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A B S T R A C T 

An efficient approach is presented to improve the local and global approximation and modelling capability 
of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. 
The main problem is that T-S identification method cannot be applied when the membership functions 
are overlapped by pairs. This restricts the use of the T-S method because this type of membership function 
has been widely used during the last two decades in the stability, controller design and are popular in 
industrial control applications. The approach developed here can be considered as a generalized version 
of T-S method with optimized performance in approximating nonlinear functions. A simple approach 
with few computational effort, based on the well known parameters' weighting method is suggested for 
tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy 
controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness 
of the estimation method developed here in control applications. Illustrative examples of an inverted 
pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of 
the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems 
locally and globally in comparison with the original T-S model. Simulation results indicate the potential, 
simplicity and generality of the algorithm. 

1. Introduction 

Nonlinear control systems based on the T-S fuzzy model [35-37] 
have attracted lots of attention during the last twenty years (e.g., see 
[5,8,13-16,18,20,28,29,31,39,44]. It provides a powerful solution 
for development of function approximation, systematic techniques 
to stability analysis and controller design of fuzzy control systems 
in view of fruitful conventional control theory and techniques. They 
also allow relatively easy application of powerful learning tech-
niques for their identification from data [11 ]. This model is formed 
using a set of fuzzy rules to represent a nonlinear system as a set 
of local affine models which are connected by fuzzy membership 
functions [6]. This fuzzy modelling method presents an alternative 
technique to represent complex nonlinear systems [12,39,46,48] 
and reduces the number of rules in modelling higher order nonlin-
ear systems [13,37]. T-S fuzzy models are proved to be universal 
function approximators as they are able to approximate any smooth 
nonlinear functions to any degree of accuracy in any convex com-

pact region [12,22,28,39,46,48]. This result provides a theoretical 
foundation for applying T-S fuzzy models to represent complex 
nonlinear systems approximately. 

Great attention has been paid to the identification of T-S fuzzy 
models and several results have been obtained [7,22,30,40,47]. 
They are based upon two kinds of approaches, one is to linearize 
the original nonlinear system in various operating points when 
the model of the system is known, and the other is based on the 
input-output data collected from the original nonlinear system 
when its model is unknown. The authors in [7] use a fuzzy cluster-
ing method to identify T-S fuzzy models, including identification 
of the number of fuzzy rules and parameters of fuzzy membership 
functions, and identification of parameters of local linear models 
by using a least squares method [33,43]. The goal is to minimize 
the error between T-S fuzzy models and the corresponding origi-
nal nonlinear systems. In [24], Klawonn et al. explained how fuzzy 
clustering techniques could be applied to design a fuzzy controller 
from the training data. In [17], Hong and Lee have analyzed that 
the disadvantages of most fuzzy systems are that the membership 
functions and fuzzy rules should be predefined to map numerical 
data into linguistic terms and to make fuzzy reasoning work. They 
suggested a method based on the fuzzy clustering technique and 
the decision tables to derive membership functions and fuzzy rules 
from numerical data. However, Hong and Lee's algorithm presented 
in [17] needs to predefine the membership functions of the input 



linguistic variables and it simplifies fuzzy rules by a series of merge 
operations. As the number of variables becomes larger, the decision 
table will grow tremendously and the process of the rule simpli-
fication based on the decision tables becomes more complicated. 
The authors in [22] suggest a method to identify T-S fuzzy models. 
Their method aims at improving the local and global approxima-
tion of T-S model. However, this complicates the approximation 
in order to obtain both targets. It has been shown that constrained 
and regularized identification methods may improve interpretabil-
ity of constituent local models as local linearizations, and locally 
weighted least squares method may explicitly address the trade-off 
between the local and global accuracy of T-S fuzzy models. 

In [33] a new method of interval fuzzy model identification was 
developed. The method combines a fuzzy identification method-
ology with some ideas from linear programming theory. The idea 
is then extended to modelling the optimal lower and upper bound 
functions that define the band which contains all the measurement 
values. This results in lower and upper fuzzy models or a fuzzy 
model with a set of lower and upper parameters. This approach can 
also be used to compress information in the case of large amount 
of data and in the case of robust system identification. The method 
can be efficiently used in the case of the approximation of the non-
linear functions family. The paper focuses on the development of 
an interval L-norm function approximation methodology problem 
using the LP technique and the TS fuzzy logic approach. This results 
in lower and upper fuzzy models or a fuzzy model with lower and 
upper parameters. 

