquisition, processing, compression, 

storage, transmission and reproduction, any of which may result in a degradation of visual quality. 

Quality measuring is needed for many applications, for example if the designer of a medical device 

want to decide from which device get the better results so he want to measure the quality of the 

images from those devices. Quality can be measured in two ways subjective and objective. The 

presence of blur in an image can be easily identified by the human eye but it is difficult for the 

computer. In practice, however, subjective evaluation is usually too inconvenient, time-consuming 

and expensive. The goal of research in objective image quality assessment is to develop quantitative 

https://en.wikipedia.org/wiki/Noncentrality_parameter
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measures that can automatically predict perceived image quality. Quality assessment algorithms are 

needed to monitor the quality for real time applications. Subjective methods are impossible to 

implement in real time systems, so objective methods are more attracted in recent years. All these 

methods want to have high correlation with human perception or judgments. 

Problem description. An IQA device manufacturer has the data of image quality assessment (in terms 

of the spearman correlation) obtained from testing n=10 IQA devices. These data are given in Table 1.  

Table 1.  The data of image quality assessment. 

Observations (in terms of the spearmen correlation) 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

0.913 0.916 0.923 0.926 0.936 0.947 0.961 0.971 0.975 0.992 
 

A buyer tells the device manufacturer that he wants to place two orders for the same type of IQA 

devices to be shipped to two different destinations. The buyer wants to select a random sample of 

m=5 IQA devices from each shipment to be tested. An order is accepted only if all of 5 IQA devices in 

each selected sample meet the warranty image quality assessment (in terms of the spearman 

correlation). What warranty IQA (in terms of the spearman correlation)  should the manufacturer offer 

so that all of 5 IQA devices in each selected sample meet the warranty with probability of 0.95?  

In order to find this warranty IQA, the manufacturer wishes to use a random sample of size n=10 given 

in Table 1 and to calculate the lower one-sided simultaneous tolerance limit Lk=1(S) (warranty IQA) 

which is expected to capture a certain proportion, say, =0.95 or more of the population of selected 

items (m=5), with a given confidence level =0.95. This tolerance limit is such that one can say with a 

certain confidence   that at least 100 % of the IQA devices in each sample selected by the buyer for 

testing will give image quality assessment (in terms of the spearman correlation) no less than L1(S). 

Goodness-of-fittesting. It is assumed that the data of Table 1 follow the normal probability distribution 

    
2

2

( )1
( ) exp ,

22

x
x

F x dx  (52) 

where the parameters  and  are unknown. Thus, for the above example, we have that n =10, m =5, 

k = 1,  = 0.95,  = 0.95, 

  
2 2
1

1 1

/ 0.946,  ( ) / ( 1) 0.000758 .
n n

i i
i i

S X X n S X X n  (53) 

We assess the statistical significance of departures from the model (52) by performing the Anderson–

Darling goodness-of-fit test. The Anderson–Darling test statistic value is determined by (e.g. [30]): 

     

  2

1

1

(2 1) ln ( ) ln 1 ( ) ,
n

i n i

i

A i F x F x n n   



 
      

 


 

(54) 

where F ( ) is the cumulative distribution function , 

     1( , ),x s    
 

(55) 

n is the number of observations. 
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The result from (54) needs to be modified for small sampling values. For the normal distribution the 

modification of A2 is 

   
2 2 2

mod (1 0.75 / 2.25 / ).A A n n  
 

(56) 

The 2

modA  value must then be compared with critical values, 2 ,A  which depend on the significance 

level  and the distribution type. As an example, for the normal distribution the determined 2

modA  

value has to be less than the following critical values for acceptance of goodness-of-fit (see Table 2): 

Table 2.  Critical values for 2

mod .A  

 0.1 0.05 0.025 0.01 

2A  0.631 0.752 0.873 1.035 

 

For this example, =0.05, 2

0.05 0.752,A 
 
 

      

  
10

2

1

1

(2 1) ln ( ) ln 1 ( ) 10 10 0.296378,i n i

i

A i F x F x   



 
       

 


 

(57) 

    
2 2 2 2

mod 0.05(1 0.75 /10 2.25 /10 ) 0.325275 0.752.A A A     
 

(58) 

Thus, there is not evidence to rule out the normal model (52). 

Finding lower tolerance limit (warranty assessment of image quality). Now the lower one-sided 

simultaneous -content tolerance limit at the confidence level , L1  L1 (S) (on the order statistic Y1 

from a set of m = 5 future ordered observations (Y1…Ym )) can be obtained from (26).   

Since m=5, k=1, =0.95, 

  
2( 1),2 ;

2( 1),2 ;

0.989796
( 1)

( 1)
,m k k

m k k

m k q

m k q k
 (59) 

    11 9,    =7.3325,   =0.95,r n z n


       (60) 

the quantile of order  for the non-central t-distribution with r degrees of freedom and non-centrality 

parameter  is given by  

     
 , ; ,arg ( ) 12.5512,r rt F t    

 
(61) 

the lower tolerance factor is given by 

     
, ;

3.96904,
r

L

t

n





     (62) 

it follows from (26) that 

       1 1 0.837.k LL X S     (63)  
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Statistical inference. Thus, the manufacturer has 95% assurance that at least 100 % of the IQA devices 

in each sample (m=5) selected by the buyer for testing will give the warranty assessment of image 

quality (in terms of the spearman correlation) no less than L1=0.837.  

5 Conclusion 

Tolerance limits enjoy a fairly rich history in the literature and have a very important role in 

engineering and manufacturing applications. In contrast to other statistical limits commonly used for 

statistical inference, the tolerance limits (especially for the order statistics) are used relatively rarely. 

One reason is that the theoretical concept and computational complexity of the tolerance limits is 

significantly more difficult than that of the standard confidence and prediction limits. Thus it becomes 

necessary to use new or innovative approaches which will allow one to construct tolerance limits on 

future order statistics for many populations. 
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