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A new approach to design interval observers for linear
systems

Filippo Cacace, Alfredo Germani, Costanzo Manes

Abstract—Interval observers are dynamic systems that provide upper
and lower bounds of the true state trajectories of systems. In this
work we introduce a technique to design interval observers for linear
systems affected by state and measurement disturbances, based on the
Internal Positive Representations (IPRs) of systems, that exploits the
order preserving property of positive systems. The method can be applied
to both continuous and discrete time systems.

Index Terms—Uncertain systems; Linear system observers; Positive
systems.

I. INTRODUCTION

The properties of positive linear systems have been a subject of
study in system theory for long time [11], [14]. Some of these
properties, for example that the trajectories of positive systems are
ordered with respect to the initial conditions and the forcing input,
can be exploited in the problem of state estimation.

This paper proposes a framework for the state observation problem
of linear systems in presence of bounded input/output uncertainties
which is based on the use of positive systems to design interval
observers, that is, a system of observers that provides a confident
region that contains the trajectory of the observed system [13], [16],
[17], [18]. A key tool to apply the positive properties to general (i.e.
non necessarily positive) systems is the internally positive realization
(IPR) [4], [5], [6], [12].

Some recent works on interval observers based on positive systems
is reported in [2], [3], [20], where positive observed systems are
considered. The case of stable linear systems is considered in [16],
where the authors propose an approach based on a time-varying
change of coordinates that transforms an autonomous system into a
positive one. This approach is used to design a Luenberger observer
with a positive error dynamics, on which an interval observer can be
built. This idea has subsequently been extended to complex intervals
in [7], and, using a time invariant change of coordinates, to a class of
nonlinear systems in [18], to linear time-invariant and time-varying
discrete-time systems in [8],[9], and to continuous-time time-varying
systems in [10].

Essentially, the idea behind these approaches is to design a stable
observer by means of an appropriate gain and then to find a coordinate
change such that the resulting error dynamics is positive. In this paper
we propose to reverse the approach: a positive observer of the system
is initially built, and the observer gain is subsequently chosen so as to
have a stable error dynamics. We show that this is always possible for
observable systems. The design technique is very simple and uniform,
it does not require a time-varying change of coordinates and it is
straightforward to extend it to the case of discrete-time systems. The
resulting interval observer has size 4n.

In Section II, we recall some notions about positive systems,
interval observers and positive representations. Section III introduces
interval observers based on positive representations for systems
with input/output disturbances. Section IV provides an example, and
Section V concludes the paper.

F. Cacace is with Università Campus Bio-Medico di Roma, 00128 Roma,
Italy, e-mail f.cacace@unicampus.it.

A. Germani and C. Manes are with Dip. di Ingegneria e Scienze
dell’Informazione e Matematica and with Center of Excellence DEWS,
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II. BACKGROUND AND PRELIMINARIES

Let R+ and C+ (R−, C−) denote the set of nonnegative (nonpos-
itive resp.) reals and the set of complex numbers with nonnegative
(nonpositive resp.) real parts. <(z) and =(z) respectively denote the
real and imaginary part of a complex z. σ(A) denotes the spectrum of
a square matrix A. A is a Hurwitz matrix if <(σ(A)) ⊂ (R−\{0})
and is a Schur matrix if σ(A) is inside the unit disk in C. Throughout
this paper the inequalities and the min and max operators on vectors
and matrices must be understood component-wise. M ≥ 0 denotes a
nonnegative matrix and |M | the matrix where each entry is |mij |.

A. Positive systems and positive representations

Consider a continuous-time linear time invariant system ΣL

ΣL :

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

x(0) = x0,

(1)

with x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rq , and therefore A ∈ Rn×n,
B ∈ Rn×p, C ∈ Rq×n.

Definition 1. The system (1) is said to be internally positive if, for
any given nonnegative initial condition x0 ∈ R+ and input function
u(t) ≥ 0, it is such that, ∀t ≥ 0, x(t) ∈ Rn+ and y(t) ∈ Rq+.

The positivity of system (1) is easy to check using well known
results (see [14], [11]).

Definition 2. A matrix M is said to be Metzler if all its off-diagonal
elements are nonnegative.