In [29] a constructive method to synthesize a MISO TS fuzzy 
logic system imposing the requested derivative constraints on the 
function representing its behavior is presented. The values of that 
function and its partial derivatives on the grid points of the input 
space permit to define a suitable interpolator of the function itself 

In [23], a new approach to fuzzy modelling using the rele-
vance vector learning mechanism (RVM) based on a kernel-based 
Bayesian estimation is introduced. The main concern is to find 
the best structure of the TS fuzzy model for modelling nonlinear 
dynamic systems with measurement error. The number of rules 
and the parameter values of membership functions can be found 
as optimizing the marginal likelihood of the RVM in the proposed 
FIS. Because the RVM is not necessary to satisfy Mercer's condition, 
selection of kernel function is beyond the limit of the positive defi-
nite continuous symmetric function of SVM. The relaxed condition 
of kernel function can satisfy various types of membership func-
tions in fuzzy model. The RVM which was compared with support 
vector learning mechanism in examples had the small model capac-
ity and described good generalization. Simulated results showed 
the effectiveness of the proposed FIS for modelling of nonlinear 
dynamic systems with noise. 

In [45] a singular value-based method for reducing a given 
fuzzy rule set was discussed. The method conducts singular value 
decomposition of the rule consequents and generates certain lin-
ear combinations of the original membership functions to form new 
ones for the reduced set. The work characterizes membership func-
tions by the conditions of sum normalization (SN), nonnegativeness 
(NN), and normality (NO). Algorithms to preserve the SN and 
NN conditions in the new membership functions were presented. 
Preservation of the NO condition relates to a high-dimensional 
convex hull problem and is not always feasible in which case a 
closed-to-NO solution may be sought. The proposed method is 
applicable regardless of the adopted inference paradigms. With 
product-sum-gravity inference and singleton support fuzzy rule 
base, output errors between the full and reduced fuzzy set are 
bounded by the sum of the discarded singular values. The present 
work discusses three specific applications of fuzzy reduction: fuzzy 
rule base with singleton support, fuzzy rule base with nonsingle-
ton support (which includes the case of missing rules), and the T-S 

model. Numerical examples are presented to illustrate the reduc-
tion process. 

Jang [19] proposed a fuzzy neural network model - the Adap-
tive Neural Fuzzy Inference System or semantically equivalently. 
Adaptive Network-based Fuzzy Inference System (ANFIS). It is one 
of the most popular algorithms to integrate the best features of 
fuzzy systems and neural networks. He reported that the ANFIS 
architecture can be employed to model nonlinear functions, iden-
tify and estimate nonlinear components on-line in a control system, 
and predict a chaotic time series. It is a hybrid neuro-fuzzy tech-
nique that brings learning capabilities of neural networks to fuzzy 
inference systems. The learning algorithm tunes the member-
ship functions of a Sugeno-type Fuzzy Inference System using the 
training input/output data using. Its learning method is based on 
gradient descent and least square estimation [l].The limitation of 
ANFIS is that it cannot be applied to estimate fuzzy systems when 
the membership functions are overlapped by pairs. 

In [37], the authors develop an interesting method to identify 
nonlinear systems using input-output data. They divide the iden-
tification process in three steps; premise variables, membership 
functions and consequent parameters. With respect to membership 
functions, they apply nonlinear programming technique using the 
complex method for the minimization of the performance index. 

In spite of such important works, prior to 1989, most FLS's were 
still designed with preselected structures and the adjustment of 
membership functions (MF's) was carried out by trial and error. 
Since 1989, a number of techniques for structure and/or parameter 
identification from 1/0 data have been suggested in the literature. In 
1989, Sugeno and Tanaka presented a new method for a successive 
identification method for constructing a T-S fuzzy model [33]. In 
this method, structure determination was implemented by a com-
bination of least-squares estimation (LSE), the complex method, 
and an unbiasedness criterion; while parameter adjustment was 
achieved using fuzzy adjustment rules and a weighted recursive 
least-squares algorithm. 

