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We show that the logarithmic factor in the standard error estimate for sparse finite element (FE) spaces
in arbitrary dimensiord is removable in the energyH) norm. Via a penalized sparse grid condition,

we then propose and analyse a new version of the energy-based sparse FE spaces introduced first in
Bungartz (1992, Dnne Gitter und deren Anwendung bei der adaptivéeung der dreidimensionalen
Poisson-GleichungDissertation Munich, Germany: TU Ninchen) and known to satisfy an optimal
approximation property in the energy norm.
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1. Introduction

This work is devoted to the study of the approximation property of sparse finite-element (FE) spaces on
a product domain

Q=0 x0Qx---xQ,
d times

where2 c R" is a bounded domain. As efficient approximation tools for functions defined on high-
dimensional domains, sparse grids and sparse tensor-product spaces were first introdiecegbiin

(1990 and Griebel (1997 and consequently developed and analysed in a variety of works, of which
we mention here onlBungartz(1992, Temlyakov(1993, Griebel & Oswald(1995, Wasilkowski &
Wozniakowski(1995 and the survey articl8ungartz & Griebel(2004). It is important to note also

that the underlying ideas of sparse grid schemes had been known already for several years in related
mathematical fields, including interpolation and numerical quadrature; under the name of hyperbolic
crosses they had been investigated alread3ainenko(1960).

The sparse grid construction is based on a 1D multiscale basis (or hierarchical subspace decompo-
sition), from which a higher-dimensional multiscale basis is obtained by tensorization. Sparsification is
then achieved by dropping the elements of the resulting tensor-product basis known to have a negligible
contribution to the data representation. Each contribution is estinagteidri based on the smoothness
of the data to be approximated.

More precisely, and to fix notations, let us consider a bounded Lipschitz dafhain R" and
¥ := (VL)Len a dense hierarchical sequence of finite-dimensional subspaé{g’f(ﬂf),

VoCViC---C VL C---C H}(Q),
TEmail: todor@math.ethz.ch

(© The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



A NEW APPROACH TO ENERGY-BASED SPARSE FE SPACES 73

satisfying for some > 0 an approximation property of the type
Np :=dimV, < cp2'h (1.1)
Vue H'(Q)NHFQ): infyey lu—ollur@) < Gyt 2700 Ul yin gy (1.2)

forall L € Nandr € {0, 1}. Let us also introduce the ‘anisotropic Sobolev sp&ft&(!)d), defined as
the tensor-product Hilbert space

HE(QY) := H}(Q) ® --- ® H}(Q), (1.3)

d times

equipped with the corresponding tensor-product energy norm
lullpagdy = [(V1® - ® Va)ull 204y (1.4)
It is then known (see Rematk?) that the sparse FE spacﬁs:: (VL)L e given by
Vi i=span{V, ® - @ Vig: 0 < Iy + 1o+~ +1g < L}  HF(QY) (1.5)
inherit the approximation propertyt (1) and (.2 in Hol(.Qd) ‘up to logarithmic factors’,
N == dimVL < ¢y g(L + 9120k (1.6)
Vu e HH Q) N HE(Q9): inf, g, U= vllh1ge) < Cydr(L + D127t Jull s oy (1.7)
for all L € N. Note that anisotropic Sobolev regularity is assumed hera,for

ue H* QY = H* (@) ® - ® HI*(Q), (1.8)

d times

and that on the left-hand side of.), we consider the standard (energy) normtb¥(£29) and not
the anisotropic one corresponding to the spHé&éQd) defined in (.4). We further callt in (1.8) the
anisotropic Sobolev regularity index of

The typical example we have in mind here for the hierarchical space seqtered V) cn iS
that of standardh version of the finite element metho® consists of all piecewise polynomials of
some fixed degre@ > t on a regular triangulation of width™ of the polygonal/polyhedral domain
Q, vanishing oro Q.

Note that the logarithmic factdt. +1)3~1 ~ (log N. )4~ in (1.6) and (L.7) is in general negligible
for low-dimensional applicationsd( < 3), but poses serious problems from both a theoretical and
a practical point of view for problems where large valuesddadre realistic—the so-called ‘curse of
dimensionality’. High-dimensional problemd & 10) naturally arise in the modeling of complex (e.g.
biological) systems, and we refer the readeBtmgartz & Griebe(2004 and the references therein for
examples, numerical results and a survey of the main ideas, techniques and results of high-dimensional
approximation theory.

