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Abstract

PURPOSE—To develop and test a deep learning based computer-aided diagnosis (CAD) scheme 

of mammograms for classifying between malignant and benign masses.

METHODS—An image dataset involving 560 regions of interest (ROIs) extracted from digital 

mammograms was used. After down-sampling each ROI from 512×512 to 64×64 pixel size, we 

applied an 8 layer deep learning network that involves 3 pairs of convolution-max-pooling layers 

for automatic feature extraction and a multiple layer perceptron (MLP) classifier for feature 

categorization to process ROIs. The 3 pairs of convolution layers contain 20, 10, and 5 feature 

maps, respectively. Each convolution layer is connected with a max-pooling layer to improve the 

feature robustness. The output of the sixth layer is fully connected with a MLP classifier, which is 

composed of one hidden layer and one logistic regression layer. The network then generates a 

classification score to predict the likelihood of ROI depicting a malignant mass. A four-fold cross 

validation method was applied to train and test this deep learning network.

RESULTS—The results revealed that this CAD scheme yields an area under the receiver 

operation characteristic curve (AUC) of 0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035 

for fold 1 to 4 testing datasets, respectively. The overall AUC of the entire dataset is 0.790±0.019.

CONCLUSIONS—This study demonstrates the feasibility of applying a deep learning based 

CAD scheme to classify between malignant and benign breast masses without a lesion 

segmentation, image feature computation and selection process.
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1. INTRODUCTION

Breast cancer is the most prevalent cancer occurred in women, which accounts for 29% of 

all cancer cases and 13% of all cancer related deaths in women in USA [1]. In order to 

reduce breast cancer mortality rates, mammography screening is currently recommended 

and implemented as the only clinically acceptable imaging modality for the population-

based breast cancer screening. However, breast lesions are very heterogeneous and the 

suspicious breast lesions are often overlapped with dense fibro-glandular tissue on the 

mammograms. It is quite difficult for radiologists to accurately distinguish between 

malignant and benign lesions [2], As a result, current mammography screening generates 

high false positive recall rates, which may potentially harm many cancer-free women 

routinely participating in the mammography screening [3]. Therefore, improving accuracy of 

classifying between malignant and benign lesions is an important and also difficult issue in 

current clinical practice.

For this purpose, in the last two decades, developing and testing computer-aided detection 

and diagnosis (CAD) schemes of mammograms have attracted wide research interest and 

efforts [4]. A typical CAD scheme processes each mammogram in three steps [5]. First, 

CAD searches for and segments the suspicious lesions from the image. Second, CAD 

computes a number of image features to extract characteristics of the segmented tumors. 

Third, CAD applies a machine learning based classifier based on a set of optimally selected 

features to predict the likelihood of the targeted lesion being associated with malignancy 

(“positive”). For the conventional CAD scheme, it is the critically important to accurately 

segment the lesion and identify the discriminatory image features, which directly determine 

the performance of the machine leaning classifier in the third step. However, accurate 

segmentation of breast masses from the mammograms is a major technical challenge in 

developing CAD schemes [6]. In addition, selecting effective image features heavily 

depends on the preference and/or prior experience of the CAD developers, as there are no 

commonly accepted methods or criteria for the feature selection. As a result, the existing 

CAD schemes generate high false-positive rates. It is controversial on whether using 

commercial CAD schemes can help radiologists improve cancer detection accuracy [7] or 

what the optimal approach is to use CAD cues in the clinical practice [8]. Despite the 

disappointment of using existing CAD schemes of mammograms in the clinical practice, 

researchers still believe that it is necessary to continuously explore and develop new CAD 

approaches [9], such as to cue more subtle lesions without increasing false-positive 

detections [10].

However, developing a computer-aided diagnosis scheme to classify between malignant and 

benign lesions is very different from detection of suspicious lesions. It has much higher 

requirement in lesion segmentation accuracy and identification of effective features [11]. 

