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Abstract

Tree-ring width is one of the most widely used proxy in paleoclimatological studies. Due to various environmental and bio-

logical processes, however, the associated reconstructions often suffer from overestimated low-frequency variability. In this 

study, a new correction approach is proposed using fractional integral techniques that corrects for the overestimated long-

term persistence in tree-ring width based hydroclimatic reconstructions. Assuming the high frequency interannual climate 

variability is well recorded by tree rings, the new approach is able to (i) extract the associated short-term forcing signals of 

various climate conditions from the reconstructions, and (ii) simulate the long-term impacts of these short-term forcings by 

setting a proper fractional integral order in the fractional integral statistical model (FISM). In this way, the overestimated 

long-term persistence, as well as the associated low-frequency variability in tree-ring width based reconstructions can be 

corrected. We apply this approach to a recently published dataset of precipitation field reconstructions over China covering 

the past half millennium and removed the redundant, non-precipitation related long-term persistence. Compared to the origi-

nal reconstruction with multi-century long-term dry conditions in western China, the corrected reconstruction considerably 

shortened the wet/dry periods to decadal scales. In view of the widespread non-climatic/mixed-climatic signals in tree-ring 

widths, this new approach may serve as a useful post-processing method to reconsider previous reconstructions. It may even 

be combined with the current detrending approaches by upgrading the pre-whitening methods.

Keywords Precipitation reconstruction · Long-term persistence · Fractional integral statistical model · Correction 

approach · Tree ring width

1 Introduction

In the context of global warming, detection and attribution 

of climate change have become an important issue for bet-

ter adaptation and mitigation strategies. Paleoclimatology, 

which can provide a background of the natural variability, 

has received much attention in the past decades (e.g., Mas-

son-Delmotte et al. 2013 and references therein). Especially 

on large time scales (e.g., decadal, multi-decadal, centen-

nial, etc.), reconstructions/simulations have been used as 

important references for better understanding the current and 

projected climate changes (Cook et al. 2010; Neukom et al. 
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2019). Tree-ring width (TRW) data is one of the most used 

proxy to reconstruct annually resolved past climate. It has 

been used for temperature, precipitation, drought, stream-

flow, etc., reconstructions (e.g., Cook et al. 1999; Esper 

et al. 2002; Cook et al. 2013; St. George and Ault 2014; Shi 

et al. 2017; Liu et al. 2017; Harley et al. 2017; Pearl et al. 

2020;Ljungqvist et al. 2020), and important historical events 

such as the severe drought in the American southwest in the 

late 1200s, have been revealed.

One key challenge using TRW is that they include non-

climatic signals (Franke et al. 2013; Christiansen and Ljun-

gqvist 2017) that need to be filtered out before chronologies 

and reconstructions can be properly determined. After the 

TRW data is measured and crossdated, a very important 

procedure is to detrend or standardize the tree-ring widths, 

such as removing the age-related trends in the radial growth 

rate (Sheppard 2010), or the potential low frequency vari-

ations caused by the stand dynamics and competitions in 

closed canopy forests (Cook and Peters 1981), etc. Various 

detrending methods such as the Curve Fitting Standardiza-

tion (CFS) methods (i.e., fitting the tree growth trend using 

various models such as the negative exponential curve, the 

smoothing spline curve (Cook and Peters 1981), the ensem-

ble empirical mode decomposition curve (Zhang and Chen 

2017), etc.), the Regional Curve Standardization (RCS) 

methods (Briffa et al. 1992; Esper et al. 2002), environmen-

tal curve standardization method (Helama et al. 2005), etc., 

have been proposed, and the detrending methods are con-

tinuously improved up to present (Shi et al. 2020). When 

detrending/standardizing the tree-ring widths, a noteworthy 

procedure is the use of the first-order auto-regressive (AR1) 

or autoregressive moving average model (ARMA) as pre-

whitening methods to remove the short-term persistence in 

tree-ring widths due to the biological carry-over effect of 

trees (Cook 1985). All these efforts have pushed the devel-

opment of dendroclimatology, which has been playing a 

substantial role in the studies of climate change.

However, recent studies have indicated that the TRW 

chronologies/reconstructions still suffer from overestimated 

persistence that may arise from various environmental 

processes (e.g., the integrative behavior of soil moisture) 

(Bunde et al. 2013; Franke et al. 2013; Büntgen et al. 2015). 

For example, the tree-ring based precipitation reconstruc-

tions from North America and Central Europe have been 

found to have much stronger persistence than those in obser-

vations and dynamical model simulations, in which case 

unexpected more (less) rainfall is reconstructed after wet 

(dry) episodes (Bunde et al. 2013), leading to prolonged 

flood (drought) events that may be artificial (Zhang et al. 