In the spirit of coping with the curse of dimensionality, the purpose of this work is twofold. We
first show that {.7) is not sharp and that in fact the logarithmic factar+ 1)4-1 ~ (log N )4~ as
L — oo can be dropped froml(7). The argument we use leads us to introducing a ‘penalized sparse
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grid condition’ giving rise to energy-based sparse FE spét&es&— (VL)LGN with V. c V_ for all

L e N. We then show thé¢d 1(2%)-optimal approximation property fof = (VL)Len, Which can be
understood as the removal of the logarithmic factors in bbif @nd (L.7). In the notations above, the
penalized condition reads

=102, 1) € N% s+ s(l11 = Ileo) < L, (1.9)
wheres is an arbitrary parameter satisfying
O<s< 1/t

if t > 0 is the anisotropic Sobolev regularity index (cf.8)) of the functionu to be approximated.
Condition (.9) is visualized in Fig.1 for d = 2: the pairs of integer§ly, |2) satisfying @.9) are
exactly those lying in the dotted area (interior or boundary of the concave quadrilateral with vertices
(0,0, (0, L), (L, 0) andPs). Note that fors \v 0 (corresponding t®#®s — Po), the penalized sparse
condition (L.9) degenerates into the standard sparse condition. The sparse FE spaces defith&yl via (
achieve therefore the same approximation accuracy as their standard counterparts (corresponding to
s = 0), but at a significantly lower cost, as measured by the number of degrees of freedom used. They
induce FE approximations that can be thought of as realizations of thé\bestm approximation for
functions with anisotropic Sobolev regularity, in the'(29) norm, and using the tensor-product FE
basis ofH1(Q9). A

In fact, the space€V| ), < can be thought of as versions of the energy-based sparse spaces intro-
duced inBungartz(1992 (see als@Bungartz & Griebe(1999; Bungartz & Griebe(2004) for a detailed

Energy (H') Based Sparse Grids

|U@an Uess) U2 |

FiG. 1. Solution setl1, I») for the penalized sparse grid conditidng), ford = 2.
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discussion of energy-based sparse FE spaces and their properties). Note that a condition sin8jar to (
was introduced and investigated@thwab & von Petersdo(P004 in the context of a wavelet-based
sparse grid construction. Our main results read as follows.

THEOREM 1.1 Ift > 0 and? := (VL)Len is a dense hierarchical sequencd—lg’n(.()) satisfying the

approximation propertyl(1) and (.2), then the dense hierarchical seque‘rtl’ce: (VL)Len in Hol(Qd)
defined by {.5) satisfies {.6) and

vue HH@HNHYQY:  inf lu=ollyioe < cr,0.2 Ul o)
veVp

for all L e N with some constanty 4 > O.
THEOREM1.2 Ift > O and? := (VL)Len IS a dense hierarchical sequencd—l&(g) satisfying the
approximation propertyl(1) and (L.2), then the dense hierarchical sequeﬂ?ce: (VL)Len N H(}(Qd)
given by

Vi i=span{\; ® - @ Vig : 0 < lll1 +s(lll1 — lllee) < L} € Hg(29)

with an arbitrary O< s < 1/t satisfies the approximation property

dimVL < ¢y g2, (1.10)

Vue HH Q) N HE(Q9): infue\;L Iu— vl < Crast2 " lUllgingey,  (1.11)

for all L e N with some constantsy g s, Cy gt > 0.

Our proof of Theorenmi..2 allows also explicit control of the constants involved In10 and (.11),
in terms ofd, s andt and the constants involved in the approximation property) @nd (.2).

Note that (.7) holds also with theH1(29)-norm replaced by the anisotropic Sobold¥(29)-norm,
but in this stronger norm, the logarithmic factors @ are in general not removable (although the
exponent can be lowered froth— 1 to (d — 1)/2).

