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Abstract

Nowadays, unprecedented amounts of heterogeneous data collections are stored, pro-

cessed and transmitted via the Internet. In data analysis one of the most important prob-

lems is to verify whether data observed or/and collected in time are genuine and station-

ary, i.e. the information sources did not change their characteristics. There is a variety of

data types: texts, images, audio or video files or streams, metadata descriptions, thereby

ordinary numbers. All of them changes in many ways. If the change happens the next

question is what is the essence of this change and when and where the change has oc-

curred. The main focus of this paper is detection of change and classification of its type.

Many algorithms have been proposed to detect abnormalities and deviations in the data.

In this paper we propose a new approach for abrupt changes detection based on the Parzen

kernel estimation of the partial derivatives of the multivariate regression functions in pres-

ence of probabilistic noise. The proposed change detection algorithm is applied to one-

and two-dimensional patterns to detect the abrupt changes.
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1 Introduction

Today the huge amounts of varied data are

processed, transmitted and stored on the Internet.

There is a variety of data types: texts, images, audio

or video files or streams, metadata descriptions or

just ordinary numbers. The important issue is con-

fidence that these collected data are genuine, or re-

liable i.e. information sources did not change their

characteristics in time. Let us note that we are not
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interested in the ordinary distortion of data (errors)

by impulse noise, for instance. These types of prob-

lems are dealt by error correcting codes and/or dig-

ital filtering in telecommunications.

We are rather interested in determining the

essence of the changes if they occurred, and where

or when they have arisen. The fundamental ques-

tion is how to detect such changes automatically,

i.e. by the appropriate use of a computer program.

There are several methods and algorithms for

detecting abnormalities or deviations in the data.

The popular approaches are based on the proba-

bilistic and statistical tests or model building. Such

strategies are motivated by the lack of precise and

complete mathematical description of the process

generating the observed data, even if we apply the

known physical, biological or medical principles

and mathematical equations.

The following general types of changes may be

of interest to us (see [2]):

- glitches or anomalies: accidental, fortuitous, of-

ten single, less important aberration or simply error

in observations caused e.g. by transmission chan-

nel noise, temporary disturbances or measurement

inaccuracy. Their effect quickly passes away, gen-

erally they are irrelevant and can be ignored. It is

easy to remove them from the data by appropriate

filtering or corrections.

- abrupt or jumping, narrow changes, also called

edges: significant deviation from the standard or

model observed yet. They are significant to the ob-

server. They may indicate the problem which re-

quires an urgent response. Examples: The abrupt

changes in the stock market, abnormalities in phys-

iological parameters of hospital patients, in imaging

tomography, changes in geological processes, espe-

cially in seismology, cartography, and in several in-

dustrial processes. A sudden increase of network

traffic flow including the web click-streams, sensor

data, phone calls quantities - can indicate possible

hacker attack and general lack of information secu-

rity and the network and system threats. - gradual

changes, trends or drifts: subtle shifts that cannot

be easily detected manually. They proceed slowly,

are barely visible in the long period and more dif-

ficult to detect and classify as important. These

changes, however, can be of great qualitative im-

portance and may indicate a profound change in the

structure of the model. Examples: the changes in

the global temperature of the earth’s surface, the

amount of underground water resources in certain

areas, the gradual general degradation of air qual-

ity, changes in the earth magnetic field - all of them,

in the long perspective, threaten the human civiliza-

tion and even life on Earth.

2 A brief overview of the method-

ologies used to date

There are several methods and algorithms use-

ful to detect abnormalities or deviations in the data.

The survey of the edge detection techniques

in 2d-image processing one can be found in, e.g.,

[2, 48]. The authors surveyed several approaches

for abrupt changes detection via classical gradient-

based methods using operations involving first or-

der derivatives such as Sobel, Prewitt, Robert’s [31]

and Canny [3] edge detectors at which the distri-

bution of intensity values in the neighborhood of

given pixels determines the probable edges. The

techniques involving second order derivatives such

as the Laplacian and Gaussian filtering used for de-

tecting of zero-crossings also allow edge detection

in images [29].