Currently, no computer-aided diagnosis schemes are used in the clinical practice to help 

radiologists distinguish between malignant and benign lesions. In searching for new CAD 

concept and approaches, we noticed an emerging machine learning method of deep learning 

proposed in 2006 by Hinton et al [12], which has attracted extensive research effort and 

tested in many engineering application fields requiring image and pattern recognition, 

detection, parsing, registration, and estimation [13]. Due to the unique characteristics and 
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advantages, deep learning method has also recently been tested and reported in medical 

image analysis field. The researchers have tested the feasibility of applying the deep learning 

networks to segment or recognize, isointense stage brain tissues [14], pancreas organ [15], 

and neuronal membranes [16] from MR images, CT images, and electron microscopy 

images, respectively. In addition, researchers have also utilized the deep convolution neural 

networks (CNN) to detect the chest pathology [17] or classify between the mild cognitive 

impairment (MCI) and Alzheimer’s disease (AD) [18].

Compared to the traditional classifiers, deep learning based classifiers have significantly 

different network architecture and learning approach. A deep learning network contains 

more image processing layers (i.e. 5–20 layers [19]) than the conventional image feature 

based machine learning classifiers. Each layer is a typical neural network such as 

convolution neural network (CNN) [20]. Instead of using a set of manually or automatically 

selected image features computed from the images, the deep learning network utilizes image 

itself as a single input. The effective image features are automatically learned and extracted 

by the lower layer networks. Accordingly, the higher layer networks use the extracted 

feature patterns and classify the images into different target categories. Previous studies have 

shown that using deep learning based classifiers might help reduce the gap between human 

vision and computer vision in pattern recognition [21] and also enabled to achieve a 

substantially higher classification performance [22] than the conventional classifiers.

Recently, researchers have also tested the feasibility of applying deep learning methods to 

CAD of mammograms, which include classification of mammographic density [23], 

prediction of ort-term breast cancer risk [24] and discrimination of different types of micro-

calcifications [25]. In this study, we applied the deep learning method to develop and test a 

new CAD scheme for classifying between malignant and benign mass based breast lesions. 

The objective of this study is to investigate and demonstrate the feasibility of whether 

applying a deep leaning based CAD scheme can yield higher or comparable lesion 

classification performance without a lesion segmentation as well as image feature 

computation and selection. The details of this study including the scheme development and 

scheme testing results are presented in the following sections.

2. MATERIALS AND METHODS

2. 1 Image Dataset

In this study, the training and testing dataset was randomly collected from our previously 

established full-field digital mammography (FFDM) image database. The detailed 

description of the image database has been reported in a number of our previous studies [6, 

26]. In brief, all FFDM images were acquired using Hologic Selenia FFDM machines and 

downloaded directly from the clinical PACS system after an image de-identification process. 

From our image database we created a dataset that includes 560 regions of interest (ROIs) 

for this study. The original size of all ROIs is 512×512 pixels (i.e. 38.4×38.4mm). Each ROI 

contains a verified breast soft-tissue mass based lesion. The center of each ROI overlaps 

with the center of each covered mass. No mass in this dataset has a maximum diameter 

greater than 38.4mm. All masses in the selected ROIs were biopsied. Based on the 

pathological reports of the biopsied examination, 280 masses were verified as benign and the 
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others 280 were confirmed as malignant. Table 1 shows the distribution of mammographic 

density of each case based on the BIRADS rating and the boundary margin characteristic of 

each mass, which were provided by the radiologists in the original image reading and 

interpretation

2. 2 A Deep Learning based CAD Scheme

In order to classify between malignant and benign lesions, we designed a deep learning 

based network. As demonstrated in Figure 1, the network is composed of three pairs of 

convolution-max-pooling layers, one hidden layer, and one logistic regression layer. In this 

network, the first 3 pairs of the convolution-max-pooling layers are applied to automatically 

extract the features. The seventh hidden layer and the eighth logistic regression layer are 

used as a multiple layer perceptron (MLP) classifier to assign each testing case into 

malignant or benign case category. In order to effectively learn and extract the image 

features, we designed a convolution neural network (CNN), which is currently considered as 

the most effective neural network structure and has been widely used as the basic unit of the 

deep learning networks [20].