The paper is organized as follows: Sectiis devoted to the derivation of standard detail estimates
on the sparse FE scale, followed by a crucial combinatorial estimate, from which the proof of Theorem
1.1follows easily. In Sectiol, we generalize the auxiliary combinatorial results from Seidie ap-
ply them to prove Theorerh.2in Sectiord, using the cost/benefit framework introducedimgartz &
Griebel(2004). We conclude by several remarks and open questions in Séction

2. Standard sparse grid condition

We start by recalling the standard detail estimates for an arb'nranHol(Qd) N HH Q%) wort. the
H(}(.Qd)-orthogonal decomposition

Hg (@4 = P Wi, 2.1)

leNd
where
Wi=W, @ W, ® -+ - ® W, V|=(|1,|2,...,|d)ENd, (2.2)
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with (V_1 := {0} by convention)
W:=VieVi.1 VIeN, (2.3)
and the orthogonal complement taken w.r.t. the standard Hilbert structu’ré(m),
(U, 0) 1) = (VU, Vo) 2g) VU0 € Ha(Q).

ProPOsITION2.1 Ifu e H}(Q% N HH(QY) and ¥ = (VL) ey © HE(Q) is a hierarchical
sequence of FE spaces satisfying the approximation prodedlyand (L.2), then the detaily € W, of
u at levell € NY satisfies

Ul gdy < Cy,a, 2o~ U o gay, (2.4)
whereas for the dimension of the detail spsideve have
dimwW < cy 2", (2.5)

Proof. The dimension estimat@ (5) follows immediately from {.1) and the definitionZ.2) and @.3) of
the detail spac®\|. To prove R.4), let us first introduce forany > 0,1 c {1,2,...,d},|I| =k > 1,

| ={i1,io,...,ik}, the notationH®! (Qd) for the tensor-product space@factors, each of them being
eitherH'(Q) if j € | or HO(Q) = L2(Q)if j ¢ |, for 1 < j < d. Denoting further byR andQ; the
Hol(Q)-orthogonaI projections ontg andW,, respectively, so thaDg = PpandQ) = B — B_4 for
alll e N, we obtain from {.2), for all| € N andr e {0, 1}, that

1QuullH (@) < &yt 2 DU jai o) Yu e HTH(Q) N HI(Q). (2.6)
Let us now consider an arbitrary multi-index= (11, ...,1q) € N9 with suppgh =1 € {1,2,...,d},
[1] = k, and write, foru € H}(Q%) N HH(Q9),

d
lfur ||I2-|1(Qd) = ” (Qh Q- ® Q'd) u”iZ(Qd) + Z “Vi (Qll Q- ® Q'd) U”i2(9d)' (2.7)
j=1

The general ternTj = ||V; (Q, ® --- ® Q) “HiZ(gd) of the sum on the right-hand side &.7) can
be estimated from above fgre | using @.6) as follows:

2 2(d—k) 2
@(H1+t,H&) : ”QO”,%?(HO,HO) : ”u”Hl-H,I (@9

2
B(HIH HO) ’ || Qlj

Tj < H H Qi
j’el
I'#]

2(k—1 — ., — 4. 2(d—k
< C“I/(,t ) H 4 (t+1)( j ni. C“ZV,I4 tdj-1) . 07/( ) . ||u|||2_|l+t,| @9
j’el

J'#]

< A2 ey (2.8)
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The termsT; with j ¢ | as well as theL. 2(29)-norm of the detaily satisfy similar estimates. The
conclusion follows upon summation &.@) over j from 1 tod. O

REMARK 2.2 The proof of the error estimat.{) follows immediately from 2.4) and the definition
(1.5 of the sparse spadg , using also the inequality

Moo <1 VIeN, (2.9)
plus a counting argument.

We show next that the existence of the logarithmic factolim)(is in fact due to the use of the crude
estimate 2.9), and is therefore ‘only an artefact of the standard prooflof){. The following result is
crucial for our analysis.

THEOREM2.3 Ford € N4, ¢ > 1 andL e N, we define

AL, ¢ dy= D ¢llemt (2.10)

leNd
[ll1=L

ThenA(, ¢, d): N — Ris nondecreasing and
im AL, &,d)=d(1+ —— . 2.11
[fim AL, ¢, d) (+5_1) (2.11)

Proof. The casal = 1 being trivial, we assume without loss of generatity> 2. To prove the first
claim, we consider a mapping

leN:li=L15 (leN |lls =L +1}, (2.12)
which adds 1 to exactly one of the largest entriels Glearly, such a mapping exists and is not unique.
More formally, foranyl = (I1,12,...,1q) € N9, there exists an ¥ i < d such that

I| :|||OO’ W(l):(ll’lz"yll—lall +17||+15"’|d) (2'13)
It is easy to see that is injective,|w (|1 = |l|l1 + L and|y (1)|eo = |llco + 1 SO that
AL+Led= > =ttt > >, et
I’eNd I’'eNd
IVj1=L+1 I'l1=L+1, 'eRar(y)
=y ® > et

JeNd
lll1=L
> ekt = AL, &, d),
|eNd
lll1=L

which proves the monotonicity di(-, &, d).
As for (2.11), we start by rewriting the sum ir2(10 as

AL.edy=> > &=Lk d)eet, (2.14)
k>0 | |€N|d . k=0
N1=L, o=
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where the set”(L, k, d) is defined by
S,k d):={l e N l|1 = L, |l]og = K}.

