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Abstract

The purpose of this study is to develop a new global mammographic image feature analysis based 

computer-aided detection (CAD) scheme and evaluate its performance in detecting positive 

screening mammography examinations. A dataset that includes images acquired from 1896 full-

field digital mammography (FFDM) screening examinations was used in this study. Among them, 

812 cases were positive for cancer and 1084 were negative or benign. After segmenting the breast 

area, a computerized scheme was applied to compute 92 global mammographic tissue density 

based features on each of four mammograms of the craniocaudal (CC) and mediolateral oblique 

(MLO) views. After adding three existing popular risk factors (woman’s age, subjectively rated 

mammographic density, and family breast cancer history) into the initial feature pool, we applied a 

Sequential Forward Floating Selection (SFFS) feature selection algorithm to select relevant 

features from the bilateral CC and MLO view images separately. The selected CC and MLO view 

image features were used to train two artificial neural networks (ANNs). The results were then 

fused by a third ANN to build a two-stage classifier to predict the likelihood of the FFDM 

screening examination being positive. CAD performance was tested using a ten-fold cross-

validation method. The computed area under the receiver operating characteristic curve was 

AUC=0.779±0.025 and the odds ratio monotonically increased from 1 to 31.55 as CAD-generated 

detection scores increased. The study demonstrated that this new global image feature based CAD 

scheme had a relatively higher discriminatory power to cue the FFDM examinations with high risk 

of being positive, which may provide a new CAD-cueing method to assist radiologists in reading 

and interpreting screening mammograms.
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1. Introduction

Breast cancer is one of the most prevalent cancers in women and has a high mortality rate 

(Siegel et al., 2013). Due to the heterogeneity of malignant tumors, cancer screening is 

widely considered an effective approach to detect breast cancer at an early stage. In the last 

four decades, the promotion of breast cancer screening along with the advancement of 

cancer treatment methods significantly reduced mortality rates of breast cancer patients 

(Berry et al., 2005). Among all available breast cancer screening methods and/or imaging 

modalities, mammography is the only imaging modality that is accepted in conducting 

population-based breast cancer screening to date (Smith et al., 2011). However, due to the 

large variability of breast lesions and overlapping dense fibro-glandular tissue in 2D 

projection images, mammography performance is not satisfactory in both cancer detection 

sensitivity and specificity (Fenton et al., 2006). Studies have shown that the sensitivity of 

screening mammography is lower among women who are younger (e.g., < 50 years old) 

(Peer et al., 1996), have dense breasts (Mandelson et al., 2000), use hormone replacement 

therapy (Laya et al., 1996), and carry certain breast cancer susceptibility genes (Kriege et 

al., 2004). One recent multi-institutional prospective study reported that mammography 

detected only 53.2% (59 of 111) cancers among a group of 2098 women with elevated 

breast cancer risk (Berg et al., 2012). In addition, mammography has lower specificity with 

high false-positive recalls that lead to generating a large number of benign biopsies 

(Hubbard et al., 2011), which results in long-term psychosocial consequences or harms to 

many women who routinely participate in screening mammography examinations 

(Brodersen and Siersma, 2013). As a result, improving the efficacy of screening 

mammography remains an important clinical issue in breast cancer screening (Brawley, 

2012).

As previous studies have shown that a high percentage of missed or overlooked breast 

cancers in prospective clinical practice were visually detectable in retrospective reviews 

(Birdwell et al., 2001), to increase breast cancer detection sensitivity of screening 

mammography, a large number of computer-aided detection (CAD) schemes of 

mammograms have been developed and used as “a second reader” to assist radiologists in 

reading and interpreting mammograms. The current commercialized CAD schemes are 

single-image and lesion-based schemes. Despite the relatively-high positive lesion detection 

sensitivity, current CAD schemes generate substantially high false-positive detection rates 

and also have high correlation in positive lesion detection with radiologists (Gur et al., 

