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Abstract. Virtual reality based surgical simulators offer a very elegant
approach to enhancing traditional training in endoscopic surgery. In this
context a realistic soft tissue model is of central importance. The most
accurate procedures for modeling elastic deformations of tissue use the
Finite Element Method to solve the governing mechanical equations.
Therapeutic interventions (e.g. cutting) require topological changes of
the Finite Element mesh, thus making a non-trivial remeshing step nec-
essary. This paper describes a new approach to cutting in Finite Element
models. The central idea is not to introduce new nodes/elements but to
displace the existing ones to account for the topological changes intro-
duced by a cut. After the displacement of the nodes/elements the mesh
is homogenized to avoid tiny elements which destabilize the explicit time
integration necessary for solving the equations of motion.

1 Introduction

Endoscopic operations have become a very popular technique for the diagnosis
and treatment of many kinds of human diseases and injuries. The basic aim of
endoscopic surgery is to minimize the damage of the surrounding healthy tissue
that is caused by conventional surgery. By employing minimally invasive surgical
techniques, the surgeon loses direct contact with the operation site. Performing
operations under these conditions demands very specific skills that can be gained
only with extensive training. Virtual reality (VR) surgery simulators provide an
elegant training possibility.

Within the framework of an earlier project at our institute a realistic, VR-
based, endoscopic surgery simulator has been developed [10]. The soft tissue de-
formations are determined using a complex, non-linear, explicit Finite Element
(FE) model. A reduced volume integration scheme (total hourglass control) [5]
was applied in order to reduce the computational burden. Furthermore, a parallel
computer was built to maintain real-time performance. At present, the simula-
tion is limited to diagnostic interactions. It is, however, desirable to allow also
for interactive modifications of the model, especially cutting procedures.

The aim of this paper is to investigate some of the problems that arise while
cutting through a FE mesh in a real-time application. We will focus on the
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necessary remeshing caused by the topological changes and present a new cutting
algorithm.

1.1 Previous Work

Realistic simulation of tissue behaviour during interventions is one of the most
challenging tasks in surgical simulations. Several different methods for elastic
tissue modeling have been proposed. [11] for instance solves the linear elasticity
equations of elastic surface models to calculate deformations.

The two most popular approaches to model soft tissue are physically based
mass-spring models and FE models, which are based on continuum mechanics.
Whereas the former suffer from poor precision and configuration problems the
latter are computationally expensive. There is rich literature on both methods
available.

[2] dealt with the interactive simulation of surgical cuts through 3D soft tissue
modeled by mass-spring systems. They performed free-form cuts through tetra-
hedral meshes by applying dynamically adaptive subdivision schemes during the
simulation. Any element that is intersected is split into 17 smaller elements once
the cutting tool leaves the element, thus dramatically increasing the number of
tetrahedra by an average factor of six. [6] has implemented ordinary mass-spring
models. In principle using surface models, he adds some additional interior nodes
in order to model the volumetric behaviour of the objects. Cutting can only be
done along the springs. [4] adopted multi-resolution techniques to optimize the
time performance by representing at high resolution only the object parts con-
sidered more important. Their approach also allows for topological modifications
of tetrahedral mass-spring meshes.

[8] dealt with the simulation of deformable objects using 3D linear FE models.
They used various precomputation techniques to achieve real-time performance.
Cutting is implemented by removing tetrahedral elements that collide with a
virtual scalpel. However, the removal violates the principle of mass conservation.
[3] decomposed the anatomical structure into two sections: one onto which they
plan to perform cuts and one that will not be affected. Therefore, they propose to
apply different elastic models to each section of the anatomy: the more expensive
dynamic model is applied only to the section that the user will probably cut. [7]
presented a method to cut through soft tissue modeled by a tetrahedral mesh.
The tissue deformations are calculated using a linear FE model. The latter can
become unstable when the cut is resulting in small elements, which is usually the
case. Their examples were not real-time, because they had to run the simulation
with a very small integration time step to ensure the stability of the soft tissue
model.