2015) (see also Fig. 1 in this study). Recent studies further 

suggest that the discrepancy is due to the fact that the TRW 

proxies normally reflect soil moisture or runoff, etc., not 

rainfall directly (PAGES Hydro2k Consortium 2017). Tem-

perature reconstructions based on TRW records have similar 

problems (Zhang et al. 2015), and the consequent intensive 

low-frequency variability may be even comparable with the 

recent warming trend (Ludescher et al. 2020). After strong 

tropical volcanic eruptions, TRW data show suppressed 

post-volcanic cooling effects (Esper et al. 2015), and the 

discrepancies of the volcanic eruption effects between the 

Fig. 1  Comparison of time series with weak (a) and strong (b) long-

term persistence (LTP). The gray bars in a represent the reconstructed 

precipitation records at a southeast grid. From the DFA analysis, this 

time series has weak temporal persistence with � = 0.55. By applying 

Fourier filtering technique (Turcotte 1997), artificial data with strong 

LTP ( �=0.80) is generated (the green bars in b). From the 31-years 

moving averages (the thicker black and green curves in (a) and (b)), 

apparent differences between the two time series can be found, see 

the red and blue shaded areas. If the LTP is exaggerated, one may 

overestimate the historical long-term wet/drought events
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model simulations and the TRW reconstructions can be 

resolved by artificially enhancing the persistence of the 

model simulations (Lücke et al. 2019). These issues point 

to the important “known unknown” in TRW studies, that 

is how to properly remove the non-climatic influences, and 

isolate the desired climatic signals (e.g., PAGES Hydro2k 

Consortium 2017 and references therein).

One potential reason for the overestimated persistence 

in TRW based reconstructions may be explained with TRW 

chronologies that have redundant serially Long-Term Per-

sistence (LTP). Different from the well-known short-term 

persistence that decays with time exponentially and can be 

simulated using AR or ARMA models, LTP describes scal-

ing behaviors that may lead to persistence on much longer 

time scales ranging from a few months to several decades 

(e.g., Franzke et al. 2020 and references therein). In recent 

years, with the development of several advanced approaches 

such as wavelet analysis (Arneodo et al. 1995; Abry and 

Veitch 1998), detrended fluctuation analysis (Peng et al. 

1994; Kantelhardt et al. 2001), structure function method 

(Lovejoy and Schertzer 2012) etc., LTP has been found 

ubiquitous in the climate system. Many variables including 

temperature, precipitation, relative humidity, atmospheric 

circulation, soil moisture, etc. have been found to have LTP 

on local (e.g., in-situ records) and large (e.g., hemispheric, 

global) scales (Chen et al. 2007; Vyushin and Kushner 2009; 

Wang et al. 2010; Jiang et al. 2017; Fredriksen and Ryp-

dal 2017). LTP can induce large-scale variabilities and the 

stronger the LTP is, the more prominent large-scale vari-

ations (or in other words, low-frequency variability) will 

be (Lennartz and Bunde 2009; Zhu et al. 2010). Consider-

ing the fact that the TRW proxies may be affected by vari-

ous environmental factors (such as soil moisture) that have 

LTP, the TRW based reconstructions indeed have a risk of 

overestimating the LTP. Therefore, the LTP is a useful test 

bed to evaluate paleoclimatological reconstructions (Bunde 

et al. 2013; Zhang et al. 2015). An overestimated LTP in 

the reconstructions may lead to enhanced low-frequency 

variability and further unrealistic judgements of long-term 

climate anomalous events (Fig. 1). When reconstructing the 

past climate using TRW data, besides addressing the “short-

term” persistence by, e.g., AR model (Cook et al. 1999), 

novel approaches are thus required to deal with the persis-

tence on longer time scales.

In this study, the Fractional Integral Statistical Model 

(FISM) (Yuan et al. 2014) is applied to investigate the 

potentially overestimated LTP and the corresponding low-

frequency variability in TRW based hydroclimatic recon-

structions. FISM is a generalized version of the stochastic 

climate model (SCM). Ever since the classical literature 

by Hasselmann (1976), it has been suggested that the slow 

varying processes in the climate system can be regarded 

as accumulative responses to continual excitations by 

short-term disturbances. This relation can be described in 

terms of fractional integral (Yuan et al. 2013), and FISM 

is thus able to simulate and quantify the long-term per-

sistence associated signals. As discussed in (Yuan et al. 

2014), a given time series with LTP can be divided by 

FISM into two parts,

where M(t) stands for the long-term influences accumulated 

from the past (hereafter, we name it as the LTP signals), and 

�(t) the short-term “forcing” signals. Suppose the year to 

year variations of the tree-ring widths along with the pre-

whitening methods (e.g., AR model) can capture the high 

frequency interannual climate variability, �(t) extracted from 

the TRW based reconstructions thus can be considered as 

reliable short-term “forcing” signals that have long-lasting 

influences. In this case, the overestimated LTP may be cor-

rected by adjusting the LTP signals M(t).

Here we analyze a recently released dataset of precipita-

tion reconstructions over China covering the past half mil-

lennium (Shi et al. 2017). In this dataset, the precipitation 

field for the whole of China was reconstructed using the 

optimal information extraction (OIE) method (Shi et al. 