Note that several properties of the set%L, k, d) which are relevant for our analysis are collected in
Lemmaz2.5at the end of this section. Fror.(9 below, we then obtain

> (L k+d Z)th_LgA(L,&d) Z(L k+d 2)5“. 2.15)

keN
L/2<k<L

The conclusion follows if we can show that the supremum @ver N of both the lower and the upper

bound in .15 equal the right-hand side 02.(11).
We start with the right-hand side d.(L5, which can be written, after substitutikdoy L — k, as

k+d— 2) (1) k
d - .
z( ;
The supremum over € N of this expression is thus attained flor— oo and equals

1 d-1
d(l_l/é) . (2.16)

Note that here we have used the summation rule

o0

k+n 1
Z( + )xk:—1 vneN, Vxe (-1,1),
= n (1—x)n+

which follows by differentiating times w.r.t.x the identity(1 — x) "t = 14+ x + X% + - -
We now use a similar argument to compute the supremumloeeN of the left-hand side 0fA.15),
which can be written, again after substitutingy L — k, as

k+d—2\ (1\X
> (%5206
o<k<L/2 d-2 <

The supremum ovelt e N is attained again fot — oo and equalsZ.16). The proof is complete. O

REMARK 2.4 The proof of Theorerth.1 now follows immediately by choosing = 2 in Theorem?.3
above and using the detail estimates in ProposRidn

We conclude this section by proving the combinatorial properties of thegéts, k, d) that are
needed for the proofs of TheoreZrBabove and Theorei® 1 below.

LEMMA 2.5 If the sets”(m, k, d) are defined fod € N, andm, k € N by

Z(m,k,d) :={l e N4 [ljg = m, |l]oc =K},
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then
L(mk,dy=0 Vk>m, (2.17)
d -1
Sirmkai=("T00). (2.18)
d—1
k=0
L7 (m, K, d)] < d(m _5 +g - 2) vd > 2 with equality fork > m/2. (2.19)

Proof. The statementX17) is obvious, wherea(18 follows from the fact that for fixedn, d, the sets
(«7(m, k, d))ogkgm are disjoint and

U #m.k d) = {l e N |l|y = m}.
k=0

To prove @.19, we consider for fixed, m with 0 < k < m the mapping

k
(L2, dix [ J#m-kj,d-1 5 #mkd
j=0

given by
¢(q7 (|17 |27 cee Id—l)) = (|15 |25 e Iq—l) ks Iq, cee Id—1)>

forall (11,12, ...,14-1) € (M =Kk, j,d — 1) and 0< j < k. Obviously,¢ is surjective so that using
(2.18 we obtain

k
|7 m, kK, d)| <[{L,2,....d}|- > (M=K, j,d— 1) (2.20)
j=0

m—-k+d-2
< . .
\d( 42 ) (2.21)

Fork > m/2, the mappingp is also injective K = ||| is attained by exactly one entry tf which
ensures equality ir2(20. Also (2.21) holds then with equality, due t@(17), (2.18 andk > m — k for
k > m/2. The proof is complete. |

3. Penalized (energy-based) sparse grid condition

Theorem2.3 shows how important accurate control of the quantlity — |l|o for | € N9 is, in the

analysis of the approximation property of sparse FE spaces w.r.t. the eletgpgrm. Based on this
observation, the introduction of a penalized sparse grid conditi®geems natural. The approximation
property of the corresponding sparse spaces can be investigated in a similar manner. We therefore discuss
in the following a generalization of Theore2n3which already includes conditiol ©).
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THEOREM3.1 Ford e N4, ¢ > 1,5 > OandL e N, we define

As(L, ¢, d) = > Moo=y, (3.1)

leNd
L—1<ll2+s(l1—INeo) <L
ThenAs(-, ¢, d): N — Ris nondecreasing and
1 \d1
lim As(L,¢,d)=d{1+ — . 3.2
Proof. The monotonicity ofAg in the first variable follows by an argument identical to the one used in
the proof of Theoren2.3. We introduce a well-defined, injective mapping
feN:L—1<li+s(li—le) <L} B (1 eN:L <1451 — loo) < L +1}

satisfying .13 and argue analogously as in the proof of Theo&e

As for the proof of 8.2), we proceed in two steps.