In 1991, Wang and Mendel developed a method for gener-
ating fuzzy rules by learning from examples [43] and proved 
that a fuzzy inference system is a universal approximator by the 
Stone-Weierstrass theorem [41]. 

In 1995, Wang proposed a new state-space analytical approach 
to fuzzy identification of nonlinear dynamical systems [42]. In 1996, 
Langari and Wang proposed achieving structure identification of a 
T-S fuzzy model using a combination of fuzzy c-means clustering 
technique and a fuzzy discretization technique [26]. 

In [32], Nozaki et al. presented a heuristic method for generat-
ing T-S fuzzy rules from numerical data, and then converted the 
consequent parts of T-S fuzzy rules into linguistic representation. 

In [25], a study has outlined a new min-max approach to the 
fuzzy clustering, estimation, and identification with uncertain data. 
The proposed approach minimizes the worst-case effect of data 
uncertainties and modelling errors on estimation performance 
without making any statistical assumption and requiring a priori 
knowledge of uncertainties. Simulation studies have been provided 
to show the better performance of the proposed method in com-
parison to the standard techniques. The developed fuzzy estimation 
theory was applied to a real world application of physical fitness 
classification and modelling. 

In [9] a fuzzy linear control design method is introduced for 
nonlinear systems with optimal H°° robustness performance. First, 
the Takagi and Sugeno fuzzy linear model is used to approxi-
mate a nonlinear system. Then, based on the fuzzy linear model, 
a fuzzy controller is developed to stabilize the nonlinear system, 
and at the same time the effect of external disturbance on con-
trol performance is reduced to a minimum level. Thus, based on 
the fuzzy linear model, H°° performance design can be achieved 
in nonlinear control systems. In the suggested fuzzy linear control 



method, the fuzzy linear model provides rough control to approxi-
mate the nonlinear control system, while the H°° scheme provides 
an accurate control to obtain the optimal robustness performance. 
Linear matrix inequality (LMl) techniques are employed to solve 
this robust fuzzy control problem. In the case that state variables 
are unavailable, a fuzzy observer-based H°° control is also proposed 
to achieve a robust optimization design for nonlinear systems. 

A new fuzzy system containing a dynamic rule base is proposed 
in [10]. The characteristic of the proposed system is in the dynamic 
nature of its rule base which has a fixed number of rules and allows 
the fuzzy sets to dynamically change or move with the inputs. 
The number of the rules in the proposed system can be small, 
and chosen by the designer. The focus of article is mainly on the 
approximation capability of this fuzzy system. The proposed sys-
tem is capable of approximating any continuous function on an 
arbitrarily large compact domain. Moreover, it can even approxi-
mate any uniformly continuous function on infinite domains. This 
paper addresses existence conditions, and as well provides con-
structive sufficient conditions so that the new fuzzy system can 
approximate any continuous function with bounded partial deriva-
tives. 

As we will demonstrate in this article, the T-S model cannot be 
applied when the membership functions are overlapped by pairs. 
This limits the usage of the model because as it was shown in 
the last two decades that the major part of the results obtained 
in the field of stability and controller synthesis are based on this 
type of membership functions. Moreover, the method presented 
here is characterized by the high accuracy obtained in approxi-
mating nonlinear systems locally and globally in comparison with 
the original T-S model. The rest of the paper is organized as fol-
lows. In Section 2, the estimation of fuzzy T-S model's parameters 
is described. Section 3 presents the restrictions of T-S identification 
method. Section 4 demonstrates the proposed approach to improve 
and generalize the T-S model. In Section 5, identification of vecto-
rial functions is presented. The design of a global optimal controller 
based on the proposed estimation method is detailed in Section 6. 
Section 7 entails two nonlinear examples of an inverted pendulum 
and Van der Pol system to demonstrate the validity of the proposed 
approach. The results show that the proposed approach is less con-
servative than those based on (standard) T-S model and illustrate 
the utility of the proposed approach in comparison with T-S model. 
The conclusions of the effectiveness and validity of the proposed 
approach are explained in Section 8. 
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Fig. 1. Membership functions of tlie fuzzy system. 

where 

w('l^^'"'(x) = /Aii-,(Xi)/i2,2(X2). . . /Ani„(Xn) 

being jijiiXj) the membership function that corresponds to the 

fuzzy set Mi. 