2012) under the point-to-point regression-based (PPR-

based) framework (Cook et al. 1999). Three types of prox-

ies including (i) 371 TRW chronologies, (ii) 107 dryness/

wetness index (DWI, derived from historical documents), 

and (iii) 1 tree ring oxygen isotope chronologies are used 

for the reconstruction. The TRW chronologies are mainly 

located in western China, while the DWI records mostly in 

eastern China (see Fig. 1 in Shi et al. 2017). The precipita-

tion reconstructions at grid point scale were reconstructed 

mainly using multiple types of proxy records, but in the 

southeastern region where the DWI records cover, the 

maximum distances from the predictors (proxy records) 

to the target grid points are normally below 400km (see 

Fig. 2 in Shi et al. 2017). Taking 400km as a threshold, the 

reconstructions at many grid points in southeastern China 

are found to solely rely on the DWI records (Fig. S1). Con-

sidering that the local chronicles reliably recording and 

in detail the past dry/wet conditions (Zhang 1983, 1988), 

results at these grid points may be used to compare with 

those from other locations where the TRW chronologies 

have contributed to the reconstructions. Accordingly, this 

dataset is suitable to investigate whether the TRW related 

reconstructions (mainly in western China) overestimate 

LTPs, and how to correct them. In this study, we apply 

the detrended fluctuation analysis to measure the LTPs. 

Combining with FISM, a correction approach is proposed 

to remove the redundant LTP.

The paper is organized as follows. In Sect. 2, we intro-

duce the data and the methods. The LTP properties in the 

(1)x(t) = M(t) + �(t),
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precipitation reconstructions are measured and compared 

to those in the instrumental data in Sect. 3. In Sect. 4, the 

correction approach is illustrated. By applying the method-

ology to the precipitation reconstructions over China, the 

results are presented and discussed in Sect. 5. In Sect. 6, 

we provide conclusions and ways forward.

2  Data and methods

2.1  Data

In this study, we analyze gridded warm season 

Fig. 2  Geographical distributions of the LTP exponent � calculated 

from reconstructions (a) and the instrumental (b). c Shows their dif-

ferences (the � values from reconstructions minus the � values from 

the instrumental records). From the reconstructions, strong LTPs are 

found to be mainly in the western China, where the reconstructions 

are mainly obtained from the tree-ring width records (see the green 

points in c, note the green points with small black dots inside repre-

sent the TRW chronologies with length longer than 400 years). Using 

instrumental data, however, the LTPs are found to be much weaker 

and the estimated � values are lower than 0.65 in most regions. The 

hatching lines indicate the regions with � > 0.55 (suggesting the 

existences of LTP) but smaller than 0.59. The regions with � > 0.59 

are marked by dots. By calculating the differences between the results 

from reconstructions and those from instrumental data, significant 

differences at 95% confidence level are found in western China (see 

the hatching areas in c). The bounds of the 95% confidence intervals 

are estimated as follows: for each grid point in b, we first generated 

one long ( L = 5, 700, 000 ) artificial data with the � value the same 

as the observed � at this grid point using Fourier filtering technique 

(Turcotte 1997). After dividing the long artificial data into 10,000 

short data of length l = 530 , we applied DFA2 to these short data to 

determine the 95% confidence interval from the 10,000 alpha values
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(May–September) precipitation reconstructions (anoma-

lies from 1961 to 1990) over China from 1471 to 2000 (Shi 

et al. 2017). The dataset has a spatial resolution of 0.5° 

×0.5°, and covers the region from 72°E to 136°E and 18°N 

to 54°N. They are downloaded from the National Oceanic 

and Atmospheric Administration (https://www.ncdc.noaa.

gov/paleo-search/study

/23056). Besides the paleo-reconstructions, gridded 

monthly instrumental precipitation data over China are also 

used (downloaded from the China Meteorological Data Ser-

vice Center, http:// data. cma. cn/ data/ cdcde tail/ dataC ode/ 

SURF_ CLI_ CHN_ PRE_ MON_ GRID_0. 5. html. It has the 

same spatial resolution as the reconstruction data, and the 

temporal coverage used in this study is from 1961 to 2004 

(528 data points for each time series, similar to the recon-

structions). Before analysis, seasonal trends are removed by 

subtracting annual cycles from the observed data (Koscielny-

Bunde et al. 1998), as x(t) = �(t)− < �(t) >, t = 1,… , N  , 

where �(t) is the instrumental data, < �(t) > is the long-time 

climatological average for each calendar date, and N is the 

data length.

In Shi et al. (2017), 371 TRW chronologies mainly from 

western China were used to reconstruct the precipitation 

field. To better show that the redundant LTPs in the recon-

structions are mainly associated with the TRW chronologies, 

we also analyze the LTP properties in the TRW chronolo-

gies. Since a reliable detrended fluctuation analysis normally 

requires the length of the considered time series to be no 

less than 400 (Ludescher et al. 2020), we measure the LTPs 

of 140 TRW chronologies with data length longer than 400 

years (see Fig. 2 for their geographical locations).