In the current studies, the common approach

methodology is to conduct phenomena analysis

by modelling the problems by multidimensional

probability density functions in continuous d-

dimensional spaces, and distributions in the case of

discrete series of random numbers representing sta-

tistical multidimensional processes. The more gen-

eral, natural approach is to model the data via distri-

butions or densities [6]. Using mathematical statis-

tics and the representative templates like means and

simple models (e.g. linear regression) the signif-

icant features could be compared using different

sample sets. This comparison may result in the de-

tection of a change in some parameters, or more

general criteria like mean square error can be also

used to detect change. When a parameter of the pro-

cess is estimated the so-called parametric approach

is applied.

The nonparametric methodology is used when

no assumptions on the functional form on the

data have been made. Many statistical tests have

been applied in this problem like the Kolmogorov-

Smirnov test or Wilcoxon test, for instance (see
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[4]). The main idea is to compute a scalar func-

tion of the data (so-called test statistics) and com-

pare the values to determine whether a significant

change (defined before) has occurred. One of the

most general measures of the distance between two

distributions is the relative entropy known as the

Kullback-Leibler distance [25].

The methods cited above are effective when the vol-

ume of the data is not very large, and usable off-

line. So, for data streams, they are not applicable

directly.

The interesting results on various regression

models for stream data mining are discussed in

[10, 11, 12, 24, 30, 41, 42, 43, 44].

In general, the objects and/or processes can be de-

scribed mathematically as a function R(.) of the d-

dimensional vector variable X. Then the methods

based on regression function analysis can be ap-

plied. An abrupt change of the function R(.) value

at point p may be recognized as a jump disconti-

nuity of the function. In the one dimensional case

(d = 1) it may be observed as a steep chart. The

main problem is to determine the point p at which

this occurs. In the case d > 1 the place of change

(the edge) takes form of a curve in d-dimensional

space (across which R is discontinuous). Its calcula-

tion is more difficult and requires much more com-

putational effort. One way of detecting change is to

compare likelihood between the subsequent exam-

ples using adjacent sliding time-windows, for pre-

vious elements in the stream and the further ones.

The point p could be estimated when we observe a

decreasing likelihood.

An interesting solution from the literature ap-

plies the Kulback-Leibler divergence e.g. in [14].

The data in consecutive time-windows are clus-

tered using k-means into K clusters. The discrete

distribution is calculated where each cluster has a

probability proportional to the number of exam-

ples it holds. If two distributions are identical the

Kulback-Leibler divergence is close to 0, when they

are substantially different the Kulback-Leibler di-

vergence is close to 1.

The combined semi-parametric log-likelihood

detector, a compromise method between Hoteling

(parametric detector) and non-parametric Kulback-

Leibler divergence was recently studied in [14] us-

ing among others the Mahalanobis distance, and

Gaussian mixture of distributions.

Another interesting approach is based on ra-

dial basis functions (RBF). The method described

in [37] uses the scalable radial kernels in the form

K(x,y) := Φ(x− y) where Φ is a radial function,

defined on Rd . It can be rewritten in the form Φ(r)
where r = ∥.∥ denotes the distance norm and Φ :

[0,∞)→ℜ - a function of a single non-negative real

variable. The authors have chosen the Wendland

kernels of polynomials with even order of smooth-

ness. Kernels on Rd can be scaled by the posi-

tive factor delta in the following way: K(x,y,δ) :=
K
(

x
δ
,

y

δ

)

, ∀x,y ∈ Rd .

The parameter δ is called the shape or scale pa-

rameter and can be tuned by the experimenter (de-

pending to the application). It controls the accu-

racy of the interpolation and the stability. The main

idea is to interpolate the data with the radial ker-

nel functions, next calculating the set of the coef-

ficients of this interpolation in some cardinal func-

tion. The main idea is based on the so-called Gibbs

phenomenon: when the approximated function has

the discontinuity at the point p in the Fourier se-

ries near this point, the high frequency components

arise, so the corresponding Fourier coefficients take

larger absolute values in this region. A suitable

thresholding strategy could be used to detect the

point p.