Theorem 1. ([14], p. 196.) The system (1) is internally positive if
and only if A is Metzler, B ≥ 0 and C ≥ 0.

Of course, (1) is asymptotically stable if and only if A is also a
Hurwitz matrix. Other stability conditions for a positive system are
proved in [1]. Positive systems have the notable property that they
are ordered with respect to initial conditions and forcing inputs. The
following result is well known in the literature.

Theorem 2. Consider a system ΣL (1) where A is Metzler and B ≥
0. Let x1(t) denote the state trajectory corresponding to the initial
state x01 and input u1(t). Similarly, let x2(t) denote the trajectory
corresponding to x02 and u2(t). If x01 ≤ x02 and u1(t) ≤ u2(t),
then x1(t) ≤ x2(t), ∀t ≥ 0.

Given a matrix (or vector) M , the symbols M+ and M− denote
its positive and negative parts, defined as

M+ = max(M, 0), M− = max(−M, 0). (2)

Then, M+ ≥ 0, M− ≥ 0 and M = M+−M−, |M | = M+ +M−.
In denotes the identity matrix in Rn. The following matrices will also
be used: ∆n = [In − In], In = [In In]T . Note that ∆nIn = 0.
The following definitions were originally introduced in [6], [12].

Definition 3. A positive representation of a vector x ∈ Rn is a
positive vector X ∈ R2n

+ such that x = ∆nX . The min-positive
representation of a vector x ∈ Rn is the positive vector π(x) ∈ R2n

+

defined as π(x) = [(x+)T (x−)T ]T . The min-positive representation
of a matrix M ∈ Rm×n is the positive matrix M̃ ∈ R2m×2n

+ defined
as

M̃ =

[
M+ M−

M− M+

]
. (3)

Note that x+ and x− are orthogonal, and therefore ‖x‖ = ‖π(x)‖.
Moreover x = ∆nπ(x) and ∆nM̃ = M∆n, for any x ∈ Rn

and M ∈ Rm×n. From these ∆nM̃π(x) = Mx, ∀x ∈ Rn,

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: September 19, 2014 01:55:59 PST



0018-9286 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAC.2014.2359714, IEEE Transactions on Automatic Control

TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, DECEMBER 20ZZ 2

M ∈ Rm×n. For any given v ∈ Rn+, the vector π(x) + In v is
a positive representation of x ∈ Rn, in that x = ∆n(π(x) + Inv)
(recall that ∆nIn = 0).

Given a square matrix M ∈ Rn×n we define its Metzler represen-
tation [M ] ∈ R2n×2n as

[M ] =

[
dM + (M − dM )+ (M − dM )−

(M − dM )− dM + (M − dM )+

]
. (4)

where dM denotes the matrix having the same diagonal as M and 0
elsewhere. It is easy to check that [M ] is Metzler and that it enjoys
the same property as the positive representation, ∆n[M ] = M∆n,
thus ∆n[M ]π(x) = Mx.

Note that the min-positive representation of vectors does not
preserve the inequalities, in that x1 ≤ x2 does not imply that
π(x1) ≤ π(x2). Let, for a given a ∈ Rn,

φa(x) =

[
x+ a−

a−

]
, (5)

where a− = max(−a, 0) as in (2). It is easy to prove the following.

Lemma 3. The function φa(x) defined in (5) is such that ∆nφa(x) =
x, ∀x ∈ Rn, and for any three vectors a, x, b in Rn such that
a ≤ x ≤ b it follows 0 ≤ φa(a) ≤ φa(x) ≤ φa(b),

‖φa(x)− φa(a)‖ = ‖x− a‖, ‖φa(b)− φa(x)‖ = ‖b− x‖. (6)

Remark 1. Note that if a ≤ x, then φa(x) is a positive representation
of x, i.e. φa(x) ∈ R2n

+ and x = ∆nφa(x). Moreover, φa(a) = π(a)
(min-positive representation).

This can be extended to matrices of the same size by defining
φ̃A(M) as

φ̃A(M) =

[
M +A− A−

A− M +A−

]
, (7)

If A ≤ M , φ̃A(M) is nonnegative. Moreover, if ∆nX = x then
∆nφ̃A(M)X = Mx.