It is worth noting that besides the precipitation recon-

structions over China, we also briefly discussed the dif-

ferent persistence between a recently proposed long-term 

TRW based precipitation reconstruction from Greece (the 

high-elevation Pinus heldreichii (HEPI) reconstruction) 

(Esper et al. 2021) and its corresponding reference extracted 

from CRU TS 4.04 dataset (Harris et al. 2014) (http://badc.

nerc.ac.uk/data/cru/). The HEPI reconstruction is purely 

TRW based, and the CRU data is longer than 100 years 

(1901–2016). A brief comparison between them can pro-

vide us with more insights of the overestimated persistence 

by TRW.

2.2  Methods

2.2.1  Detrended fluctuation analysis

To detect and measure the LTP in the reconstructions, the 

instrumental data, as well as the tree-ring chronologies, a 

straightforward way is to calculate the auto-correlations. As 

long as the auto-correlation C(s) of a given time series, e.g., 

x(i), i = 1,… , N , decays with the increase of time scale s as 

a power law, C(s) ∼ s
−� , s > 0 ( 0 < � < 1 ), one can confirm 

the existence of LTP and describe the LTP strength using the 

parameter � (Kantelhardt et al. 2001). However, the strong 

uncertainties in the calculation of C(s) often hinder a reli-

able determination of the LTP (Kantelhardt et al. 2001). In 

practice few works investigate the LTP using auto-corre-

lations directly. By studying how the fluctuations change 

with the increase of time scale s, the detrended fluctuation 

analysis (DFA) (Peng et al. 1994; Kantelhardt et al. 2001) 

has become a widely used method for the detection of LTP. 

It can give a more robust estimation of the LTP even if the 

time series of interest is nonstationary (e.g., with polynomial 

trends, varying local variances, etc. See Fig. S2 and Hu et al. 

2001, Chen et al. 2002). Accordingly, the DFA is an appro-

priate method for the analysis of climate time series.

In this study, we employ the DFA of the second order 

(DFA2) to detect the LTP (Kantelhardt et al. 2001). In DFA2, 

one considers the cumulated sum Y(k) =
∑k

i=1
{x(i)− < x >} . 

By dividing Y(k) into non-overlapping windows of size s, the 

variance of Y(k) around the best polynomial fit of the sec-

ond order in each window j can be calculated as F2(s, j) . By 

averaging F2(s, j) over all the windows and taking the square 

root, the desired fluctuation function F(s) on time scale s is 

obtained. For time series with LTP, F(s) will increase with s 

as a power law, F(s) ∼ s
� . Theoretically, the exponent � has 

been proved to have a simple relationship with the parameter 

� in the auto-correlation analysis as � = 1 − �∕2 (Kantel-

hardt et al. 2001). Accordingly, an � larger than 0.5 indicates 

the existence of LTP, and the bigger � is, the stronger the 

LTP will be. For the cases with � equals 0.5, the time series 

of interest is considered as white noise with no persistence.

It is worth noting that LTP in the climate system can 

range from months to multiple decades (Lovejoy 2015; Fran-

zke et al. 2020), and may even to centennial scale (Fraedrich 

et al. 2009; Ludescher et al. 2020). In practice, however, one 

can only measure the exponent � over a scaling range that 

depends on the data length. Suppose precipitation has a uni-

versal scaling behavior that spans from months to centennial 

scale, in this study we will use the LTP exponent � obtained 

from the instrumental records as references to adjust the LTP 

in the reconstructions. Since the reconstructions represent 

the precipitations from the warm season (May–September), 

the best reference would be obtained from the instrumental 

records of the same period each year. However, using only 

the warm season records makes the time series too short for 

a reliable DFA2 analysis (which requires a minimum data 

length of 400), we thus study the complete monthly records 

in this work. As discussed in (Ludescher et al. 2020), the 

LTP exponents obtained in this way may be slightly higher 

than the case when only the records from the warm season 

are analyzed. Accordingly, we consider the LTP exponents 

obtained from the complete instrumental records as the 

upper bound references for the adjustment of the LTP in 

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_MON_GRID_0.5.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_MON_GRID_0.5.html
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the reconstructions. In addition, it is also worth noting that 

the LTP exponent obtained from DFA is independent of the 

data temporal resolution. As shown in Fig. S3, over the same 

scaling range the slope of F(s) versus s in a log-log plot does 

not change with the data resolution. Considering that we 

do not have long enough instrumental annual records (i.e., 

longer than 400 years) to support reliable DFA analyzes, 

monthly records are thus used here as an alternative solution. 

In view of the changing uncertainties of the DFA analysis 

due to different data lengths (Fig. S4), we study the monthly 

data from 1961–2004, which has 528 data points for each 

time series, similar to the data lengths of the reconstructions.