2004a). Studies have shown that using current CAD as “a second reader” is unable to help 

improve radiologists’ performance in prospective clinical practice (Gur et al., 2004b; Fenton 

et al., 2011). Hence, research efforts continue to attempt to improve the clinical utility of 

using CAD schemes to assist radiologists, which include the use of (1) an interactive 

approach that only shows CAD-cued marks with detection scores that match the suspicious 

regions queried by radiologists on the mammograms (Samulski et al., 2010) and (2) a new 

computer-aided reading protocol that determines the display order of regions of interest 

based on the findings of a CAD scheme aiming to improve efficiency of radiologists’ work 

flow while maintaining their detection performance (Moin et al., 2011).
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In this study, we propose a different approach to improve the efficacy of applying CAD to 

assist radiologists in reading and interpreting screening mammograms. Our hypothesis is 

that since in a population-based annual screening environment the cancer prevalence rate is 

quite low (< 1%), this is probably one of the primary reasons that cause radiologists to miss 

or overlook subtle positive cases from the overwhelmingly negative cases as well as to 

generate high false-positive recalls. To help solve this problem, we need to develop a new 

CAD approach and/or scheme that can cue the warning sign on the cases with high risk of 

being positive. Hence, these risk cueing signs can warn radiologists to pay more attention in 

reading and detecting the suspicious lesions or signs depicted on these high-risk images. 

This may help radiologists reduce the number of missed or overlooked malignant lesions 

that are “visually detectable” in the retrospective review (Birdwell et al., 2001). Meanwhile, 

since this is not a region based cueing as used in existing CAD schemes (Zheng et al., 

2012a; Kallenberg and Karssemeijer, 2008; The et al., 2009), there is no need for 

radiologists to rule-out a large number of false-positive cues. As a result, this new case 

based CAD cueing method is different from the lesion-based cueing made by conventional 

CAD schemes, which may have different impact on radiologists’ decisions in recalling 

suspicious cases. In order to test our hypothesis, in this study we applied a four-view global 

image feature analysis concept to optimize a new CAD scheme using a relatively large and 

diverse image dataset. Unlike existing lesion-based CAD schemes, our CAD scheme does 

not detect and segment suspicious lesions depicted on each image. It analyzes the bilateral 

global mammographic image features and their difference to generate a case or four-view 

image examination based likelihood score of being positive for cancer. We then assessed 

performance of this CAD scheme in classifying between the groups of positive (cancer) and 

negative (cancer-free) cases. The detailed description of the technical development of our 

new approach and experimental results is presented in the following sections.

2. Materials and methods

2.1. A dataset of digital mammography images

Under an institutional review board (IRB) approved image data collection protocol, an IRB-

certified research staff randomly selected screening mammography cases based on the 

screening outcome (positive or negative for cancer) recorded in the existing clinical database 

of University of Pittsburgh Medical Center without viewing the mammograms. From the 

selected case ID number, the corresponding clinical information (including age, family 

history of breast cancer, subjectively-rated breast density based on BI-RADS categories, and 

verified diagnostic result) were collated. All FFDM examinations were acquired using 

Hologic Selenia FFDM systems after 2006. After a de-identification process, the fully 

anonymized FFDM images and the corresponding clinical information were transferred and 

stored in the research database for our studies. The details of our image data collection 

protocol has been previously reported (Zheng et al., 2012a). Since this image data collection 

remains active to date, new cases are continually being added to our study database. 

Different subsets of this database have been used in a number of our previous studies (e.g., 

(Wang et al., 2012; Zheng et al., 2012b; Tan et al., 2013; Tan et al., 2014b)). In this study, 

we assembled a dataset that includes 1896 cases. Among them, 812 cases have been verified 

as positive, which are divided into three subgroups, namely (1) 746 verified cancer cases 
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that were detected during FFDM screening and confirmed by biopsy results; (2) 39 

“interval” cancer cases in which cancers were detected in the interval between two screening 

examinations; and (3) 27 high-risk precancer cases (e.g., lobular carcinoma in situ) in which 

lesions were surgically removed.

The remaining 1084 cases are negative or benign. Based on Breast Imaging Reporting and 

Data System (BI-RADS) (Sickles et al., 2013), 618 were screening negative cases (BI-

RADS 1), which were not recalled by the radiologists in the original image reading and 

interpretation) and 466 were either not-recalled benign cases (BI-RADS 2) or recalled cases 

(i.e., BI-RADS 3 or 4) but later proven as benign through the additional imaging workup 

and/or biopsy. All of these cases remain cancer-free for at least two years (in next two 

sequential FFDM screening examinations).