Lemma 4. φ̃A(M) defined in (7) is such that for any three matrices
A1, M , A2 in Rn×m such that A1 ≤ M ≤ A2 it follows 0 ≤
φ̃A1(A1) ≤ φ̃A1(M) ≤ φ̃A1(A2).

Vectors inequality on positive representations may be preserved
through coordinate changes. Given a nonsingular matrix T ∈ Rn×n
and a vector a in Rn, and defining U = T−1, let us define the
function ψT,a : Rn → R2n:

ψT,a(x) = Ũφa(x) =

[
U+ U−

U− U+

] [
x+ a−

a−

]
(8)

Lemma 5. The function ψT,a(x) defined in (8) is such that

∆nT̃ ψT,a(x) = x, ∀x ∈ Rn, (9)

and, for any three vectors a, x, b in Rn such that a ≤ x ≤ b we
have 0 ≤ ψT,a(a) ≤ ψT,a(x) ≤ ψT,a(b).

Internally Positive Representations (IPRs) of systems have been
defined and investigated in [6], [12] for discrete-time systems, and
in [4], [5] for continuous-time systems. An IPR of system ΣL (1) is
an internally positive system, endowed with four transformations T fX ,
T bX , TU and TY , that provide the same state and output trajectories as
the original, non necessarily positive, system. Denoting (x(t), y(t))
the state and output trajectories of system (1), an IPR of (1) is such
that when its positive initial state is computed as X(0) = T fX(x(0)),
and its positive input as U(t) = TU (u(t)), then the state and output
trajectories (X(t), Y (t)) of the IPR are positive and such that x(t) =
T bX
(
X(t)

)
and y(t) = TY

(
Y (t)

)
, t ≥ 0 (see [4] for more details).

In general, any linear system admits infinite IPRs (see [4]). In this
paper we use the V-IPR defined in Theorem 4 of [4]:

I :

Ẋ(t) = [A]X(t) + B̃U(t)

Y (t) = C̃X(t)

T fX = π(x), TU = π(u), T bX = ∆nX, TY = ∆qY,
(10)

where X(t) ∈ R2n
+ , U(t) ∈ R2p

+ , Y (t) ∈ R2q
+ . [A] ∈ R2n×2n is the

Metzler representation of A defined by (4), B̃ and C̃ are the positive
representations of B and C defined by (3).

Theorem 6. [4] System I in (10) is an IPR of ΣL in (1).

Due to the larger state space, I has more natural modes than
ΣL and the stability of ΣL does not imply the stability of I. In
other words, when A is Hurwitz, [A] is not necessarily Hurwitz. We
summarize the results that are useful in the stability analysis of the
IPR I (see [5]).

Lemma 7. [4] The spectrum of the Metzler representation of a matrix
A is σ([A]) = σ(A) ∪ σ(dA + |A− dA|).

The next Lemma links the stability of I to the position of the
eigenvalues of A via a coordinate change that transforms A in the
Real Jordan Form, the usual Jordan block form where the complex
eigenvalues are represented through blocks with real entries (see [12]
for details).

Lemma 8. [4] Let S ⊂ C− be defined as follows

S =
{
z ∈ C : <(z) + |=(z)| < 0

}
. (11)

Then, if a square matrix A is in the Real Jordan Form, its Metzler
representation [A] is Hurwitz if and only if σ(A) ⊂ S.

Since there is always a coordinate change for ΣL that transforms
A in the Real Jordan Form, the main limitation for the stability of I
is the position of its eigenvalues. Notice that R− ⊂ S, and therefore
Jordan matrices with only negative real eigenvalues always satisfy
the stability condition of Lemma 8. If A is not in Real Jordan Form,
the condition of Lemma 8 is neither necessary nor sufficient for [A]
being Hurwitz.

B. Interval observers

Informally, interval observers are dynamical systems that provide
an upper and lower bound for the state trajectory of the observed sys-
tem under disturbance inputs and/or parametric uncertainties starting
from a suitable initial condition.