2.2.2  Fractional integral statistical model

As discussed above, assuming that the year-to-year changes 

of the TRW can well capture the high frequency variations 

of the associated climate variable (i.e., here refers to pre-

cipitation) on interannual time scale, the challenge is how 

to properly reconstruct the long-lasting impacts, as various 

environmental processes may confound the desired climatic 

signal. In this study, we employ the Fractional Integral Sta-

tistical Model (FISM) to address this challenge. In FISM, 

the long-lasting impacts of short-term forcing signals can 

be successfully simulated in terms of fractional integral, as 

shown below (Yuan et al. 2013, 2014),

where �(u) represents the historical dynamical and thermo-

dynamical short-term forcings, t − u denotes the distance 

between historical time point u and the present time t, � is 

the sampling time interval, Γ is the gamma function, and 

q is integral order. The first term to the right of the equal 

sign simulates the accumulated historical impacts, which 

corresponds to the LTP signals (M(t) in Eq. 1) (Yuan et al. 

2013, 2014),

Accordingly, if the historical short-term forcings �(u) and the 

integral order q are known, one can estimate the LTP signals 

M(t) using Eq. (3). It has been proved that the integral order 

q is linearly related to the DFA exponent � as q = � − 0.5 

(Yuan et al. 2013, 2014), thus q can be easily calculated 

from the DFA analysis. Regarding the short-term forcings, 

by reversely deriving Eq. (2) one can extract �(u) iteratively 

as long as the historical time series x(t) and the integral 

order q are known (Yuan et al. 2014). In this way, the LTP 

signals M(t) can be estimated and x(t) can be decomposed 

into the two parts as shown in Eq. (1). It is worth noting 

that there is another well-known model, the autoregressive 

(2)x(t) =
1

Γ(q) ∫
t−�

u=0

�(u)

(t − u)1−q
du + �(t),

(3)M(t) =
1

Γ(q) ∫
t−�

u=0

�(u)

(t − u)1−q
du.

fractionally integrated moving average (ARFIMA) model, 

that can simulate the LTP in a given time series. FISM and 

ARFIMA are closely related as they are both designed from 

fractional integral techniques. Compared to ARFIMA, how-

ever, the FISM model is more suitable for decomposing 

the considered time series x(t) into the “memory” and the 

short-term “forcing” part, which can further contribute to a 

better understanding of the physical processes of how LTP 

arises. Therefore, we employ the FISM model in this work. 

For more detailed comparisons between these two models, 

please refer to (Yuan et al. 2014).

3  LTP in the reconstructions, instrumental 
data, and the TRW chronologies

We first applied DFA2 to the precipitation reconstructions 

of Shi et al. (2017). As shown in Fig. 2a, the DFA exponent 

� values are all larger than 0.50, indicating the existence of 

LTP. Larger � values (> 0.75) are found in western China, 

while in the eastern part, the � values are much smaller rang-

ing from 0.50 to 0.65. This difference between the western 

and eastern China, however, is not found in the DFA results 

of the instrumental precipitation records (Fig. 2b). The weak 

LTP in the instrumental records is in line with many previ-

ous studies, that show low � values from in-situ precipitation 

observations on time scales larger than months (e.g., Bunde 

et al. 2013; Jiang et al. 2017). Using Monte-Carlo tests, only 

some regions are found to have statistically significant LTP 

(e.g., see the dotted areas in Fig. 2b). Figure 2c shows the 

differences of the � values between the reconstructions and 

the instrumental data. Statistically significant overestima-

tions of the LTPs are mainly found in the whole western 

part, as well as some regions of the eastern part (see the 

hatching areas in Fig. 2c). In these regions, the � values in 

the reconstructions are 0.20–0.30 higher than those from 

the instrumental data. In view of the close relations between 

the LTP and the low-frequency variability, these redundant 

LTPs may thus lead to unrealistic prolonged and intensified 

dry/wet events, as suggested in Fig. 1, where the effects of 

redundant LTPs (i.e., increasing � by 0.25) are simulated.

One main reason for the overestimated LTPs is related to 

the TRW proxy. In Fig. 2c, the locations of the 371 TRW 

chronologies (the green points) used in the reconstruction 

of Shi et al. (2017) are shown. It is obvious that the regions 

with significantly overestimated � values correspond very 

well with the regions where the reconstructions highly rely 

on the TRW chronologies. In eastern regions where DWI 

records mainly give skill to the reconstructions, however, 

the deviation of � values are not consistent and in many 

regions, not significant. Particularly, in the southeast of 

China where the reconstructions are purely calculated from 

the DWI records (see the red box in Fig. S1), the LTPs are 
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not significantly different from those from the instrumen-

tal data. Since the TRW chronologies may have redundant 

serially persistence due to various environmental processes 

(e.g. Bunde et al. 2013; Büntgen et al. 2015;Lücke et al. 

2019), they largely contribute to the overestimated LTP in 

the precipitation reconstructions. As shown in Fig. 3, we 

applied DFA2 to the tree-ring chronologies. The � values are 

found to be remarkably larger than 0.50, and centered around 

0.80–0.90 (see the red bars). In extreme cases, the � values 

can even be as high as 1.00. These values are much higher 

than those from the instrumental precipitation records, 

where the � values are centered around 0.50 (see the blue 

bars in Fig. 3).