Each case in this dataset has four FFDM images representing the craniocaudal (CC) and 

mediolateral oblique (MLO) views of the left and right breasts. The average age and 

standard deviation of the women in the positive and negative case groups are 59.6±12.8 and 

50.4±9.2 years old, respectively. Figure 1 shows the distribution of mammographic density 

subjectively rated by radiologists using BI-RADS categories in the three groups of positive 

(with verified malignant lesions), screening negative (not recalled) and recalled/benign 

cases. The data analysis using an unpaired t-test showed that the BI-RADS based breast 

density distribution among these three case groups had no statistically significant difference 

(i.e., p =0.517 between cancer and benign case groups, p=0.725 between cancer and 

negative case groups, as well as p=0.719 between benign and negative case groups).

2.2. A new four-view CAD scheme of global mammographic image feature analysis

We recently developed and preliminarily tested a new CAD scheme to detect and analyze 

global bilateral mammographic image features of both CC and MLO views of the left and 

right breasts (Tan et al., 2014b). We applied this scheme to test its feasibility of helping 

distinguish between true-positive (cancer) and false-positive recalled (benign) cases. In this 

study, the same concept was applied to optimize a new CAD scheme for a different 

application purpose namely, classifying between positive (cancer) and negative (non-cancer) 

FFDM examinations with much smaller number of image features in order to increase 

robustness of the CAD scheme. In brief, we used the following steps to optimize the new 

CAD scheme in this study.

First, we modified and applied a computerized scheme to segment the breast area depicted 

on each image (Zheng et al., 2006). Based on the gray level histogram of the whole image, 

the scheme used an iterative searching method to detect the smoothest curvature between the 

breast tissue and background (air). After discarding the background region, a morphological 

erosion operation was performed to remove the skin region from the segmented breast. For 

the MLO view images, an additional step was applied to detect the chest wall or pectoral 

muscle line. This was performed by detecting the pixel with the maximum gradient 

iteratively in each row of the image, and employing a linear regression method to fit all 

identified pixels on a straight line to represent the chest wall boundary. Finally, all pixels 

within the pectoral muscle were discarded from the segmented breast region.
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Second, we applied the computerized scheme to initially compute 92 global mammographic 

density and texture based image features from each view of four FFDM images. The 

detailed description of each feature definition and computational method has been reported 

in our previous study (Tan et al., 2014b). Basically, these features are divided into the 

following categories: (1) the statistical pixel value (or intensity) based features (i.e., mean, 

standard deviation, skewness, and kurtosis of the pixel gray values) (Wang et al., 2011), (2) 

fractal dimension based features to quantitatively assess breast tissue composition and 

mammographic density (Chang et al., 2002), (3) gray level run length based texture features 

computed from the gray level resolution reduced images (from 4095 to 256 gray levels) 

along four different directions (Tang, 1998), (4) the first-order statistics of the x-axis and y-

axis histogram (cumulative projection) based features presented by Tzikopoulos et al 

(Tzikopoulos et al., 2011), (5) the gray level co-occurrence matrix (GLCM) based texture 

features proposed by Haralick et al (Haralick et al., 1973), (6) segmented breast area size, 

and (7) a percentage density (PD) measure (Byng et al., 1994). Since the absolute values of 

the different features vary greatly in their respective ranges, we normalized the values of 

each feature to fall between 0 and 1 based on ±2σ(standard deviation) of their original 

values.

Third, although these image features have been previously investigated and used in different 

computerized schemes to detect and/or represent mammographic tissue density features by 

different research groups, to improve classifier robustness and efficiency, we need to reduce 

the “curse of dimensionality” of our CAD scheme. Hence, we applied a new fast and 

accurate sequential floating forward selection (SFFS) method (Ververidis and Kotropoulos, 

2008) to search for the optimal or effective features by eliminating redundant and irrelevant 

features, and thus avoid or minimize “overfitting” of the classifier during the training stages. 