In this paper, we focus our attention on the chal-

lenge of abrupt change detection, also called edge

detection problem, by presenting the new original

approach. The main result is the method of edge

detection derived from the nonparametric approach

based on Parzen kernel algorithms for estimation of

unknown regression functions and their derivatives

from the set of noisy measurements. The algorithms

are developed for two-dimensional functions or pat-

terns on 2d plane. Restricting our considerations to

2-dimensional space allows to better understand the

proposed approach, but by no means precludes its

generalization to d-dimensional space.

This article describes techniques applicable in

the wide range of fields such as classification, com-

puter vision, diagnostics etc. (see e.g. [7, 8, 20, 21,

22, 49]). The approach based on regression anal-

ysis is developed as an attractive tool also in clas-

sification and modelling of objects (e.g. [27, 28]),

forecasting of phenomena (e.g. [26, 36]), and en-

tire methodology of machine learning like neu-

ral networks, fuzzy sets, genetic algorithms (e.g.
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[5, 45, 46]). Nonparametric approach to analysis

and modelling of various systems one may found

e.g. in [34, 35, 38, 39, 40]. Edge detection tech-

nique based on Parzen kernel estimate has also been

described by Qiu in [32, 33]. Unlike our algorithm

the algorithm presented in [33] is quite complicated

and its performance in real applications has not

been investigated. The algorithm described in [32]

is significantly different from our approach and it

uses derivatives computed in a very inefficient way.

The algorithm has not been thoroughly tested in ex-

periments. In our approach we compute the deriva-

tives of the kernel itself which is a very simple and

efficient process and our algorithms performs in sat-

isfactory manner in numerical experiments. Fur-

thermore, our algorithm can scale up and it does not

require the samples to be uniformly spaced.

3 New concept of the algorithm for

abrupt change detection - one-

dimensional case

The RBF methods described in Section 2 are of

the kernel-type methods.

The main goal of this paper is to introduce a

new simple method of edge detection derived from

the nonparametric approach based on multidimen-

sional Parzen kernel algorithms for estimating un-

known functions and their derivatives from the set

of noisy measurements. See [23] for theoretical

analysis of Parzen and other nonparametric regres-

sion estimation techniques for so-called random de-

sign case.

We consider the model of the object in the form

yi = R(xi)+ εi, i = 1, ...,n, (1)

where xi is assumed to be the d-dimensional vectors

of deterministic input, xi ∈ Rd , yi is the scalar ran-

dom output, and εi is a measurement noise with zero

mean and bounded variance. R(.) is assumed to

be completely unknown function. This is so-called

fixed-design regression problem, see e.g. [13].

We start with estimator R̂n (x) of function R(.)
at point x based on the set of measurements yi,

i = 1, ...,n.

We use the Parzen kernel based algorithm of the in-

tegral type

R̂(x) = hn
−d

n

∑
i=1

yi

∫

Di

K

(

∥x−u∥

hn

)

du, (2)

where ∥x−u∥ denotes a norm or the distance func-

tion defined for points x and u in d-dimensional

space and Di’s are defined below.

Factor hn depending on the number of observations

n is called the smoothing factor.

Let us mention that in nonparametric approach

we impose no constraints on either the shape of un-

known function (like e.g. in the spline methods or

linear regression) or on any mathematical formula

with a certain set of parameters to be found (like in

so-called parametric approach).

The domain area D (the space where func-

tion R is defined) is partitioned into n disjunctive

nonempty sub-spaces Di and the measurements xi

are chosen from Di, i.e.: xi ∈ Di.

For instance, in one-dimensional case let the D =
[0,1], then ∪Di = [0,1], Di ∩D j = /0 for i ̸= j, the

points xi are chosen from Di, i.e.: xi ∈ Di.