Step 1: We first show thats(-, &, d) can increase at most linearly in the first variable, i.e. there exists a
Cs,c,d > Osuch that

As(L,¢,d) <csed(L+1) V0L eN (3.3)
To see this, note that the condition
L-1<|llz+s(l1—Ilw) <L

readily implies, due to & |l < |l]1, that

L-1
<L <L.
s+1

Applying Theoren®.3, we obtain
As(L,&,d) < > &Mlleo=lln

leNd
(L=1)/(s+D <]l <L

L-1
<{L-|—= 1) sup AL, &, d
(- 5ii]+2) pavco

sL+s+2 1 \94-1
—— d{1+—— ,
s+1 ( +§—1)

which ensures the desired linear estimate, with

S+2 1 \%?
cg= a1+ —) .
Gad= 511 (+5—1)

Step 2: We now prove 8.2), i.e. the boundedness @%(-, £, d), uniform in the first variable. To this
end, we consider > 0, to be chosen later, and split the sum in the definitioAgl, £, d) as

As = Ag1+ Asp,
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where
Asa(L, &, d) = > &lloollz (3.4)
leNd
L=1<|lj14s(ll1=Illo) <L
N1—[lleo>clogL
and

Asa(L, &, d): > Moo=l (3.5)

leNd
L=1<llz+s(l1—Illo) <L
[ll1—[lleo <clogL

We bound in the followingAs 1 and As 2 using different arguments. We start witk 1, for which it
holds

Asa(L,&.d) < > (YOl /gy melost
leNd
L—1<lla+s(l1—INleo) <L
Using the linear estimat&(3) derived in Step 1 and the identit§P9- = L'°9¢, we obtain
As1(L, &, d) < g sz q(L +DL(@/2 100

so that by choosing > 2/log¢, we ensure

lim Asi(L,¢,d)=0. (3.6)

L—oo

As for As 2, we write

Asa(L. & d) = > |.7/(m, k, d)|<m
m,keN
L—1<m+s(m—-k)<L
m—k<clogL

TS mm— e (3.7)

m,jeN
L-1<m+sj<L
j<clogL
o<j<m

Just like in Step 1, the penalized sparse condition
L-1<m+sj<L

with 0 < j < mimplies at once

-1
m > l>chogL

for L large enough depending snc, i.e.L > Ls¢c = Ls¢ (recall thatc > 2/log¢). We then have that

j <clogL <m/2 VL > Lgg,
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which in turn allows us to use the explicit formua 19 for the coefficienty.”(m, m — j, d)| in (3.7).
From 3.7), it then follows that forL > Ls ¢,

j+d—-2 :
Aol e )= > d(J+ )5—1

. d-—2
m,jeN
L—1<m+sj<L
j<clogL
0<j<m

, B _ d-1
_ d(J “(;d , 2)5-1 Li’>°o|(1+ 1 1) (3.8)
jeN - <=
j<clogL

sincem is uniquely determined by, viam = |L — sj|. Equation 8.2) follows now from @3.6) and
(3.8 and the proof is complete. O

4. Optimal approximation property

We now turn to the study of the approximation property of the sparse tensor FE spaces. In the spirit of
the cost/benefit approach presentedimgartz & Griebe2004, we next formulate an optimization
problem in a discrete setting.

PROBLEM 4.1 Let 4 be a countable sety := (a;),e4 C R4 a family of positive real numbers for
which

a:= ) a <o, (4.1)

Aed
and let?Z: 4 — [0, oo] be a ‘cost functional’. For a giveN > 0, find Ay C 4 which minimizes
Z a,
red\ AN

subject to the constraint

> L) <N.

AedAN

Note that, in the cas¢’ = 1, Problemd.1is equivalent to the question of finding the békterm
approximation ofa in the expansior4.1).