After an illustration of the applied FE method in section 2, we will present
in section 3 a new cutting algorithm to circumvent some of the problems en-
countered above. Section 4 describes our results. Finally, we will discuss the
improvements and limitations of the new cutting algorithm and future work will
be addressed.
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2 FE Method

2.1 Physical Model

In this section we will describe the model which we use to simulate elastic defor-
mation of an object. Within FE methods, a body is subdivided into a number of
finite elements (such as tetrahedra in 3D or triangles in 2D). Displacements and
positions in an element are interpolated from discrete nodal values. For every el-
ement, the partial differential equations governing the motion of material points
of a continuum can be formulated, resulting in the following discrete system of
differential equations [1]:

MÜ + CU̇ + KU = R (1)

where U is the vector of nodal displacements, M is the mass matrix, C is
the damping matrix, K is the stiffness matrix and R is the vector of external
node forces. Given an isotropic solid no time-consuming, numerical integration
is necessary to determine the stiffness matrix.

The time integration of the above system of equations can be performed using
implicit or explicit integration schemes. For the implicit method, the solution has
to be calculated iteratively at every discrete time step. In contrast to this, the
explicit time integration can be performed without iteration and without solving
a system of linear algebraic equations. This integration scheme is only condition-
ally stable. The critical integration step ∆tcr is given by the Courant-Friedrichs-
Lewy condition. It is approximately proportional to the characteristical element
length ∆Lmin of the model:

∆tcr ≈ ∆Lmin

c
(2)

where c is the speed of sound in the medium.
In order to calculate a solution for (1) the time-dependent variables must be

discretized. We use the explicit Euler central difference terms as estimates of the
continuous variables and formulate the equation of motion at the time t:(
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Assuming lumped masses at the nodes, we can use diagonal damping and mass
matrices. In this case, (3) can be easily solved for the unknown nodal displace-
ments at the time t + ∆t.

2.2 Problems when Cutting in FE Meshes

Purely diagnostic interactions require only one generation of the FE mesh at the
beginning of the simulation. In contrast to this, cutting into a FE mesh results in
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topological changes which demand a remeshing process after each cut. In order
to conserve the stability of the integration scheme it is crucial to prevent the
element size ∆Lmin from decreasing rapidly during the cutting process as this
requires the adequate adjustment of the critical integration step ∆tcr. To this
end, an appropriate remeshing has to be performed after each cut.

Another issue, when cutting into a FE mesh, is the dimension of the system
matrices. If during the cutting process the number of elements is increasing, the
calculation effort to set up the system matrices as well as to solve the corre-
sponding equations of motion increases, too. Again, an appropriate remeshing
should prevent this.

In the next section a new cutting algorithm will be introduced. In order
to understand the performance as well as the limitations of our concept we
performed an initial study in the 2D case. Nevertheless, we always ensured the
extensibility of our approach to the third dimension.

3 Cutting Algorithm

3.1 Overview

In order to avoid a rapid growth of the number of nodes/elements, no new nodes,
except for the necessary duplicates on the cut line, are introduced after perform-
ing a cut. Instead, the nearest existing nodes will be displaced into the cut points
to account for the topological changes caused by a cut. The displacements result
in a more or less distorted mesh. Several edges can become quite small, bringing
about instabilities when integrating the equations of motion. Therefore, it is nec-
essary to homogenize the mesh in a subsequent step. To this end, a combination
of a linear mass-spring and a particle system is applied.

The particle system provokes a relatively homogeneous arrangement of the
nodes. However, it does not ensure the preservation of the mesh topology. The
mass-spring system is well suited for this task but it fails to completely rectify
the mesh. For these reasons, a suitable combination of both systems will be
utilized. After this brief presentation of our concept, we will give an in-depth
explanation of the necessary steps performed by the cutting algorithm.