The detailed description of applying this SFFS method to select effective features for 

developing CAD schemes of mammograms have been reported in our previous study (Tan et 

al., 2014a). In this study, we established two initial image feature pools. One pool includes 

bilateral image features computed from CC view images and one includes the features 

computed from MLO view images. Each pool included 184 mammographic image features 

(92 computed from the left breast image and 92 computed from the right breast image) and 3 

non-image features (namely women’s age, family history of breast cancer, and subjectively-

rated breast density based on BI-RADS). The SFFS method was applied separately to each 

feature pool to select small sets of optimal features for the next step of training the artificial 

neural network (ANN) based classifiers.

Fourth, since mammograms are two-dimensional projection images, the overlapping breast 

fibro-glandular tissue patterns in the CC and MLO views are often different, which results in 

image feature differences computed from the two views (Zheng et al., 2006; Wang et al., 

2011). Hence, we built a two-stage classification scheme to analyze the bilateral global 

image features and classify between positive and negative cases. The first stage has two 

ANNs that were trained separately using the features computed from the bilateral CC and 

MLO view images. The second stage consists of a subsequent “scoring fusion” ANN that 

adaptively and optimally combines the classification scores generated by the two CC and 

MLO based ANNs. Each ANN was trained using a gradient descent based back-propagation 
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algorithm (Rumelhart et al., 1986). To find the optimal number of hidden nodes to use in the 

hidden layer of the ANNs, we trained 150 different ANNs (with different numbers of hidden 

nodes), and selected the network that maximized the AUC on the training subsets. For the 

CC and MLO view image feature based ANNs that were optimized using the features 

selected by SFFS, the number of hidden nodes was varied between 2-40; for the “scoring 

fusion” ANN at the second stage, this range was 2-10. Namely, we opted for a lower range 

at the second stage of the classifier since it only had 2 input features compared with the 

features selected by SFFS at the first stage of the classifier. Other parameters used to train 

the ANN include the number of training iterations (500), training momentum (0.9) and 

learning rate (0.01). We used a large ratio of the training momentum to the learning rate and 

a limited number of iterations to maintain classifier robustness and reduce “overfitting.” We 

also used the hyperbolic tangent activation function at the hidden nodes and the linear 

activation function at the output nodes of all three ANNs, which are the default parameters 

used in the Matlab-® Neural Network Toolbox.

2.3. Data analysis and CAD performance assessment

We trained and tested each ANN using a ten-fold cross-validation method, whereby the sum 

of positive (cancer) cases and negative (cancer-free) cases in our dataset were randomly 

divided into 10 exclusive partitions. Nine partitions were used to train the classifier 

including three ANNs in each validation cycle using the bilateral image features computed 

from the CC and MLO view images, respectively. The trained classifier was then applied to 

the remaining testing partition. For each testing case, the third “scoring fusion” ANN 

generated an output classification score, whereby a higher score indicates a higher risk or 

probability of the FFDM examination of interest being positive (depicting malignant lesions 

on the images). We iteratively repeated this process 10 times using the 10 different 

combinations of partitions. Thus, each of the positive and negative cases was tested once 

with a corresponding “scoring fusion” ANN-generated classification score.

To assess the performance of our new CAD scheme to identify the FFDM examinations 

with high risk of being positive, we used a number of performance assessment indices in this 

study. First, we computed the areas under a receiver operating characteristic curve (AUC) 

including the mean and standard deviation of AUC values over the ten folds of the cross-

validation experiments. Second, we sorted the classification scores of all testing cases 

(including both positive and negative cases) in an ascending order and selected five 

threshold values to segment all cases into five subgroups (or bins) with an approximately 

equal number of cases within each subgroup. We then computed the adjusted odds ratios 

(ORs) for all subgroups using a multivariate statistical model. We computed and analyzed 

an OR increasing trend using a publically-available statistical software package, R (R 

version 2.1.1, http://www.r-project.org). Third, we assessed an absolute classification 

accuracy, as well as a positive predictive value (PPV) and a negative predictive value 

(NPV), using a confusion matrix that was computed using a threshold of 0.5 on the 

classification scores. This threshold is a middle point of the classification score range from 0 

to 1. All testing results were tabulated and compared.
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In addition, we analyzed CAD performance including the non-image/ epidemiology based 

features and on the different case subgroups within our image dataset, which includes (1) 

three positive subgroups namely the verified cancer cases, interval cancer cases and high-

risk cases, (2) four mammographic density subgroups based on BI-RADS categories. We 

then also examined our CAD scheme performance (sensitivity levels) at various specificity 

levels (from 80% to 95%).