Definition 4. Consider system Σν

Σν :

ẋ(t) = Ax(t) +Bu(t) + νs(t)

y(t) = Cx(t) + νm(t)

x(0) = x0,

(12)

with x(t), νs(t) ∈ Rn, u(t) ∈ Rp, y(t), νm(t) ∈ Rq , both u(t)
and νs(t) piecewise continuous to guarantee the existence of the
solution x(t) in [0,∞). Assume that there are known bounds νs(t) =
(νs1(t), νs2(t)) ∈ R2n and νm(t) = (νm1 (t), νm2 (t)) ∈ R2q on the
unknown disturbances such that, ∀t ≥ 0, νs(t) ∈ [νs1(t), νs2(t)],
νm(t) ∈ [νm1 (t), νm2 (t)]. Moreover, two bounds on the initial
condition x01 ≤ x0 ≤ x02 are known. Then, a dynamical system

Ż(t) = F (Z(t), u(t), y(t), νs(t), νm(t)), (13)

with Z(0) = G(x01, x02), and outputs

x(t) = H1

(
t, Z(t)

)
, x(t) = H2

(
t, Z(t)

)
, (14)
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is called an interval observer for Σν if
1) the system (13) is Input-State Stable (ISS, see [19]);
2) for any x(0) such that x01 ≤ x(0) ≤ x02, the solutions x(t)

and Z(t) of (12), (13) satisfy the inequalities x(t) ≤ x(t) ≤
x(t) for all t ≥ 0;

3) if ‖νs2(t)−νs1(t)‖ and ‖νm2 (t)−νm1 (t)‖ are uniformly bounded
then also ‖x(t)− x(t)‖ is uniformly bounded, and if νs1(t) =
νs2(t), νm1 (t) = νm2 (t) for all t ≥ 0 then ‖x(t)− x(t)‖ → 0.

Similar definitions have been proposed elsewhere (see for example
[16]). Here we require that the interval observer behaves like an
ordinary observer when the disturbance is known or absent, and that
if the disturbance is bounded the width of the estimation interval is
bounded, even in the case ‖x(t)‖ → ∞.

III. IPR-BASED INTERVAL OBSERVERS

Before describing the proposed interval observers, we present a
positive Luenberger observer for system Σν .

A. An IPR-based positive observer

Consider the Luenberger observer of system Σν in (12)

ΣO :
˙̂x(t) =(A−KC) x̂(t) +Bu(t) +Ky(t)

x̂(0) = x̂0,
(15)

From this, defining the matrix AK = A−KC, the dynamics of the
observation error ε(t) = x(t)− x̂(t) is given by

ε̇(t) = AK ε(t) + νs(t)−Kνm(t). (16)

If K is chosen such that AK is Hurwitz, when νs(t) = νm(t) =
0, ε(t) exponentially goes to zero, and when νs(t) and νm(t) are
uniformly bounded, ε(t) is uniformly bounded too. The following
Theorem presents a positive observer for Σν by simply considering
the V-IPR of ΣO with an appropriate choice of K.

Theorem 9. Consider Σν as in (12). Given K ∈ Rn×q , let AK =
A−KC. If K is such that [AK ] is Hurwitz, then the system

Ω :

Ż(t) =[AK ]Z(t) + B̃π(u(t)) + K̃π(y(t))

Z(0) =π(x̂0) ∈ R2n
+

x̂(t) = ∆nZ(t),

(17)

where B̃, K̃ are the positive representations of B,K as in (3), is
such that the following propositions hold ∀t ≥ 0:
• Z(t) ≥ 0;
• if νs(t) = νm(t) = 0 then x̂(t) exponentially converges to x(t).

Moreover if Z(0) = π(x(0)), then x̂(t) = x(t);
• if x(t), νs(t) and νm(t) are uniformly bounded then Z(t) is

uniformly bounded.

Proof. The positivity of Z(t) follows from the fact that [AK ] is
Metzler, B̃, K̃ ≥ 0, the inputs are positive and Z(0) ≥ 0. The
assertion x̂(t) → x(t) exponentially when νs(t) = νm(t) = 0
follows from the fact that (17) is the IPR of the Luenberger observer
ΣO . To prove this, let us compute ˙̂x(t) = ∆nŻ(t).

˙̂x(t) = ∆nŻ(t)

=∆n[AK ]Z(t) + ∆nB̃ π(u(t)) + ∆nK̃ π(y(t))

=AK∆nZ(t) +Bu(t) +Ky(t)

=AK x̂(t) +Bu(t) +Ky(t), (18)

which is the Luenberger observer (15). Since [AK ] is Hurwitz, the
boundedness of x(t), and hence of π(y(t)), and of νs(t), νm(t)
implies that Z(t) is bounded too.