3.2 Detailed Description

We start from a triangular mesh through which a straight cut is laid (see Fig.
1(a)). First of all, the cut is divided into a number of segments of equal length.
In a next step the number of cut points, which was deliberately chosen too high,
has to be adapted to the present mesh. To this end, the distance between each
cut point and its nearest neighbour is determined. If any two cut points have the
same nearest neighbour, the number of cut points is reduced by one and the new
cut points are determined. This process is repeated until no two cut points have
the same nearest neighbour (see Fig. 1(b)). Thereupon, the nearest neighbours
are displaced to the cut point positions (see Fig. 2(a)).
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(a) Cut through initial mesh (b) Adaption of number of cut
points to current mesh

Fig. 1. First steps of the cutting algorithm

The adaption process prevents the occurrence of all but two mesh errors.
First, a cut line segment can sometimes be intersected by another element edge.
The second error occurs when all three nodes of an element are displaced into
cut points, causing it to degenerate into a line. Both kinds of errors are traced
and corrected. In the next step, the combined mass-spring/particle system is
applied. Since the mesh distortion occurs mainly in a neighbourhood of the cut,
we have limited the homogenization process to the vicinity of the cut to reduce
the computational cost. Nodes are considered as mass points resp. particles and
element edges as springs. There are two kinds of internal forces that affect the
nodes: On the one hand the spring forces gij , on the other hand the forces f int

i

resulting from the potential energy function φ of the particle system:

gij = kij(‖xj − xi‖ − lij)
(xj − xi)
‖xj − xi‖ , f int

i = −∇xi
φ (4)

We used the Lennard-Jones potential φLJ [9] because it creates long-range at-
tractive forces and short range repulsive forces which encourage particles to
maintain equal spacing. The Lennard-Jones energy function φLJ is defined as a
function of separation distance r between a pair of particles:

φLJ(r) =
B

rn
− A

rm
(5)

A single node i of the combined mass-spring/particle system is governed by
the following equation of motion:

miẍi + ciẋi +


sspring

∑
j

gij + sparticlef
int
i


 = f i (6)

where sspring and sparticle are scaling factors. In order to solve the above dynamic
problem the explicit Euler scheme is applied. The new positions of the movable
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nodes are calculated until the displacements drop below a given threshold. Then,
additional postprocessing-steps are performed, which optimize the area of the
elements. The result of the whole remeshing process is shown in Figure 2(b).
Finally, in order to allow the mesh to open a partner node is generated for each
cut point. The original node belongs to elements on one side of the cut and the
duplicated node belongs to elements on the other side of the cut.

(a) Neighbours dislocated into cut
points

(b) Mesh after homogenization pro-
cess

Fig. 2. Dislocation and homogenization process

4 Results and Discussion

Several different configurations regarding the kind of mesh and the run of the
cut were examined. In order to analyze the quality of the remeshing process
a number of statistical values were determined: the number of nodes #N , the
number of elements #E, the minimum element area Amin and edge length Emin,
the maximum element area Amax and edge length Emax, the median element
area Amed and edge length Emed, the standard deviation of the element area
Aσ and of the edge length Eσ and the computing time t. All the statistical
values were determined before (I) and after (NR) the cut was performed. In
the case of the regularly meshed rectangle, these values were also determined
for another kind of remeshing (OR) for comparison purposes. Within the OR,
at every intersection of the cut line with the mesh a new node is introduced
together with the necessary corresponding elements.

All experiments were carried out on a one-processor SGI Octane (195 MHz;
128 MB RAM). An excerpt of the examples is listed in table 1. Figure 3(a) shows
as an example a homogeneous mesh through which a cut was laid. In order to
do a FE calculation boundary and initial conditions were applied and material
and geometric parameters were allocated. Subsequently, the equations of motion
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were solved by means of a commercial FE software. A snapshot of the solution
at a certain point in time is shown in Figure 3(b).