Since a CNN applies different convolution kernels on input image, each kernel can be 

considered as one “feature”. In the deep learning networks, a number of CNNs are stacked 

to optimize the features [27]. In general, increasing the number of the CNN layers can 

increase the discriminatory power and may help improve the optimization effect. However, 

including more CNN layers requires a large volume training dataset and high computing 

power, which will significantly increase the training complexity [19, 28]. According to the 

previous studies, three convolution layers can achieve a satisfied performance in many 

different applications, and these architectures can also be accomplished under the single 

workstation environment [14]. Thus, a three convolution layer structure was selected and 

used to build a deep learning classifier for this new classification task.

From the previous CAD studies reported in the literature, we found that although a large 

number of image features [29, 30] could be computed, many of them are redundant and only 

a small set of features was finally selected to build a classifier [31]. The small number of 

features can typically improve robustness of the classifier with a limited training and testing 

dataset. Therefore, based on the limited dataset size, we designed a deep learning network 

that includes 3 layers to sequentially generate 20, 10, and 5 feature maps, respectively.

Using the 3 CNN layers, our deep learning network can automatically learn and define 5 

optimal image features from the initial input of the training ROIs. Each layer applies a 

number of convolution kernels on the input images. The convolution kernel size of the 

feature map of these three layers are 9×9, 5×5, and 5×5, respectively, which were 

determined by the previous publication [14] and our own experimental experience. Given 

that the malignant (benign) breast lesions should be invariant in size (stretching) and 

rotation, a max-pooling layer is followed by each convolution layer to improve the network 

robustness. The pooling size is determined to be 2×2, which is most recommended in the 

previous studies [14]. The results generated by the 3 CNN layers are used as the input 

feature for the multiple layer perceptron based classifier in the seventh and eighth layers of 

the deep learning network.
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Accordingly, the entire architecture of the deep learning network is as follows: In the first 

pair of convolution-max-pooling layers, the first convolution layer is connected with the 

input image. In order to reduce the computing complexity and accelerate the training 

progress, we down sampled each ROI from 512×512 to 64×64 pixels using a traditional 

averaging method. Thus, there are a total of 4096 (64×64) inputs in the first convolution 

layer. In this layer, 20 convolution kernels generate 20 feature maps, which are computed as 

follows [20, 32]:

(1)

In the above formula,  is the pixel value at position (i, j) of the kth output feature 

map, and  is the value on the pixel (i, j) of the lth input image. In the first layer, we 

have only one input image, thus l = 1.  is the weight value at coordinate (u, v) of the kth 

convolution kernel, which applies on the lth input image. bl is the bias applied on the lth 

input image, and the convolution operation is defined as [20, 32]:

(2)

Considering the margin effect of the 9×9 convolution kernel, the size of each output feature 

map shrinks from 64×64 to 56×56. The 20 output feature maps are taken as the input of the 

second 2×2 max-pooling layer. In the second max-pooling layer, 20×56×56 inputs are 

divided into 20×28×28 units, each of which contains a 2×2 neighbor pixel pool. For each 

pool, the layer detects the maximal pixel value within the 2×2 neighborhood as the output. 

Thus, the second layer produces 20×28×28 outputs. Similarly, the third convolution layer 

applies 10 feature maps using a 5×5 filter stack on the 20×28×28 input values to generate 

10×24×24 outputs, which are down sampled into 10×12×12 outputs by the fourth 2×2 max-

pooling layer. The fifth and sixth layers in the third pair have 5 feature maps also using a 

5×5 filter bank in the convolution layer and 2×2 down sampling in the sixth max-pooling 

layer, which finally produces 5×4×4 output values. These 5×4×4 output values are fully 

connected with the seventh hidden layer that contains 50 neurons. The seventh and eighth 

layers consist a MLP classifier, which is mathematically represented as [32, 33]:

(3)

Where matrices W(1), W(2), and vectors b(1), b(2) are the weight matrices and bias vectors for 

the seventh and eighth layer, respectively. In the formula, sigmoid is the logistic sigmoid 

function: sigmoid(x) = 1/(1 + exp(−x)). Finally, the output value of the network represents a 

classification score ranging from 0 to 1. The larger score value indicates the high probability 

of the testing ROI depicting a malignant mass. The detailed parameters used in our deep 

learning network are summarized and presented in Table 2.
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2.3 Performance evaluation

In order to assess the performance of this new deep learning network, we applied a 4-fold 

cross validation based network training and testing method. The entire dataset was divided 

into four independent partitions. Each had 70 malignant ROIs and 70 benign ROIs. The 

distribution of mammographic density and boundary margin characteristics are illustrated in 

Table 3. Thus, the network was trained and tested four times. In each cycle three partitions 

with 420 cases were used to train the network and one with 140 cases was applied to test 

network.

During the optimization, a mini-batch statistic gradient descent method was also applied, 

which aims to help more effectively and efficiently converge the randomly selected initial 

parameters into the optimal parameters while reducing the computing complexity [34]. The 

selection of the number of the mini-batch is a trade-off between the computing efficiency 

and optimization stability. In this study, the training dataset was divided into 21 mini-

batches, which was determined by the previous publication [32] and our own experimental 

experience. The learning rate of the CNN was selected as a fixed rate of 0.02 and the 

training epoch was selected as 40. For each epoch, the test dataset was applied to assess the 

classification performance of the network. The relationship between training epoch and 

network performance (for both training and testing datasets) was recorded and analyzed.

The entire training and testing process was conducted on a Dell T3600 workstation equipped 

with a Quadcore 2.80 GHz processor, 4GB RAM, and a Nvidia Quadro 2000D GPU card. 

Using the network-generated classification scores for all testing cases, the final classification 

performance of the deep learning algorithm based network was evaluated by using an 

evaluation index namely, the area under the receiving operation characteristic (ROC) curve 

(AUC), which is computed by using a publically available maximum likelihood based ROC 

fitting program (ROCKIT, http://xray.bsd.uchicago.edu/krl/roc_soft.htm, University of 

Chicago).

3. RESULTS

For an illustration purpose to demonstrate working concept and visual classification or 

comparison results, our trained/optimized deep learning network was applied to the input 

ROI demonstrated in Figure 1. Figure 2 shows all feature output images (ROIs) geenrated 

from the deep learning network layers 1 to 6, respectively. Figure 2 (a) demonstrates 20 

output feature map images of the first convonlution layer (layer 1). These features illustrate 

the image characteristics in the following aspects: 1) Image edges, especially the breast mass 

edge; 2) Image textures, such as the rings of the surrounding tissues; and 3) The segmented 

mass from the background. These three types of features are the most critical characteristics 

learned and extracted by the CNN network to distinguish between the malignant and benign 

ROIs.

Figure 2(b) shows the results generated by layer 2. Comparing to Figure 2 (a), the output 

features remove a lot of details during the max-pooling process, which significantly 

improves the classifier’s robustness, as the classifier will be less sensitive to the subtle 

changes on the input details. The results in Figure 2(c) and (d) are more abstract comparing 
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to the features shown in Figure 2(a) and (b). In Figure 2(c), the 20 input features are fused 

into 10 features to reduce the feature redundancy, while the details are further removed by 

layer 4 (the second max-pooling layer), as demonstrated in Figure 2(d). In Figure 2(e) and 

(f), the 10 features are finally combined into 5 features, with a size of 8×8 and 4×4, 

respectively. In this layer, the output feature are processed as highly abstracted, independent 

features, which are no longer similar to the originial input image. These highly abstracted 

features can then be used as input for the multiple perception classifiers in layers 7 and 8.