3. Results

In the ten-fold cross-validation procedure, the average number of image features selected by 

the SFFS method was 12.4±4.1 and 9.0±6.3 from the bilateral CC and MLO view image 

feature pools, respectively. The results also showed that among the different feature 

categories as discussed in Section II.B, the bilateral differences of breast region size, pixel 

value based statistical features, and fractal dimension were the commonly-selected input 

features for ANNs. Figure 2 displays the three corresponding ROC curves obtained using 

only the image features. The AUC values for classifying between 812 cancer case group and 

3 non-cancer case groups including (1) all 1084 non-cancer cases, (2) 618 not-recalled 

negative cases, and (3) 466 benign cases are (1) 0.707±0.031, (2) 0.682±0.040 and (3) 

0.727±0.031, respectively. Only the AUC results of the not-recalled negative and benign 

cases were significantly different from each other at the 5% significance level (p = 0.02).

Among the 3 non-computed image features (or epidemiology based risk factors), only 

woman’s age was a popular feature selected by the SFFS algorithm and added to the ANN 

input features, while the family breast cancer history and subjectively-rated mammographic 

density (BI-RADS) were eliminated. Similar to Figure 2, Figure 3 shows three ROC curves 

after adding women’s age as a feature into the ANN classifiers. The corresponding AUC 

values increased to 0.779±0.025, (2) 0.769±0.024 and (3) 0.793±0.033, respectively. Using 

the Wilcoxon rank sum test (or Mann-Whitney U test), these AUC results are not 

significantly different from each other at the 5% significance level with p-values ranging 

from 0.121 to 0.345. However, comparing to the use of only image features (Figure 2), the 

AUC values obtained after adding feature of “age” significantly increased (p < 1e−5 using 

DeLong’s test (DeLong et al., 1988) for paired samples) indicating women’s age is a strong 

risk factor, which is consistent with the existing epidemiology based breast cancer risk 

prediction models (Amir et al., 2010).

Table 1 summarizes the odds ratios (ORs) and corresponding 95% confidence intervals 

(CIs) computed for the five subgroups (bins) of FFDM examinations. An increasing trend 

was observed in the CAD-generated classification scores from subgroups 1 to 5. When using 

the cases in subgroup 1 as a baseline, the computed ORs monotonically increased from 1.0 

to 31.55 in subgroups 1 to 5. The slope of a regression trend using the data pairs between the 

CAD-generated classification scores and the adjusted ORs is significantly different from 

zero (p = 0.005), which demonstrates a positive association of classification scores 

generated by this global image feature analysis based CAD scheme and an increasing risk 

probability trend of the FFDM examinations of interest being positive. By excluding 

woman’s age, ORs monotonically increased from 1.0 to 7.31 in subgroups 1 to 5 also with a 

significantly increasing risk slope (p = 0.004).
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Table 2 displays a confusion matrix when applying a threshold of 0.5 on the CAD-generated 

classification scores of all testing. The FFDM examinations with CAD-generated 

classification scores greater than 0.5 were assigned to the positive (“high risk”) case group; 

otherwise, the examinations were assigned to the negative (“low risk”) case group. The 

result shows that using this criterion the new CAD scheme correctly classified 72.3% (1370 

of 1896) of cases in our testing dataset of this study. The classification accuracy was higher 

in the negative case group, which was 81.4% (882 of 1084), than in the positive case group, 

which was 60.0% (488 of 812). The computed positive predictive value (PPV) was 0.71 

(488 of 690) and the negative predictive value (NPV) was 0.73 (882 of 1206).

Figure 4 displays the ROC curves for classifying the different cancer subgroups within our 

image dataset, namely (1) 746 verified cancer cases; (2) 39 interval cancer cases; and (3) 27 

high-risk precancer tumors. The corresponding AUC results are (1) 0.787±0.011, (2) 

0.739±0.035 and (3) 0.542±0.046, respectively. Similar to our previous study (Tan et al., 

2014b), the results indicate that our scheme performs better at classifying verified cancers 

than interval cancers. The classification performance is poorest for high-risk cases which 

also corresponds with the results of our other previous study (Wang et al., 2011). A possible 

explanation for this result could be that the high-risk cases are suspect precancer cases that 

have been detected at an early stage, and thus have not developed fully. Another explanation 

is the small size of the high-risk cases in our dataset (27), whereby due to the limited 

number of high-risk cases in our current dataset, we need to conduct more comprehensive 

studies in the future on this high risk precancer subgroup in order to derive more conclusive 

results.