Table 1. Statistical values of the example configurations

Config. Mesh #N #E Amin Amax Amed Aσ Emin Emax Emed Eσ t
[−] [−] [mm2] [mm2] [mm2] [mm2] [mm] [mm] [mm] [mm] [s]

1 I 80 126 22.22 22.22 22.22 0.00 5.7 9.7 7.7 1.4
OR 106 152 2.24 22.22 18.42 7.10 2.2 9.7 6.9 2.2
NR 85 126 14.46 33.01 22.22 3.10 4.8 10.6 7.7 1.5 3.09

2 I 320 570 4.91 4.91 4.91 0.00 2.7 4.6 3.6 0.7
OR 376 626 0.00 4.91 4.47 1.29 0.1 4.6 3.4 1.0
NR 326 570 3.56 7.62 4.91 0.24 2.3 4.9 3.6 0.7 23.30

3 I 76 119 26.20 26.20 26.2 0.00 7.8 7.8 7.8 0.0
NR 83 312 13.88 39.88 26.20 4.43 4.8 11.2 7.8 0.9 2.75

4 I 312 555 5.88 5.88 5.88 0.00 3.7 3.7 3.7 0.0
NR 327 555 2.45 8.26 5.88 0.61 2.2 4.9 3.7 0.3 35.96

5 I 45 69 3.37 53.54 24.59 12.33 2.8 13.6 7.6 2.3
NR 48 69 3.37 53.54 24.59 12.48 2.8 13.6 7.7 2.3 0.77

6 I 120 200 0.83 20.87 8.82 4.78 1.2 9.9 4.6 1.6
NR 124 200 0.83 23.84 8.82 5.00 1.2 9.2 4.6 1.6 3.05

(a) Result of the remeshing with the
cutting algorithm

(b) Output of the FE calculation at
a certain point in time

Fig. 3. Example showing the result of the remeshing and the FE calculation

The following remarks refer to specific configurations but they are valid in
general. Configuration 1 in the table 1 shows that there were 80 nodes and 126
elements before cutting, and 85 nodes and the 126 elements afterwards when
using the NR. This compares very favorably to the same cut performed by the
OR. While the minimum element area and the minimum edge length are heavily
decreasing with the OR, there is only a slight decline with the NR. Configuration
2 points out that the median values and the standard deviations remain approx-
imately the same before and after cutting with the NR. In contrast to this, the
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OR results in considerably different median values and standard deviations. Re-
garding the computing time, it has to be noted, that there is a disproportionate
increase from smaller to larger meshes. This is due to the currently inefficient
implementation of the post-processing step, which unnecessarily investigates the
whole mesh. Due to the local nature of the homogenization process, it is suffi-
cient to also limit the subsequent optimization to the vicinity of the cut, thus
making the running time of this step directly proportional to the number of cut
points and not to the mesh size.

5 Conclusion and Perspectives

We have presented a new algorithm for cutting into a FE mesh. The technique
of dislocating the nodes prevents the number of elements from increasing. The
additional nodes that are generated, are the unavoidable partner nodes at the
cut points. Therefore, the size of the system matrices stays at a reasonable level,
while cutting the mesh. The homogenization procedure restores a more or less
homogeneous mesh after the node dislocations. Thus, the problem of decreasing
element size is minimized and consequently the stability of the solution of the
equations of motion is increased. The computing time necessary for the remesh-
ing takes up only a small fraction of the overall time our surgery simulator needs
for the FE calculations and the collision detection, respectively. Due to the fact,
that the computing time of our approach is only dependent on the number of
cut points, its real-time capability is guaranteed even for larger models.

Future work will focus on analyzing the inter-dependence of the parameters of
the combined system (e.g. spring constants) in order to adjust them optimally
for a specific mesh, thereby improving the homogenization process. Also the
possibility of combining progressive cutting with the current algorithm will be
investigated. Finally, we will research further into the problems arising in the 3D
case, where whole tetrahedral faces have to be dislocated into the cutting plane.
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