Let m be a set of input/output system samples {Xn.,X2k x„i., 

yi(}. The parameters of the fuzzy system can be calculated as a result 
of minimizing a quadratic performance index: 

(3) i - Z (yk-9k?' = ^"^^p 
k=l 

where 

y = lyi yi . . . ym f 
p = vV'vV'v'i--" . . . p < ' - " n(ri-rn) _p(ri-r„) 1 

X = 
.../s';-"x„, . 

/J(l-l)y . /3'n -•'"hnm 

(4) 

and 

Pi il...in) . 
W(ll...ln)(x^) 

If X is a matrix of full rank, the solution is obtained as follows: 

J = \\Y -XP\\^ = (Y -XP)\Y -XP) 

VJ = X^iY-XP)= X^Y - X^XP = 0 

p = {x^xy^x^Y 

(5) 

(6) 

2. Estimation of fuzzy T-S model's parameters 3. Restrictions of T-S identification method 

An interesting method of identification is presented in [37]. The 
idea is based on estimating the nonlinear system parameters mini-
mizing a quadratic performance index. The method is based on the 
identification of functions of the following form: 

f :nm^m 

y = / ( X i , X 2 , . . . , X n ) 

Each IF-THEN rule R'l '", for an nth order system can be written 
as follows: 

S(ii...in) : ifxj isM'ji and ...Xn isMJf then 

y = p(j'i ^̂ '") -I- p(j'i -^"hi + p?̂ 'î '̂"'x2 H h PSI'I^ '̂"'xn 

where the fuzzy estimation of the output is: 

(1) 

y ...y" w(ii-*)(x) 

The method proposed in [37] arises serious problems as it can-
not be applied in the most common case where the membership 
functions are those shown in Fig. 1 

The membership functions m\{x{) = {bi-x{)\{bi-a{) and 
IM2iXi) = iXi-<ii)libi-ai) are defined in an interval [a,-, b,] which 
should verify: 

/i„(a,-) = l tin{bi) = 0 

/i,-2(a,-) = 0 fij2{bi) = '[ 

/An(Xi) + /Ai2(Xi) = l 

For this case which is widely used, it can be easily demonstrated 
[21 ] that the matrix X is not of full rank and therefore X^X is not 
invertible, which makes the mentioned method of T-S invalid. This 
result can be easily proven as follows: 

Supposing that it exists: 

y^_^ • • • Er-i"""'-'"''{x) K'l"""'"' + p?i""*'xi + pp-'"''Xl +... + pgi-'«'x„l / : ^ -IH 

(2) y=/ (x) 



in which each row of the matrix X is of the form: 4. Proposed approach 

Xk = ll^liXk) l^liXk)Xk l^liXk) ll2iXk)Xk 

b - Xk b -Xk Xk-a Xk-a 

b-a 

verifying that: 

-Xk Xk-
~^Xk -j— Xk 

(7) 

b-Xk b-Xk Xk-
T. ^Xk -r-

Xk-
-Xk 

1 

The rank of X in this case is 3. In other words, the columns of 
X are linearly dependent which in turn makes impossible the use 
of the above mentioned identification method proposed in [37]. 
Analyzing another example of two variables: 

/ : 21H^1H 

y = / ( x i , X 2 ) 

Each row of the matrix X is of the form: 

[fM\fl2\ fM\fJa\Mk fM\fJa\^2k fJ'WfJ'll fJ'WfJ'llMk fM\fJa2^2k 

fM2fJa\ fM2fJa\Mk fM2fJa\^2k fM2fJa2 Ml2M22^1fc Ml2M22^2fc] 
(8) 

It can be noticed that the columns 1, 3, 4 and 6 have the same 
form as in the previous example multiplied by a constant jiw and 
therefore they are linearly dependent as well. The same thing hap-
pens with the columns 6, 9,10 and 12, etc. In fact, the rank of the 
matrix in this case is 8. 

The solution proposed in [37] avoids the occurrence of this sit-
uation. In order to identify a function in the interval [a,-, b,] using 
T-S method, certain intermediate points are chosen of the form: 

a? s [a,-, b,] andb? s [a,-, b,] 

and they use membership functions which verify: 

Xi - b? 
a,- < X < b*. 

/ i „ (x )=<^ a , -b .? 