It is worth noting that here we compared the LTPs from 

44 years long instrumental monthly data with those from 

annual reconstructions/TRW chronologies. An ideal com-

parison should be between annual instrumental data and 

annual reconstructions of the same length. Unfortunately, 

the fact is even if the longest instrumental data is used, from 

the annual data the LTPs still cannot be reliably estimated, as 

a reliable DFA calculation requires a data length of at least 

400 (Ludescher et al. 2020). To show the different persis-

tence between TRW based reconstructions and observations 

of the same length and temporal resolution (i.e., annual), 

we alternatively calculated the mean precipitation values 

after n consecutive dry/wet years ( n = 1, 2,… ). As shown 

in Fig. S5, using a recently published TRW based precipi-

tation reconstruction data (from 1901 to 2016) in the Pin-

dus Mountains of northwestern Greece (Esper et al. 2021) 

and the corresponding long-term annual records extracted 

from CRU TS 4.04 dataset (covering grid points between 

39°–40°N, 21°−24°E, from 1901 to 2016), one can see 

clearly that the TRW based precipitation reconstruction 

tends to be higher (lower) after n consecutive wet (dry) 

years. Apparently, this indicates a stronger persistence in 

the TRW based reconstructions, which is in line with the 

results of the DFA if the monthly CRU data (from 1901 to 

2019) and the full reconstructions (from 730 to 2016) are 

analyzed (Fig. S5b). Hence, TRW chronologies indeed may 

introduce redundant persistence into the reconstructions. To 

reconstruct precipitations using TRW chronologies, a proper 

removal of the strong LTP is thus particularly important. The 

currently widely used pre-whitening methods, such as the 

AR model which only takes into consideration the persistent 

effects of limited short time length, are not sufficient. The 

new approach for the correction of the redundant LTPs will 

be introduced in the Sect. 4.

4  A new correction approach

To correct the overestimated persistence, we employ the 

Fractional Integral Statistical Model (FISM) in this study. 

With FISM, one is able to quantify the long-term accumu-

lated historical impacts (Eq. 3) and decompose the time 

series of interest into the LTP signals M(t) and the short-

term forcing signals �(t) (Eq. 1). Since the year to year TRW 

changes contain signals of interannual climate variability, 

which may be further recorded in the short-term forcing sig-

nals �(t) , to reconstruct the persistence/variability on longer 

time scales, one main issue is how to capture the long-lasting 

influences of these short-term forcings, or in other words, 

how to properly calculate the LTP signals.

Figure 4 shows the steps of how to correct the overesti-

mated persistence. For a given reconstruction sequence of 

interest, the LTP strengths in both the reconstructions and 

the corresponding instrumental data are first calculated by 

measuring the DFA exponent � ( �
rec

 and �
ins

 ). For the cases 

when the two � values are different, we go further to the sec-

ond step to extract the short-term forcing signals �(t) from 

the reconstructions using FISM (see the red and blue bars in 

Fig. 4). As discussed above, since �(t) is considered as a kind 

of representation of the interannual (fast) climate changes, 

to correct the long-term persistence one only needs to feed 

�(t) into the FISM model (Eq. 2) again but do the fractional 

integration with a proper order (see the third step in Fig. 4). 

For instance, if we take �
ins

 from the instrumental records 

as a reference, a corrected reconstruction can be obtained 

(the green curves) by setting the fractional integral order q 

as q = �ins − 0.5 . In this way, the reconstructions can both 

hold the interannual (short-term “fast”) variabilities and at 

the same time, show the same LTP as the instrumental data.

Fig. 3  The histogram of LTP exponent � calculated from TRW chro-

nologies (red bars) and instrumental precipitation records (blue bars). 

140 TRW chronologies with data length longer than 400 years are 

analyzed. Their geographical locations are shown in Fig. 2 (the green 

points with small black dots inside). The � values obtained from the 

instrumental precipitation records are weak (around 0.5), while the 

� values calculated from the tree ring chronologies are remarkably 

stronger
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5  Correction results and discussion

Using this new approach, we corrected the persistence in 

the precipitation reconstructions. In Sect. 3, we find that 

LTPs in the historical reconstructions are stronger than 

those from the instrumental precipitation records over 

many regions of the country, especially in western China 

(see Fig. 2c). Taking the LTPs in the instrumental data as 

the references, the corrected reconstructions are found to 

have nearly the same LTPs as the observations. As shown 

in Fig. 5, our target is to remove the redundant LTP origi-

nated from the TRW chronologies, but the correction 

approach is applied to all the reconstructions (including 

Fig. 4  Sketch of the steps for correcting the precipitation reconstruc-

tions. The first step is to estimate the LTP strengths in the reconstruc-

tions (the gray and black curves) using DFA. With the estimated DFA 

exponent �
rec

 (e.g., the � value shown in black color), one can further 

remove the memory part using FISM in the second step, and extract 

the residual short-term forcing part (the red and blue bars). In the last 

step, new reconstructions (the green curves) can be obtained by inte-

grating the short-term forcing part to a proper order. The integration 

order can be determined from the �
ins

 values of the instrumental pre-

cipitation records (e.g., the � value shown in green color)