Figure 5 shows and compares four ROC curves of applying our CAD scheme to four 

subgroups of cases divided by BIRADS categories of mammographic density. AUC values 

are 0.732±0.058, 0.825±0.016, 0.743±0.015, and 0.851±0.046 for four subgroups of 

BIRADS 1 to 4, respectively. Table 3 displays the sensitivity levels of our CAD scheme at 

the 80%, 85%, 90%, and 95% specificity levels on the images stratified according to BI-

RADS ratings of mammographic density. The results showed that performance of our 

scheme does not heavily depend on mammographic density or substantially deteriorate as 

density increases from BIRADS category of 1 to 4. In this limited dataset, sensitivity levels 

obtained on the density BI-RADS 4 cases exceeded all other cases except at the 95% 

specificity level, whereby the density BI-RADS 2 cases yielded a slightly better result. The 

sensitivity levels of the density BI-RADS 3 cases also exceeded that of the density BI-

RADS 1 cases for all specificity levels except the 80% specificity level.

4. Discussion

How to develop highly-performing CAD schemes of mammograms and optimally use CAD 

in clinical screening practice to help radiologists detect more breast cancers at an early stage 

has been extensively investigated in the last two decades. Despite the fact that a number of 

commercialized CAD schemes have been installed in many FFDM imaging systems and 

adopted in clinical practice in a large number of hospitals around the world, using current 

CAD of mammograms has been disappointing in terms of adding value to help improve the 

efficacy of screening mammography, in particular to help detect and classify soft tissue 
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based breast abnormalities. Hence, researchers believe that the task of continuously 

exploring new approaches to develop and use CAD is still needed (Nishikawa and Gur, 

2014). In this study, we investigated a new CAD approach with a number of unique 

characteristics.

First, previous single-image and lesion-based CAD schemes of mammograms focused on 

detecting more positive lesions, which may yield detection sensitivity ranging from 60% to 

95% based on mammographic density (BIRADS) categories and more than 2 false-positive 

cues per case (The et al., 2009). The CAD scheme developed and presented in this study is 

not another lesion-based scheme. It is a new case-based scheme that combines and analyzes 

bilateral mammographic image features and their differences from all four-view FFDM 

images into the CAD decision-making process. Without detecting the specific or targeted 

lesions, the new CAD scheme yielded a case-based classification performance of AUC = 

0.779±0.025 and a total classification accuracy rate of 72.3% (including PPV = 0.71 and 

NPV = 0.73) in this study. A positive association between CAD-generated classification 

scores and increase of the risk of the FFDM examinations being positive was also identified 

through the odds ratio analysis (Table 1). Although our previous study that applied a lesion-

based CAD scheme to an early subset of the FFDM cases selected from our current FFDM 

database yielded 75.6% detection sensitivity with 0.32 false-positives per image (Zheng et 

al., 2012a), the performance of our new case-based CAD scheme is not directly comparable 

to this and all other existing lesion-based CAD schemes. Our new CAD scheme does not 

compete with the lesion-based CAD scheme and may provide supplementary information 

with higher discriminatory information to help develop adaptive cueing method that can 

improve efficacy of lesion-based CAD cueing as we have demonstrated in the previous 

study (Wang et al., 2012).