Remark 2. Notice that Ω defined in (17), despite the apparent
similarity to a Luenberger observer, makes use of the nonlinear
function π(.). Consequently, the ordering of trajectories (see Theorem
2) holds with respect to π(u(t)) and not to u(t).

Remark 3. The main assumption in Theorem 9 is that the observer
gain K is chosen such that [AK ] is Hurwitz. Thanks to Lemma 7,
[AK ] Hurwitz is equivalent to have both AK and dAK + |AK −
dAK | Hurwitz. Recalling that AK = A − KC, if the pair (A,C)
is detectable, then K can be designed such that AK is Hurwitz.
However, AK Hurwitz does not imply that dAK + |AK − dAK | is
Hurwitz too. This issue is investigated in the Appendix.

B. An IPR-based interval observer in original coordinates

A couple of positive observers built using an IPR like the one in
Theorem 9 can be used to design an interval observer. The following
result, which is well known and simple to prove, suggests that an
interval observer can be built by using a couple of positive observers
of the type (17).

Lemma 10. Let x(t) ∈ Rn be a vector function, and let X(t) ∈ R2n
+

be a positive representation of x(t), i.e. x(t) = ∆nX(t). Considering
positive vector functions X(t) = [X1(t)T , X2(t)T ]T ∈ R2n

+ and
X(t) = [X1(t)T , X2(t)T ]T ∈ R2n

+ . If for all t ≥ 0, X(t) ≤
X(t) ≤ X(t), then

X1(t)−X2(t) ≤ x(t) ≤ X1(t)−X2(t). (19)

The proposed interval observer is made of two subsystems that
resemble the V-IPR of the Luenberger observer presented in Theorem
9. For the sake of concision it is useful to aggregate the state
and measurement disturbances νs(t), νm(t) into the equivalent
disturbance

w(t) = νs(t)−Kνm(t). (20)

Given an observer gain K a bound w(t) = [w1(t), w2(t)] for w(t)
can be easily derived from the bounds νs(t), νm(t).

The main difference between the interval observer and the Luen-
berger observer of Theorem 9 is that φxo1(.) and φw1(.) replace the
min-positive representation of, respectively, the initial conditions and
the disturbances, in order to preserve inequalities (see Lemma 3).

Theorem 11. Given the system Σν in (12), K ∈ Rn×q such that
[AK ] is Hurwitz, where AK = A−KC, and a bound w(t) on the
equivalent state disturbance, the dynamical system

Ż(t) =[AK ]Z(t) + B̃ π(u(t)) + K̃ π(y(t)) + φw1(w1(t))

Ż(t) =[AK ]Z(t) + B̃ π(u(t)) + K̃ π(y(t)) + φw1(w2(t))

Z(0) = φx01(x01), Z(0) = φx01(x02),

(21)

together with the functions

x(t) = [In 0n×n]Z(t)− [0n×n In]Z(t)

x(t) = [In 0n×n]Z(t)− [0n×n In]Z(t)
(22)

is an interval observer for Σν according to Definition 4, and in
particular x(t) ≤ x(t) ≤ x(t).

Proof. Note that the interval observer (21) is made of two positive
subsystem, so that Z(t), Z(t) ∈ R2n

+ , and the state of the observer
is Z(t) = [Z(t)T , Z(t)T ]T ∈ R4n

+ . Since [AK ] is Hurwitz by
assumption, then (21) is ISS, and Z(t) is uniformly bounded if u(t),
y(t) and w(t) are uniformly bounded. To prove x(t) ≤ x(t) ≤ x(t)
the first step is to show that