Fig. 5  Geographical distribution of the LTP exponents that are calcu-

lated from the corrected precipitation reconstructions (a). Compared 

with Fig. 2b, one can see that the � values from the corrected precipi-

tation reconstructions have a similar spatial pattern as those obtained 

from the instrumental precipitation records. Their differences (the � 

values from corrected reconstructions minus the � values from the 

instrumental records), which may mainly arise from the uncertainties 

of the calculation, are not statistically significant at nearly all the grid 

points (Fig.  5b). There are only two very small regions/points with 

significant differences (see the black short lines in b).
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the areas where the reconstructions are purely determined 

by DWI records). After the correction, the spatial distribu-

tion of the DFA exponent � from the corrected precipita-

tion reconstructions is highly consistent with that from 

the instrumental precipitation records (Fig. 5b, please see 

Fig. S6 for the differences of the DFA exponents between 

the original and the corrected reconstructions). This result 

is reasonable as we corrected the reconstructions using 

the same fractional integral orders q as the instrumental 

records (see the third step in the new approach). However, 

besides the corrected � values, more important improve-

ments are in the temporal variations of the reconstructions. 

For example, considering the spatial average over western 

China, after applying the approach, the differences before 

and after the correction are shown in Fig. 6. Apparently, 

the original reconstruction averaged in western China 

has strong LTP, which induces strong low-frequency 

variability on decadal to centennial scale. As the gray 

bars and the blue shaded areas shown in Fig. 6, several 

historical long-term drought events (e.g., 1500s–1570s, 

1590s–1750s, etc.) are found in the original reconstruc-

tions, and more than that the dry conditions last for a long 

time from around the sixteenth to the nineteenth century. 

These findings, however, may be not realistic due to the 

overestimated LTP in western China. After addressing the 

LTP, the corrected precipitation reconstruction fluctuates 

on a much shorter time scale, and the duration of drought 

events is reduced significantly to a few years/decades (sim-

ilar results are also found in the TRW chronologies, not 

shown). Moveover, the magnitude of the drought events 

also weakens remarkably by about 90% (Fig. 6, shown 

by the green bars and the orange curves). Assuming the 

LTP in precipitation remain unchanged during the past 

few hundred years, the corrected precipitation reconstruc-

tion indicates no centennial scale long-term severe drought 

events in western China during the past several centuries 

(Fig. 6). Compared to the original reconstructions of Shi 

et al. (2017) where a persistent long-term dry condition 

was found from the sixteenth to the nineteenth century, the 

corrected reconstructions are more realistic.

It is worth noting that the correction of the overestimated 

LTP relies much on the selection of the reference, in which 

reliable LTP estimation is required. In this work, we used 

the instrumental monthly records as the reference. The main 

reason for not using instrumental annual records is that the 

current instrumental annual records are not long enough 

to support a statistically solid calculation of the LTP. As 

reported in (Ludescher et al. 2020), a reliable DFA analysis 

requires a data length of at least 400, which means 400 years 

instrumental annual records are needed for a reliable DFA 

calculation. Moreover, the insensitivity of the DFA results to 

different data temporal resolutions also makes the monthly 

records good substitutes in the analysis (Fig. S3). To correct 

the overestimated LTP in the TRW related reconstructions, 

we also assumed that precipitation has a universal scaling 

behavior that ranges from monthly to centennial scale. This 

assumption follows the principle of “uniformitarianism”, 

which is also commonly assumed in paleoclimatology stud-

ies. In fact, from the similar DFA exponents between the 

instrumental records and the purely DWI based reconstruc-

tions (see the southeast of China in Fig. 2c and Fig. S1), we 

can tell that this assumption seems to be reasonable. Since 

the local chronicles may reliably record the past dry/wet 

conditions, the similar LTPs between the DWI based recon-

structions and the instrumental records suggest that the scal-

ing behavior in precipitation indeed has a chance to cover 

several scales from months to centuries. In other words, the 

LTPs measured from monthly to decadal scales (e.g., results 

from the instrumental data) may be the same as the LTPs 

measured from decadal to centennial scales (e.g., results 

from the precipitation reconstructions). Of course, it should 

be noted that we cannot completely exclude the possibil-

ity that the scaling behavior in precipitation might change 

over time (Markonis and Koutsoyiannis 2016). Accordingly, 

the use of the instrumental records as references is only 

one possible way to correct the overestimated persistence. 

Another possibility is the use of paleo-model simulations 

or other independent (not used for the reconstruction under 

investigation) proxies that cover a comparable time scale as 

the reconstructions. If reliable LTPs are confirmed in these 

potential references, the approach can be applied to perform 

a reasonable correction.