Second, ruling out CAD-cued false-positives without ignoring or discarding the CAD-cued 

subtle positive lesions that are likely to be missed or overlooked by radiologists has proven 

to be very difficult in a number of retrospective and prospective studies (Ko et al., 2006; 

Nishikawa et al., 2006). As a result, different research efforts have been tested to implement 

an optimal CAD cueing method (Samulski et al., 2010; Moin et al., 2011). The malignant 

lesions missed in screening mammography can be categorized into two types of lesions: The 

first type includes the mammography-occult lesions and the second type includes the 

visually-detectable lesions, but they had been overlooked by the radiologists in originally 

prospective reading of the screening mammograms. Based on the assumption that the 

purpose of developing CAD schemes of mammograms is not to detect the first type of 

mammography-occult lesions, which should or can only be detected using other imaging 

modalities, such as digital breast tomosynthesis (DBT) or breast magnetic resonance 

imaging (MRI), using CAD of mammograms should focus on helping radiologists detect 

more “visually-detectable” cancers. For this purpose, there is a significant advantage of 

developing a case-based CAD scheme and cueing method. The case-based cueing (with 

warning signs) can avoid attracting radiologists’ attention to rule out false-positive lesions 

with the risk of reducing sensitivity of detecting true-positive lesions (Zheng et al., 2001) 

and thus may avoid increasing the false-positive detections (similar to the interactive cueing 

approach as proposed by other researchers (Samulski et al., 2010)). In addition, by warning 
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the “high risk” cases using our case-based CAD cueing approach, the radiologists can pay 

more attention to read and interpret these cases. Similar to the retrospective review when the 

truth has been known, the majority of missed or overlooked, but actually visually-detectable 

positive lesions can be detected. This is the basic assumption and motivation for this study 

to develop a new case-based CAD scheme.

Third, although a large number of previous studies have been conducted to detect and 

quantify global mammographic image features (Chang et al., 2002; Tzikopoulos et al., 

2011; Byng et al., 1994; Glide-Hurst et al., 2007; Wei et al., 2011), these studies focused on 

analyzing mammographic image features computed from one image or computing an 

average value if multiple images were involved. In this study, we developed and optimized a 

four-view image based CAD scheme that integrated global image features from both CC and 

MLO views. Our scheme emphasizes on the bilateral image feature difference (not the 

average) between the left and right breasts, which is important to detect breast abnormalities 

and predict the risk of the FFDM examination being positive for breast cancer (Tan et al., 

2013). From an initial large feature pool containing 92 image features computed from one 

view image, we applied a fast and accurate SFFS based feature selection method to analyze 

the correlations and effectiveness of these features for detecting high risk cases. The results 

showed that although bilateral differences of the majority of these features can contribute in 

detecting high risk cases, the popular or more robust features selected by the SFFS algorithm 

are the simple features that correlate well with previous studies, which include bilateral 

difference of breast size (Scutt et al., 1997) and statistical pixel value distributions (Zheng et 

al., 2012b). As a result, instead of either using mammographic image features computed 

from one image or averaging the features computed from multiple images, using and fusing 

the image features computed from bilateral images and their differences is also a new 

contribution of this study to develop a four-view global image feature analysis based CAD 

scheme.

Fourth, we tested the feasibility of improving the case-based CAD performance by adding 

three popular epidemiology study based breast cancer risk factors namely, women’s age, 

family history of breast cancer, and breast density (rated by BI-RADS) (Amir et al., 2010), 

into our initial feature pool. In the experiment, the family breast cancer history and BI-

RADS breast density were eliminated by the SFFS algorithm. The results confirmed that 

compared to mammographic image feature difference, these two popular lifetime risk 

factors had significantly lower discriminatory power or contribution in predicting the 

individual’s risk of having breast cancer (Gail and Mai, 2010). However, women’s age was 

consistently selected as an effective feature by the SFFS algorithm and was fused with other 

mammographic image features in the ANN classifiers. This supports the fact that short-term 

breast cancer incidence rises as women’s age increases. The results of this study indicated 

that identifying other effective non-image feature based risk factors and fusing them with 

mammographic image features might also have potential to help improve the accuracy of 

CAD schemes in detecting high-risk positive cases.

Last, comparing to the majority of previously reported CAD studies, performance of our 

CAD scheme was assessed using a much larger and diverse FFDM image dataset that 

involves 1896 FFDM examinations (or 7584 images), which may yield more reliable study 
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results. In our data analysis, we also made a number of interesting observations. (1) Our 

scheme yielded higher performance at classifying between malignant and recalled negative 

cases, which indicates that the global background tissue distribution can also provide 

discriminatory information to reduce false-positive recalls. (2) Performance of our scheme 

does not depend on the mammographic density (BIRADS 1 to 4) because the scheme uses 

the bilateral tissue asymmetry information, which does not correlate to the mammographic 

density assessed from one image (Zheng et al., 2012b).