ζ̇(t) = [AK ]ζ(t) + B̃ π(u(t)) + K̃ π(y(t)) + φw1(w(t)) (23)
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with ζ(0) = φx01(x0) ∈ R2n
+ is an IPR of Σν (12), so that

x(t) = ∆nζ(t). This is easily obtained using the same approach
as in Theorem 9. The second step is to infer that the inequality
Z(t) ≤ ζ(t) ≤ Z(t) holds for all t ≥ 0. This is a
straightforward consequence of the ordering of trajectories induced
by the initial conditions Z(0) ≤ ζ(0) ≤ Z(0) and the forcing
terms, φw1(w1(t)) ≤ φw1(w(t)) ≤ φw1(w2(t)), that results from
Lemma 3. At this point the thesis directly follows from Lemma 10
and Theorem 2. When w1(t) = w2(t) for all t ≥ 0, then the two
subsystems in (21) coincide, except for the initial state (note that
this means that w(t) is known, and w(t) = w1(t) = w2(t), so that
φw1(w1(t)) = φw(w(t)) = π(w(t)), see Remark 1). Thus, both
subsystems in (21) coincide with the positive observer (17), but have
different initialization. However, thanks to the Hurwitz property of
[AK ] we have ‖Z(t)−Z(t)‖ → 0 and from this ‖x(t)−x(t)‖ → 0. It
remains to prove that ‖w2(t)−w1(t)‖ bounded implies ‖x(t)−x(t)‖
bounded. Let ξ(t) = x(t) − x(t). From (22) we easily derive the
identity ξ(t) = [In In]

(
Z(t)− Z(t)

)
. From this

ξ̇(t) = [In In][AK ](Z(t)− Z(t)) + w2(t)− w1(t)

=
(
dAK + |AK − dAK |

)
ξ(t) + w2(t)− w1(t). (24)

The matrix dAK + |AK−dAK | is Hurwitz, because σ(dAK + |AK−
dAK |) ⊆ σ([AK ]) (Lemma 7), and [AK ] is Hurwitz by assumption.
Then the system (24) is ISS, and therefore ‖w2(t)−w1(t)‖ uniformly
bounded implies that ‖x(t)− x(t)‖ is uniformly bounded too.

C. An interval observer with a coordinate change

In Remark 3 and in Appendix we discussed the non-trivial problem
of finding K that makes [AK ] Hurwitz. When this is not possible, we
cannot find an interval observer of the type (21). However, we can
exploit the result of Lemma 8, which provides an easy condition for
the stability of the IPR in the case of matrices in Real Jordan Form.
A straightforward solution to the problem of finding an IPR-based
interval observer can be therefore pursued in three steps:

1) find K assigning to AK = A−KC a set of eigenvalues in S
(11);

2) find the change of coordinates that transforms AK in the Real
Jordan Form JK ;

3) design the interval observer of the transformed system and
translate the intervals back to the original coordinates.

Notice that, for an observable pair (A,C), step 1 is a standard pole
placement. For step 3 we make use of Lemma 5.

Theorem 12. Given the system Σν in (12), K ∈ Rn×q such that
σ(AK) ⊂ S (defined in Lemma 8), a bound w1(t) ≤ w(t) ≤ w2(t)
on the equivalent state disturbance, T ∈ Rn×n the nonsingular
matrix that transforms AK in real Jordan form JK (i.e., JK =
T−1AKT ), the dynamical system

Ż(t) =[JK ]Z(t) + B̃Tπ(u(t)) + K̃T π(y(t))

+ ψT,w1(w1(t))

Ż(t) =[JK ]Z(t) + B̃Tπ(u(t)) + K̃T π(y(t))

+ ψT,w1(w2(t))

Z(0) = ψT,x01(x01), Z(0) = ψT,x01(x02),

(25)

together with the functions

x(t) = [In 0n]T̃Z(t)− [0n In]T̃Z(t),

x(t) = [In 0n]T̃Z(t)− [0n In]T̃Z(t),
(26)

where [JK ] is the Metzler representation of JK , B̃T and K̃T are
the min-positive representation of, respectively, BT = T−1B and

KT = T−1K, is an interval observer for Σν according to Definition
4.