Figure 3 shows four figures of cross-validation folds 1 – 4 ((a) – (d)). Each figure 

demonstrates and compares two performance curves generated from the training and testing 

datasets, respectively. In general, the classification errors of both training and testing 

datasets monotonically reduce as the training epoch number increases initially. However, 

once the number of epoch reaches a critical point, the classificion errors of the testing 

dataset starts to increase. For example, as illustrated in Figure 3 (b), the classification error 

of the training dataset monotonically decreases during the entire training process, which 

reaches 5% at epoch 80. However, for the testing dataset, the error decreases at first, which 

yields the minimum of 22.14% at in epoch 44. Then, as the training process proceeds, the 

testing error gradually increases to 30.71% at epoch 80. For the other 3 folds, the minimum 

error was yielded at epoch 21, 61, and 40, with a value of 32.86%, 22.86%, and 20.71%, 

respectively. On the other hand, at epoch 40, the network achieves an error of 35%, 23.57%, 

25%, and 20.71% for fold 1 – 4, respectively, which indicates the classifier was trained 

sufficiently in the experiment.

Figure 4 (a) and (b) illustrate the performance of the optimally trained networks for fold 1 – 

4 and the entire dataset, respectively. In Figure 4(a), the computed AUC values are 

0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035, for the testing dataset in fold 1 – 

4 cross-validation cycles. At the specificity of 0.8 (or a false positive rate of 0.2), the CAD 

scheme yielded classification sensitivities of 45.8%, 66.9%, 71.8%, and 69.9%, respectively. 

When combining the classification scores of all 560 testing ROIs in all four partitions, 

Figure 4 (b) displays a ROC curve yieleded from the entire testing dataset, which achieves 

an AUC of 0.790±0.019. At specificity of 0.8, the classification sensitivity yields 63.1%.

4. DISCUSSION

In this study we developed and tested a new deep learning network based CAD scheme to 

classify between malignant and benign breast lesions (masses) depicting on the digital 

mammograms. Our experimental results demonstrated that comparing to the existing 

conventional CAD schemes, this new deep learing based CAD scheme has a number of 

unique characteristics and/or potential advantages.

First, unlike a conventional hit-or-miss type CAD (detection) schemes that only detect the 

locations of the suspicious lesions, CAD (diagnosis) schemes for classifying between 

malignant and benign masses require much accurate lesion segmentation. The mass 

segmentation accuracy will directly affect or determine the accuracy of the computed mass-

related image feature values. However, given the fact of that the morphology of the lesions 

and overlapping fibro-glandular tissue are highly complicated, previously studies have 
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indicated that there were no “one-fit-all” segmenting methods that enable to successfully 

segment the diverse lesions depicting on mammograms [6]. In this study, 66.6% of masses 

as shown in Table 1 (373 / 560) were characterized by the radiologists as irregular or 

spiculated masses, which were often difficult to be accurately and/or reliably segmented by 

the conventional CAD schemes. Thus, one advantage of applying a deep learning network 

based CAD scheme is to avoid the image feature errors introduced from the error or 

inconsistency of lesion segmentation.

Second, although developing CAD schemes without lesion segmentation has also been 

previously developed and tested using a content-based image retrieval (CBIR) based CAD 

schemes [26, 35], the deep learning approach is different and may also have advantage. 

Unlike the CBIR based CAD schemes, which typically use a k-nearest neighborhood (KNN) 

based “lazy” learning concept and can be very computational intensive or inefficient in 

generating a classification score for each testing ROI [36], the deep learning network is pre-

trained and its global optimization function (similar to a conventional artificial neural 

network) can be directly applied to all testing cases (ROIs). Thus, the deep learning based 

CAD scheme can be more efficiently used in the future clinical practice.