In summary, we demonstrated a new concept and approach of developing CAD schemes of 

mammograms, which is based on the detection and analysis of bilateral global 

mammographic image features. The goal is to cue the FFDM examinations with high risk of 

being positive for breast cancer. Despite this new approach and encouraging results, this 

preliminary study also has a number of limitations. First, this is just a technology 

development study. Although we proposed a new case-based CAD cueing method to warn 

radiologists on which FFDM examinations have high risks of being positive, whether such a 

cueing method can actually help increase breast cancer detection yield and/or reduce false-

positive recalls of screening FFDM examinations needs to be tested in future observer 

performance studies. Second, this is a laboratory based retrospective study using an image 

dataset with an enriched ratio of positive cases, which does not represent the cancer 

prevalence ratio of FFDM based screening examinations in clinical practice. Hence, the 

performance and robustness of our CAD scheme also needs to be further validated in future 

prospective studies. Third, our CAD scheme includes a number of empirically-determined 

parameters and thresholds, which may not be optimal. More effective optimization and 

validation methods (i.e., nested cross-validation) should be tested in our future studies. 

Fourth, this new CAD scheme only included global mammographic image features that have 

been investigated and used in previous studies. The local or region based bilateral image 

features and their differences have not been extracted and applied to this CAD scheme. 

Therefore, the performance of our CAD scheme may not be optimal and more development 

effort is needed to optimize this new CAD approach and performance in our future studies.
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Figure 1. 
Histogram distribution of mammographic density (BI-RADS) ratings in three groups of 

positive, negative and benign cases.
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Figure 2. 
Comparison of three ROC curves of applying our CAD scheme using image features only to 

classify between positive and three negative case subgroups including (1) all negative, 

recalled and benign cases, (2) only negative cases and (3) only benign and recalled negative/ 

benign cases.
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Figure 3. 
Comparison of three ROC curves of applying our CAD scheme mixing image features and 

woman’s age to classify between positive and three negative case subgroups including (1) 

all negative, recalled and benign cases, (2) only negative cases and (3) only benign and 

recalled negative/ benign cases.
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Figure 4. 
Comparison of three ROC curves of applying our CAD scheme to classify different cancer 

subgroups within our image dataset, namely (1) 746 verified cancer cases, (2) 39 interval 

cancer cases and (3) 27 high-risk precancer tumors.
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Figure 5. 
Four ROC curves of applying our CAD scheme to four subgroups of cases rated in four 

different BIRADS categories of mammographic density.
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Table 1

Summary of the adjusted odds ratios (ORs) and 95% confidence intervals (CIs) at five subgroups (bins) of the 

probability scores generated by our “scoring fusion” classifier.

Epidemiology based Risk
Factors Included

Subgroup Number of Cases
(Positive – Negative)

Adjusted Odds
Ratio (OR)

95% Confidence
Interval (CI)

Yes 1 53 – 326 1.00 baseline

2 103 – 276 2.30 [1.59, 3.32]

3 137 – 242 3.48 [2.43, 4.98]

4 201 – 178 6.95 [4.88, 9.89]

5 318 – 62 31.55 [21.19, 46.96]

No 1 90 – 289 1.00 baseline

2 117 – 262 1.43 [1.04, 1.98]

3 136 – 243 1.80 [1.31, 2.47]

4 205 – 174 3.78 [2.77, 5.16]

5 264 – 116 7.31 [5.30, 10.08]
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Table 2

A confusion matrix obtained when applying a threshold of 0.5 on CAD-generated classification scores.

Actual
↓

Negative cases Positive cases

Negative cases 882 202

Positive (cancer) cases 324 488
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Table 3

Sensitivity levels of our CAD scheme at four specificity levels by stratifying the testing cases according to the 

four mammographic density BIRADS rating categories.

Specificity 95% 90% 85% 80%

Density BI-RADS 1 28.7% 39.7% 47.7% 54.1%

Density BI-RADS 2 39.6% 53.1% 62.1% 68.8%

Density BI-RADS 3 30.4% 41.6% 49.6% 56.0%

Density BI-RADS 4 40.3% 55.9% 66.0% 73.4%
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