Proof. The observer is ISS because σ(AK) = σ(JK) and, thanks to
Lemma 8, σ(JK) ⊂ S implies that [JK ] is Hurwitz. To prove the
trajectory inclusion x(t) ≤ x(t) ≤ x(t), the first step is to show that
the system

ζ̇(t) = [JK ]ζ(t) + B̃T π(u(t)) + K̃T π(y(t)) + ψT,w1(w(t)),

with ζ(0) = ψT,x01(x0) is such that x(t) = T∆nζ(t). This is easy
to prove using the same approach as in Theorem 9. Notice that this
implies also x(t) = ∆nT̃ ζ(t). The second step is to infer that the
inequality Z(t) ≤ ζ(t) ≤ Z(t) holds for all t ≥ 0, which is a conse-
quence of the ordering of trajectories induced by the initial conditions
and the forcing terms, according to Theorem 2. The ordering of
forcing terms is a consequence of Lemma 5. Since T̃ is positive, from
Z(t) ≤ ζ(t) ≤ Z(t) we have T̃Z(t) ≤ T̃ ζ(t) ≤ T̃Z(t). Recalling
that x(t) = ∆nT̃ ζ(t) the thesis directly follows from Lemma 10.
The boundedness of the interval amplitude is an implication of the
Hurwitz property of [JK ].

Remark 4. The observability of (A,C) ensures that it is possible to
assign σ(AK) in S. Of course, such hypothesis can be relaxed, by
only assuming that the eigenvalues of A associated to unobservable
modes, if any, belong to S. Otherwise, a time-varying change of
coordinates can still be used for any detectable pair (A,C) [7], [16].

Remark 5. The results presented here for continuous-time systems
extend immediately to discrete-time systems using the correspond-
ing IPR [6], [12]. The only difference is that the min-positive
representation ÃK replaces [AK ] in (21) and J̃K replaces [JK ]
in (25). The stability region for the IPR in Real Jordan Form is
P4 =

{
z ∈ C : <(z) + |=(z)| < 1

}
[12].

Remark 6. The approach can be extended to uncertain systems
where disturbances have a structured form, for example B(t, x)u(t),
with the unknown B(t, x) satisfying B1(t) ≤ B(t, x) ≤ B2(t). In
this case, using Lemma 4, the corresponding bounds on the positive
representation are

φ̃B1(B1)π(u) ≤ φ̃B1(B(t, x))π(u) ≤ φ̃B1(B2)π(u), (27)

that can be introduced in the forcing term of the observer (25).
Another case which is easy to deal with in the IPR approach is that
of nonlinear systems containing terms of the form |x|, see [15].

IV. EXAMPLE

In this section we illustrate the approach described in Section III-C
with a simple example. Consider system Σν in (12) with

A =

−1.5 −1 −0.5
1.5 1 −0.5
1 1 0

 , B =

 1
−1
1

 ,
C =

[
−1 −2 1
1 0 2

]
, (28)

and u(t) = 3 sin(t) − 2 sin(3t). The matrix A has eigenvalues
−0.5 and ±j and it is therefore not exponentially stable. Since
(A,C) is observable, we choose AK = A − KC such that
σ(AK) = L = {−1.5, −1.8, −2.1}. The interval observer is
built using a coordinate change z = T−1x, where T is such that
T−1AKT = JK = diag(σ(AK)). After noticing that σ(AK) =
L ⊂ R− we conclude that [JK ], the Metzler representation of JK ,
is Hurwitz according to Lemma 8. This is easily confirmed by the
explicit computation of [JK ],

[JK ] =

[
JK 03×3

03×3 JK

]
. (29)
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Fig. 1. Interval observer for the state variables x1(t), x2(t), x3(t) for two realizations of the disturbance wa(t), wb(t) having the same bounds. Interval
estimates computed from the interval observer described in Section III-C for the state variables x1(t), x2(t), x3(t). Two distinct realizations of the bounded
disturbance w(t) are reported: w(t) = wa(t) (left) and w(t) = wb(t) (right).

from which it follows that [JK ] has the same spectrum as AK and
JK , i.e. σ([JK ]) = σ(AK) = L. Let us consider two different
disturbances w(t), namely wa(t) = Bw sin(t),

wb(t) =

{
Bw if mod(t, 4) > 3.5

−Bw if mod(t, 4) ≤ 3.5,
(30)

with Bw = 1
2
[1, 1, 1]T . A uniform bound for these disturbances

is |w(t)| ≤ Bw. An interval observer with coordinate change can
now be designed starting from the following bound on the initial
conditions (in the original coordinates), x−0 = [4,−4, 3]T ≤ x0 =
[5,−3, 4]T ≤ x+0 = [6,−2, 5]T . The resulting estimation intervals on
all the state variables for the two cases are shown in Fig. 1. It may be
noticed that in the example the interval width is not uniform across
state variables, but it is independent of the disturbance realization.
It must also be remarked that the size of the estimation interval,
when there is a coordinate change, depends on both the size of w(t)
and the coordinate change T . Thus for a different choice of K the
approximation could be worse (or better) than the one shown in this
example even in presence of the same disturbance.