Fig. 6  Similar to Fig.1, but shows the results of the regionally aver-

aged reconstruction over the western China (see the black box in 

Fig.  2c). The gray bars represent the original reconstruction (West-

ern Rec.), while the green bars represent the corrected reconstruc-

tion (Western Cor.). From the 31-years moving averages, remark-

able historical long-term drought events are identified in the original 

reconstruction (the blue curve). While after correcting the persis-

tence properties, the durations and magnitudes of the drought events 

become much shorter and weaker (the orange curve).
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One feature of this new correction approach is that it 

is not just a series of mathematical calculations, but also 

has a physical basis behind. Using this approach, the high 

frequency climate variability recorded in the year-to-year 

changes of tree-ring widths are first extracted in terms of 

�(t) . By making a proper fractional integration on these 

high frequency changes, their long-lasting impacts are fur-

ther simulated in terms of LTP signals. The resultant time 

series thus consist of both the short-term “fast” changes and 

the long-term “slow” persistence. Compared to the concise 

method based on the Fourier filtering technique (Ludescher 

et al. 2020), the correction approach proposed in this work 

shows more clearly how the LTP signals are accumulated 

from the past climates. Accordingly, if more details about 

the underlying processes are required, it is more appropriate 

to use this new approach.

6  Conclusion

Due to various environmental processes (e.g., the integrative 

behavior of soil moisture), the TRW based reconstructions 

have been well recognized to have overestimated long-term 

persistence (LTP), which may further induce unrealistic low 

frequency variability. In this study, a new approach to cor-

rect the overestimated persistence is proposed. Assuming 

the year-to-year changes of the tree-ring widths can well 

capture the high frequency interannual climate variability, 

here we focus on the correction of the accumulated long-

lasting historical impacts from the high frequency changes. 

In this approach, one first diagnoses the LTP in the consid-

ered reconstruction to see if it is overestimated. When yes, 

the reconstruction is decomposed into the short-term forc-

ing signal �(t) and the LTP signal M(t) (Eq. 1), and the LTP 

signal is further corrected by running the fractional integral 

statistical model (FISM) using an improved fractional inte-

gral order.

In this study, we applied this new approach to a recently 

published dataset of precipitation field reconstructions over 

China covering the past half millennium. This dataset is 

reconstructed using multiple proxies, i.e., the TRW chro-

nologies that are mainly located in western China, and the 

dryness/wetness index (DWI) derived from historical docu-

ments that are mainly in eastern China. While the LTPs of 

many reconstructions in eastern China do not deviate sig-

nificantly from those of the instrumental data, we found that 

the LTPs of the precipitation reconstructions are remarkably 

overestimated in western China. In this case, the resultant 

long-term drought events and dry conditions in western 

China last for several centuries (Fig. 6). After correcting the 

persistence, however, the historical wet-dry changes become 

less severe and the drought events last only for a few years or 

decades. By comparison, the new reconstructions with the 

persistence corrected seems to be able to provide us with a 

more realistic estimation of the past climates.

To obtain a reliable correction, one important precondi-

tion is to find a good reference in which reliable LTPs can 

be estimated. In this study, from the similar LTP exponents 

between the instrumental records and the purely DWI based 

precipitation reconstructions (Fig. S1), we argue that the 

LTPs measured from the instrumental records are reason-

able references for correction. If this finding also holds for 

precipitations over other regions, we could easily apply this 

correction approach to other precipitation reconstructions 

(e.g., the HEPI reconstruction in Greece) and use the LTPs 

of observational precipitation records as references. Even if 

the LTPs from observational precipitation records cannot 

be used as references, this correction approach still can be 

applied as long as other potential references (e.g., paleo-

model simulations or other independent proxies) are proved 

to be useful.

Here we focused on the overestimated persistence in the 

precipitation reconstructions. In fact, the overestimation of 

the LTP does not exist only in precipitation reconstructions. 

According to previous studies (Zhang et al. 2015), the redun-

dant LTPs in TRW chronologies should be the main contrib-

utor to the overestimated LTP. Therefore, this new approach 

can also be applied to reconstructions of other TRW based 

variables (e.g. temperature reconstructions). In view of 

the non-climatic/mixed climatic signals in TRW records, 

it is highly suggested to revisit the previous TRW based 

reconstructions, i.e., evaluating the performance of different 

detrending/reconstruction methods with the LTP as a test 

bed, and if necessary, applying the correction approach. In 

addition to correcting reconstructions as a post-processing 

method, an even better application of this approach might 

be to combine with the current detrending methods, e.g., 

upgrade the current pre-whitening methods (e.g., the AR/

ARMA model) by introducing the correction of LTPs.

Finally, we would like to emphasize that this new 

approach assumes that high frequency interannual climate 

variability is well captured by year-to-year tree ring changes, 

and that it focuses mainly on the correction of the long-

term effects of these high frequency changes. Following this 

assumption, the short-term forcing signals �(t) (see Eq. 1) 

extracted from the reconstructions are considered to be reli-

able. Strictly speaking, however, the annual changes in TRW 

may also include non-climatic signals such as variations due 

to the effect of competition. For example, considering a tree 

in a closed canopy forest, when a neighboring tree dies, the 

release from competition may induce a sudden increase of 

the growth rate of this tree. Current detrending methods, 

such as the smoothing spline, usually remove the low-fre-

quency fluctuations caused by competition effects (Blasing 

et al. 1983). To better filter out the non-climatic signals on 

shorter time scales, further efforts are needed in the future.
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