The set of input values xi (independent variable

in the model (1) are chosen in the process of col-

lecting data e.g., equidistant samples of ECG sig-

nal in time domain, or stock exchange information,

or internet activity on specified TCP/IP port of the

web or ftp server logs recorded in time. These data

points should provide a balanced representation of

function R in the domain D.

The standard assumption in theorems on conver-

gence of (3) is that the maximum diameter of set

Di tends to zero if n tends to infinity (see e.g.

[18, 15, 16]). We may assume that in the set of pairs

(xi,yi) information (in some way inscribed) on es-

sential properties of function R, like its smoothness

is present.

The kernel function K in one-dimensional case

K(.) satisfies the following conditions

K(t) = 0 t /∈ (−τ,τ),τ > 0
τ∫

−τ

K(t)dt = 1

supt |K(t)|< ∞.

(3)
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Estimated function (6) with added noise

First derivative of function (6)

Second derivative of function (6)

Figure 1. Simulation example - function (6)

We will use the following trigonometric cosine

kernel satisfying (3)

K(t) =

{

π
4

cos
(

π
2
t
)

f or t ∈ (−1,1)
0 otherwise

. (4)

The algorithm for estimating the derivatives of

order k is based on differentiation of the kernel

function. Thus the kernel K(.) must be differen-

tiable function of order k. The trigonometric co-

sine kernel (4) fulfils this condition. The estimate of

k− th derivative of the regression function in point

x can be defined as follows

R̂(k)(x) = hn
−1

n

∑
i=1

yi

∫

Di

K(k)

(

x−u

hn

)

du (5)

The nonparameric approach in application to

estimation of unknown functions and their deriva-

tives was previously proposed and studied in uni-

variate case in e.g. [19, 17].

The main idea of the paper is to deduce the dy-

namics of changes of any function by analysing the

course of the first derivative estimated from sample.

The more rapidly the change occurs - the higher the

first derivative (or speed). The steeper the slope -

the larger the tangent referring to horizon surface at

a given point. These facts motivate us to propose as

a detector of abrupt changes the nonparametric es-

timator of the derivatives described previously. The

smoothing property of these algorithms makes it ap-

plicable when the observations are taken in the pres-

ence of random noise. The integral version of non-

parametric kernel estimation algorithms (2), using

the Parzen kernel (3), enables not only estimation

of the value of the desired regression function, but

also estimation of the value of its first derivative and

higher order derivatives, too.

The appropriate strategy using the estimates of

the first and the second derivatives of R for edge de-

tection is proposed. Using only the first derivative

we need the appropriate thresholding strategy to de-

tect jumps in function R, however, applying the sec-

ond derivative and finding its zero values lets us to

determine edges directly.

Next we present simulation results. The func-

tion chosen for testing is a slightly modified func-

tion proposed first by Romani et al. in [37] and is

defined as follows

f (x) =



































(1+ x)6
−2 0 ≤ x < 0.16

(1− x)4 +1 0.16 ≤ x < 0.33

(2+ x)3 +12.5 0.33 ≤ x < 0.5

sin(30x−2) 0.5 ≤ x < 0.66

−x+0.5 0.66 ≤ x < 0.83

x2 0.83 ≤ x ≤ 1

.

(6)

Figure 1. presents the simulation results for

noised inputs generated from equation (6). Dia-

grams show the original function (6) and its 1-st and

2-nd derivative, respectively. The black solid lines -

functions and derivatives, their nonparametric esti-

mates - blue points and lines. Red pluses represent

the noised measurements. The maxima of the first

derivative (marked as red points) assign the points
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of possible jumps or abrupt changes. In the third

row, we have the second derivative. By observing

the zeros of this function in relation to the corre-

sponding maxima of the first derivative we may de-

duce at which points the jumps have occurred.

The smoothing properties of the nonparametric

algorithm of the Parzen kernel type depend on the

parameter hn. The choice of its value plays an im-

portant role in the interpretation of results. The big-

ger the hn the bigger the level of smoothness, but

then detection at which point the jump has occurred

is more difficult. On the other hand, a too small

value of hn causes higher oscillations of the esti-

mates of the derivatives and consequently, the big-

ger number of sharp peaks of the first derivative.