V. CONCLUSIONS

We have shown that an interval observer for continuous-time
and discrete-time linear systems can be designed using simple pole
placement algorithms and a fixed coordinate change. The resulting
algorithm has size 4n and it is guaranteed to be stable if the pair
(A,C) is observable. With respect to [7], [10], [16], [18], whose
algorithms have dimensions 2n, the proposed method is simpler in
that it does not require a time-varying change of coordinates nor
matrix equations to be solved. The explicit representation of positive
and negative parts of state and uncertainties allows to express in a
direct way bounds for the case of multiplicative disturbances, which
can be useful to extend the interval observer approach to other classes
of systems, like nonlinear and time-delay systems. Further issues
to investigate include the optimization of the coordinate change to
minimize the width of the estimation interval.

APPENDIX

In this Appendix we discuss the problem of finding a matrix K
such that the Metzler representation of AK = A−KC is Hurwitz.
First of all we show that there are pairs (A,C), with A unstable, for
which [AK ] can be Hurwitz.

Example 1. Consider ΣL in (1) with

A =

[
0.5 0
0 −1

]
, C =

[
1 1

]
. (31)

A is obviously not Hurwitz. Choosing K = [1 1/2]T we have
σ(AK) = σ([AK ]) = {−0.134, −1.866} ([AK ] has two negative
eigenvalues of multiplicity 2). Thus Theorem 9 enables us to conclude
that (17) provides a stable positive observer of an unstable non-
positive system.

Despite this, it may be that AK is Hurwitz and [AK ] is not. In
such cases, it holds true that Ω (17) is an exponential observer for
system Σν , but Ω is not ISS.

The problem of finding K that makes [AK ] Hurwitz is not trivial,
and in particular for some pair (A,C) it may be impossible to find
K to make [AK ] Hurwitz. Theorem 2.1 of [2] is a useful tool to
investigate this issue. It leads to the following result that we state for
the case of scalar y(t), but whose extension to the multi-output case
is straightforward.

Lemma 13. If, given A = (aij) ∈ Rn×n and C = (ci) ∈ Rn, there
exist K = (ki) ∈ Rn, and strictly positive λ = (λi) ∈ (R+ \ {0})n
such that AK = A−KC is Hurwitz and

aii < kici −
n∑

j=1, j 6=i

|aij − kicj |
λj
λi

(32)

holds for i = 1, . . . , n, then [AK ] = [A−KC] is Hurwitz.

Proof. From Lemma 7, [AK ] is Hurwitz if and only if both AK
and dAK + |AK − dAK | are Hurwitz. AK is Hurwitz by hypothesis.
Using the fourth stability condition of Theorem 2.1 of [2] we have
(dAK + |AK − dAK |)λ < 0 for λ > 0, which is equivalent to
(32).

Corollary 14. If, given A and C as before, there exist K and strictly
positive λ such that AK = A −KC is Metzler and condition (32)
holds for i = 1, . . . , n, then [AK ] = [A−KC] is Hurwitz.

Proof. If AK is Metzler, Theorem 2.1 of [2] can be applied. Condi-
tion (32) implies that

AKλ = (dAK + (AK − dAK ))λ < (dAK + |AK − dAK |)λ < 0,

or, equivalently, that AK is Hurwitz.

Notice that (32) taken for i = 1, . . . , n is a system of equations
in which each ki occurs in just one equation. Corollary 14 restricts
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the search to matrices AK that are Metzler, but this condition leads
to a system of inequalities for AK that is easier to verify than the
condition of being Hurwitz. From the previous discussion it follows
that it is sometimes impossible to find K such that [AK ] is Hurwitz.
For instance, from Lemma 13 it is clear that no K can make [AK ]
Hurwitz when A is diagonal and contains only positive real entries.
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