DEFINITION 4.2 In the setting of Probler.1, we call the functiond,, » given by
Doy, &
N> N —5 Z a; € [0, c0)
AeA\AN

the ‘optimal convergence rate of relative to.#”.

In view of Propositior2.1, the connection between the approximation property of the sparse tensor
FE spaces and Problefnl is obtained as follows.
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ExXAMPLE 4.3 Choosing4 = N9, we define the family as the collection of estimated details of a
givenu € HY(Q%) N HIH (Q),

a = ollloo=@+DIN1 | Nd,
and the cost functiona¥ as the estimated dimension of the detail spage
Ly :=2"h | eNd,

Note that the summability conditiod (1) is ensured, e.g. by TheoreZm3and the conditiott > 0.

In the following, we focus on the analysis of the optimal convergence rate for Exang\e start
with a simple proof of an upper bound for the optimal convergencedrate,, which is shown to be at
most of ordett /n.

PrOPOSITION4.4 For the datar and.Z in Example4.3, we have that
Dy ") > 27D v e

Proof. Obviously, the setf ,n. cannot contain alil indicesl € NY with exactly one entry equal to+ 1
and all others equal to 0 since the total cost of these indic#®"$ 1D Let !’ be such an index which
does not belong tof,n. . We then have

S azaz 2l o= (@HDIVlL — p—t(L+D)
le A\ AL

which concludes the proof. O
We now prove Theorerh.2, i.e. the penalized sparse condition

M1+ (= o) < L 4.2)

with 0 < s < 1/t actually achieves, up to a multiplicative constant, the optimal FE convergence rate of
ordert/n.

PrROPOSITION4.5 For the data in Example3and for any O< s < 1/t, we have that

1
> a < — - supAg(L’, 2V, d) 27t Vi eN (4.3)
|eNd 1=27 ven

Ma+s(lll=I1oo) > L

and
> 2M<2a(L.2%d)- 2" vieN. (4.4)
d

leN
[1+s(l1—[lleo) <L

Proof. We have

g = 2= +0I11 _ p=t(l+s(lla=Illx))  9(1~t8)(Ilso=ll1)
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so that

> a:=i > a

leNd =1 leNd )
Ma+s(l1—I1leo)>L L+ =D <llz+s(l1—Iloo) SL+]

o0
—t(L+j=1)o(1-ts)(Illoo—Il1)
53 > 2D

) leNd )
L+ =D <llz+s(l1—[leo) SL+]

I
N

o0
=D 2 VAL + ), 21, d)
j=1

<

- sup As(L’, 21718 dy - 27t
1-27Y |y

which concludes the proof ofl(3), in view of TheorenS.1
As for (4.4), we argue similarly to obtain

Z onlllz Z Z 2Nl

leNd jeN ] leNd ]
Ma+sl1—INeo) <L IS iSL+HIL=j<[la+s(ll1—INe)SL—=(j—1)
< Z Z (L= =D+s(lloo—Il1))
jeN : leNd .
1iSL+HIL=j<[la+s(ll1—IHe)SL=(j =1
= > 22UDAL - (-.2d)
jeN
1<j<L+1
< 2AS(L9 2n5, d) : 2nL5
where in the last step we use the monotonicity’gf:, 2", d) (see Theorers.1). O

REMARK 4.6 The proof of Theoremi.2 now follows combining the sparse FE detail estimates in
Proposition2.1and the upper bounds in Propositidb above.

5. Concluding remarks

Considering the approximation problem for a function defined on a high-dimensional de*haivhere

Q c R"is open and bounded, an alternative method for the construction of abstract ‘energy-based
sparse FE spaces’ was presented. For smooth functions on the anisotropic Sobolev scale, these spaces
were shown in Theorerh.2to achieve the same level bft-approximation accuracy as ‘standard sparse

FE spaces’, but with significantly fewer degrees of freedom. As a consequence, optimal approximation
rates were obtained and the curse of dimensionality was partially overcome: the factors depending
on the discretization level in the sparse approximation propert.X1) and the estimated sparse FE

space dimensionl(10 do not depend on the dimensidnanymore. However, the dependence of the
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constantgy 4 s andcy 4 s ond has not been investigated here. Although Thedsehand Proposition
4.5 seem to imply a rather unfavourable (exponentially increasird) inehaviour, recent results (see
Schwabet al, 2007 suggest that the two constants can be bounded uniformt}; @t least in the
computationally relevant range of the discretization ldvel
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