Optimal choice of smoothing sequence or band-

width is rather difficult and it is often data depen-

dent, see [50, 9, 1].

4 Main results - the multidi-

mensional algorithm of abrupt

change detection

Original function without noise (15)

Function (15) probe set

Edge curves - the scatter diagram No. 1

Edge curves - the scatter diagram No. 2

Figure 2. Simulation Example 1 - function (15)

Original function with noise (15)

Function (15) noised probe set

Edge curves - the scatter diagram No. 1

Edge curves - the scatter diagram No. 2

Figure 3. Simulation Example 2 - function (15)

with noise

In this Section, we propose the multidimen-

u u

u u

u u

Edge curves - the scatter diagram No. 2

u u

u u

u uu uu u

Edge curves - the scatter diagram No. 2
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sional extension of the nonparametric method of

edge detection. In the multidimensional case there

are two commonly used approaches:

- the radial kernel (using e.g. the norm in Euclidean

sense) given by

K
(

uT u
)

= c ·
√

uT u, (7)

- the product kernel given by

K(x,u,hn) =
d

∏
p=1

K

(

|xp −up|

hn

)

= K

(

∥x−u∥

hn

)

.

(8)

The computationally more efficient is the radial

kernel, but the simplicity and ease of application of

product kernels make them more preferred in prac-

tice, particularly when differentiation is needed. We

use the product kernel (8) in this paper.

In the multidimensional case (d > 1) the esti-

mate of partial derivative of order k with respect to

the coordinate variable x j is given by

R̂
(k)
x j (x) = hn

−d
n

∑
i=1

yi

∫

Di

∂k

∂xk
j

K

(

∥x−u∥

hn

)

du. (9)

It is clear that the estimation of particular

derivative is obtained by the differentiation of the

kernel function depending on the relative coordi-

nate. Let us analyze the two-dimensional case.

The model of the object is now in the form

yi = R([x1,x2]i)+ εi, i = 1, ...,n, (10)

where the 2d-vector of independent variable: xi =
[x1,x2]i.
The 2d Parzen kernel based estimator is defined by

R̂([x1,x2]) = hn
−2

n

∑
i=1

yi·

·
∫
Di

K
(

x1−u1

hn

)

·K
(

x2−u2

hn

)

du1du2.
(11)

Original function (16)

Function (16) probe set

Edge curves - the scatter diagram No. 1

Edge curves - the scatter diagram No. 2

Figure 4. Simulation Example 3 - function (16)

Original function with noise (16)

Parzen kernel based estimator is defined by:

By using the cosine kernel defined in unidimen-
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Edge curves - the scatter diagram No. 2

5 Simulation results

Two groups of tests were performed: at first, tests
y

Two functions are considered. The first is the two-

[37] given by:

The second function is defined by equations:

are shown for function defined by (16). Figure 4.
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Function (16) noised probe set

Edge curves - the scatter diagram No. 1

Edge curves - the scatter diagram No. 2

Figure 5. Simulation Example 4 - function (16)

with noise

By using the cosine kernel defined in unidimen-

sional case by (4) we obtain the estimator based on

product kernel in the form

R̂([x1,x2]) =
π2

16
·hn

−2
n

∑
i=1

yi·

·
∫

Di

cos
(

π(x1−u1)
2hn

)

· cos
(

π(x2−u2)
2hn

)

du1du2

(12)

Now we can derive the estimators of the partial

derivatives on coordinates x1 and x2, respectively -

as follows

∂
∂x1

R̂([x1,x2]) =
π3

32
·hn

−3
n

∑
i=1

yi

∫

Di

sin
(

π(u1−x1)
2hn

)

·

·cos
(

π(x2−u2)
2hn

)

du1du2

(13)

∂
∂x2

R̂([x1,x2]) =
π3

32
·hn

−3
n

∑
i=1

yi·

·
∫

Di

cos
(

π(x1−u1)
2hn

)

· sin
(

π(u2−x2)
2hn

)

du1du2.
(14)

The integrals in (13) and (14) are easy to calcu-

late analytically.