Third, due to the superior architecture of the deep learning networks, the deep learning 

based classifier do not need to human intervention to design or define the lesion-related 

image features that need to be computed by CAD schemes. Since there is a big gap between 

the human vision and computer vision, it is very difficult to subjectively define the effective 

image features used and implemented in the CAD schemes. In the past two decades, 

although a large number of morphological and texture based image features have been 

computed and used in CAD of mass classification, many of these features are highly 

correlated, which reduces the robustness of the CAD schemes. Thus, how to optimally 

selecting a small set of effective image features is always an important but difficult task in 

CAD development [37]. However, deep learning approach is designed to learn the intrinsic 

characteristics of the lesion images, which cover both a mass and its surround background 

tissue structure, without human intervention. In this study, we demonstrated that these 

parameters used in the network could be automatically optimized during the training 

process. As a result, the deep learning network automatically learned, computed and 

identified the relevant image features depicting on the training samples. Although due to the 

use of different testing datasets, we are unable to directly compare this performance level 

with many of previously reported CAD performance levels (in particular for those CBIR-

based CAD schemes as shown in Table 4), our new deep learning network based CAD 

scheme also yielded a promising and comparable classification performance, which 

demonstrated the feasibility of using this new approach to provide a solid foundation for the 

future development and improvement.

This is our first CAD study that applied the deep learning concept and approach to classify 

between malignant and benign masses depicting on digital mammograms. The study also 

has several limitations and/or uninvestigated issues. First, although the deep learning method 

has demonstrated its substantial superior performance in many different computer vision 

applications, development of deep learning based CAD scheme is far behind maturity. As a 

result, performance of our deep learning based CAD scheme may not be statistically higher 
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than the conventional CBIR schemes when we directly compare the AUC value of the ROC 

curve. It is an open question on how to sufficiently optimize the deep neural network under 

the specific medical imaging conditions, which is significantly different from the computer 

vision task. In this study, the dataset is relatively small in developing a deep learning 

network based CAD scheme. Although the size of our image dataset may be sufficient to 

develop and preliminarily evaluate the performance of a conventional CAD scheme, the 

most of well-performed deep learning classifiers are typically trained by very large datasets. 

Given that establishing a very large cancer image dataset is not an easy task, the alternative 

approaches need to be explored in the future studies. For example, previous study has shown 

that a well-trained deep learning network could be repurposed to a new computer vision 

task, which is substantially different from the original training dataset [43]. Using this 

concept, we can test the feasibility of combining both a large non-medical image dataset and 

a relatively small cancer image dataset to build the deep learning network. In this new 

scheme, non-medical image dataset is used to train the front layers with larger feature 

dimensions, and the cancer image dataset is used to train the last several layers with smaller 

feature dimensions, which may be able improve the classifying accuracy and robustness of 

the CAD scheme.

Second, similar to the conventional CAD schemes [5], the performance of the new deep 

learning network based CAD scheme also heavily depends on the distribution and/or 

diversity of the ROIs (or cases) in the specific training and testing datasets. In our 4-fold 

cross validation, the scheme yielded substantially lower classification performance with 

AUC = 0.696±0.044 on Fold 1, while the AUC > 0.8 were yielded from other three folds. 

The lower AUC in Fold 1 also affects the overall classification performance of the entire 

dataset with AUC = 0.790±0.019. The low performance of Fold 1 validation may be 

attributed by the fact that Fold 1 has a quite different image feature distribution as 

comparing to other 3 folds. As shown in Table 3, Fold 1 has substantially higher ratios of 

masses with smooth boundary and low density (Rated with BIRADS 1). Specifically, 

although Fold 1 only includes 25% of cases in the entire dataset, it includes 43.5% (37 / 85) 

of masses rated “smoothed” and 45.5% (10 / 22) of cases rated BIRADS 1 in 

mammographic density. For the mass classification task, the mammographic density and 

mass margin are two most important features extracted by the CAD scheme. When the deep 

learning network was sufficiently trained by the dataset with smaller prevalence of smoothed 

masses and lower mammographic density (BIRADS 1) cases, the scheme thus yielded a 

relatively lower classification performance applying to Fold 1. The results indicate the 

importance of applying the large and more balanced datasets to develop the highly 

performed and robust CAD schemes including those using the new deep learning networks.