The last requirement is to prepare the subsets

Di keeping in mind that the points xi should be cho-

sen from Di, i.e.: xi ∈ Di. The natural solution is

an equally spaced grid easy to construct but it is not

detailed here.

5 Simulation results

A series of simulation tests were carried out to

assess the effectiveness of the proposed algorithms.

Two groups of tests were performed: at first, tests

based on generated sets of measurement pairs x,y
without measurement noise, and second, the sets of

measurements with additive noise.

Two functions are considered. The first is the

two-dimensional original function from Romani et

al. [37] given by

R1(x) =







(x1 + x2 −0.5)3
· x1 f or x1 ≤ x3

2

(x1 + x2)
1/3

· x3
1 +0.2 f or x3

1 ≤ x2

0 else

.

(15)

The second function is defined by equations

R2(x) =











































(

3−1.5x1 +5(x2 −1)2
)

/2

f or x2 ≤ L1
(

3−1.5x1 +5(x2 −1)2
)

/2−0.5x1

f or L1 ≤ x2 ≤ L2
(

3−1.5x1 +5(x2 −1)2
)

/2− x1

elsewhere

,

(16)

where

L1 = 0.2+5 · (0.175+0.15sin(12x1))·

·(0.1/(x1 +0.5)2)

L2 = 0.4+4 · (x1 −0.6)2

(17)

The simulation results are given in Figures 2-

6. Figure 2. shows function (15) without noise, its

Two functions are considered. The first is the two-

[37] given by:

The second function is defined by equations:

are shown for function defined by (16). Figure 4.

Two functions are considered. The first is the two-

[37] given by:

The second function is defined by equations:

are shown for function defined by (16). Figure 4.

Two functions are considered. The first is the two-

[37] given by:

The second function is defined by equations:

are shown for function defined by (16). Figure 4.
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probe set (200x200 points) and edge curves (scat-

ter diagrams) obtained by using derivatives with re-

spect to x1 and x2, respectively. Figure 3. presents

function (15) with additive random noise, its probe

set, and edge curves (scatter diagrams) obtained by

differentiation on x1 and x2, respectively. In the

next Figures 4 and 5 analogical simulation results

are shown for function defined by (16). Figure 4.

shows: the original function (16) without noise, its

probe set (200x200 points) and scatter diagrams of

estimated edge curves obtained by differentiation

with respect to x1 and x2. Figure 5. presents the

results for function (16) with additive noise. Ran-

dom noise was generated using uniform distribution

from the interval [−0.5,0.5). The smoothing pa-

rameter was experimentally established and its cho-

sen value was hn = 0.03. The application of the

algorithm for detection of edges in black-and-white

picture was demonstrated in Figure 6. The dotted

contours of geometrical symbols are shown in the

subsequent diagrams.

Black-and-white sample picture

Edges detected by differentiation on x1-coordinate

Edges detected by differentiation on x2-coordinate

Figure 6. Simulation Example 5 - Sample

black-and-white picture edge detection

Conclusion

This paper considered the important problem of

deciding whether the abrupt or sudden change oc-

curred in the data and where or when it happened.

The proposed algorithm is derived from the non-

parametric kernel regression estimation techniques

with fixed-design of unknown functions and their

partial derivatives in multidimensional space. The

proposed two-dimensional algorithm is presented in

detail. The algorithm is tested for jump detection in

case of measurements generated without and in the

presence of random noise. We also studied the per-

formance of the algorithm in the problem of edge

detection in black-and-white images. Simulation

results shown in the series of diagrams confirmed

utility of the proposed approach in practical cases.

From the Figures presented one may observe that

the effectiveness of the method improves when the

magnitude of the jump is higher. The extension of

the edge detection algorithm to multivariate (d > 2)

case is described and it directly follows from the

presented methodology using the product-type of

multidimensional kernel.
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