Third, we only tested a deep learning network that is based on the convolution neuron 

network and multiple layer perceptron networks. Some other types of deep learning 

networks, such as restricted Boltzmann machine and/or stacked denoising auto-decoder [44] 

can also be investigated and tested in the future studies. The network architecture may be 

further optimized by using more convoluting layers or applying new structures such as joint 

deep learning methods [26, 45].
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In summary, we investigated the feasibility of applying deep learning concept to 

automatically classify the malignant and benign breast masses using digital mammograms. 

Comparing to other conventional CAD architectures (including CBIR approach), our study 

results demonstrated that deep learning method can avoid the potential errors or biases 

introduced from the lesion segmentation and sub-optimal image feature extraction. Thus, 

deep learning approach has the potential to be a good alternative in developing CAD 

schemes. If our results can be verified in future studies, this paradigm change approach may 

have a significantly high clinical impact to help improve efficacy of mammography 

screening in the future clinical practice.
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Figure 1. 
Architecture of the deep learning networks used for the mass classification
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Figure 2. 
The feature output map images generated by layers 1 – 6 of our deep learning classifier (a) – 

(f) when the network was applied on the input ROI indicated in Figure 1.
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Figure 3. 
The training curve of fold 1 – 4 (a) – (d). It shows that the testing errors yields 35%, 

23.57%, 25%, and 20.71% at epoch 40 for the training fold 1, 2, 3, and 4, respectively. The 

vertical line indicates the epoch corresponding to the optimal training error.
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Figure 4. 
Illustration of 4 ROC curves of the 4 testing dataset (partitians) in 4 training folds 1 – 4(a), 

and the ROC curve of total testing dataset (b). In these ROC curves AUC values are 

0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035 for 4 testing partitians in the 

training fold 1 – 4 respectively, while the AUC of the entire dataset is 0.790±0.019.
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Table 1

Characteristic distribution of our testing dataset

Breast density 1 2 3 4

22 223 302 13

Breast margin 1 2 3 4

85 235 138 102

Note: 1) BIRADS breast density score: 1-almost all fatty replaced, 2-scattered fibroglandular densities, 3-heterogeneously dense, 4-extremely 
dense; 2) BIRADS breast margin score: 1-smoothed, 2-irregular, 3-spiculated, 4-focal asymmetry.
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Table 4

Summary and comparison of previously reported CBIR-based CAD schemes of mammographic masses and 

the scheme performance

Authors Number of ROIs Lesion Segmentation Image Features Reported Performance

Tourassi, et al, 
2003 [38]

809 masses and 656 
manually selected negative 

ROIs

No Mutual information AUC = 0.87±0.01

Alto, et al, 2005 
[39]

20 malignant and 37 benign 
masses

Yes 14 gray level co-occurrence 
matrix (GLCM) based texture 

features

Classification Accuracy = 
61%

Tao, et al, 2007 
[40]

121 malignant masses and 
122 benign masses

Yes 3 shape, texture and intensity 
features

Precision = 82.3%

Alolfe, et al, 2008 
[41]

57 malignant masses and 32 
normal ROIs

No 88 features computed from 
the 1st order statistics, GLCM 

and fractal dimension

Sensitivity = 68.42% at 
Specificity of 65.63%

Park, et al, 2009 
[42]

1500 masses and 1500 CAD-
detected false-positive 

lesions

Yes Fractal dimension and 14 
morphological features

AUC = 0.851 (95% CI: 0.837 
– 0.864)

Wang, et al, 2009 
[36]

200 masses and 200 CAD-
detected false-positive 

lesions

No Pearson’s correlation AUC = 0.704±0.019

Gundreddy, et al, 
2015 [26]

100 malignant and 100 
benign Lesions

No Two region heterogeneity 
related features

AUC = 0.832±0.040

*
AUC – Area under a receiver operating characteristic (ROC) curve.
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