0 b? < X < bi 

0 Oj < X < a*. 

IMiix) = { xi- a* 
a* < X < bi 

(9) 

(10) 

bi - at 

and thus: 

/in(ai) = l tin{b*) = 0 

lii2ia*) = 0 /i,-2(b,-) = l 

which impedes that the domains of these functions being over-
lapped and therefore it can be observed that, except for some 
isolated points, 

and thus, in general, the matrixX will be of full rank and the method 
is applicable. This solution can be clearly seen in [37] where the 
authors find the optimum membership functions minimizing the 
performance index and reducing the problem to a nonlinear pro-
gramming one. For this reason, they use the well-known complex 
method for the minimization. This can obviously be observed in the 
illustrative examples selected by the authors in [37] where all the 
identified memberships are non overlapping ones. 

The restriction of T-S identification method for the case pre-
sented in the previous section does not mean the non-existence of 
solutions rather than an incentive for their search. As it has been 
seen, the problem comes from the fact that the solution should 
fulfil: 

y/=X^Y-X^XP = 0 (11) 

But as it was shown above, the columns of the matrix X are lin-
early dependent and consequently X'̂ X is not an invertible matrix, 
therefore it is impossible to calculate P through: 

P = [X^xy^X^Y (12) 

Nevertheless, as the rows ofX'̂  are linearly dependent, the indepen-
dent term in Eq. (11) X'̂ Ywill have the same dependence among its 
rows and thereupon the rank of the system matrix will be the same 
as the rank of the extended matrix with the independent term. 

rank(X^X) = rank(X^X|X^Y) 

And so the system has solution. In other words, the system is a 
compatible indeterminate one, that is, if P is a solution of (11) and 
K belongs to the kernel ofX'̂ X 

K e KeriX^X) 

thenP* =P+/<'will also be a solution. Therefore, the problem is not 
the lack of a solution rather the existence of infinite solutions and 
the key idea is the ability to find one of them. Several proposals can 
be made to select a solution. In our case, the aim is to find solutions 
with lower norm. 

4.1. Parameters' weighting method 

An effective approach with few computational efforts, based on 
the well known parameters' weighting method, is proposed. The 
main target is to improve the choice of the performance index and 
minimize it. It is characterized by extending the objective function 
by including a weighting y of the norm of P vector. 

J = j:Uyk-yk? + y'J2pf 

\Y-XP\\ -^y^\\P\ 

This can be rewritten as follows: 

(13) 

Y-XP 

Y 

0 

Ya-XaP 

-^y \\P\\ 

X- 2 
P 

|2 

(14) 

Now the extended matrix Xa is of full rank, and the vector P can 
be computed as: 

P = {XiXa)-'XiYa (15) 

Obviously the solution that minimizes this index is not opti-
mum. However, for a small value of)/, it will be close to the optimum 
one and it will be unique as well. 



The weighting of y does not need to have a unique value, rather 
than some values can be weighted more than others to choose the 
most suitable one. 

k=\ j 

| |Y-XP|P + \\rp\\^ 

r r i r x i 
_ p 

|_oJ [i'\ 

(16) 

where F is a diagonal matrix formed by the values y^ which should 
necessarily have a value other than zero to guarantee that the 
extended matrix is invertible. 

4.2. Example 

In the following example, we will compare the proposed method 
with the one proposed by T-S in [37]. A non-linear function will 
be proposed and the fuzzy models will be obtained assigning an 
interval [a,-, b,] for each variable x,-. In this interval, two fuzzy sets 
are defined whose membership functions are: 

However, as demonstrated above, these membership functions 
cannot be used directly in the method of T-S, as the resulting matrix 
X would not be full rank. 

In order to compare these methods, we use a factor 0 < a < 1, 
which determines two points within the interval. This means: 

a- =bi-a{bi-ai) 

b? = a,- + a{bj - a,-) 

And so, we define two fuzzy sets whose membership functions are: 

X,- - bt 

IMlM=< ^-"l • " " ' (17) 

/Ai2(x) -- (18) 

which are those used with the direct method of T-S. As a measure of 
error for comparing these methods, the maximum of the absolute 
values of the errors is used, which is the same method applied by 
T-S in [37]. 

Example 4.1. Consider the following simple nonlinear system: 

It is aimed to estimate this system: 

y-- x e [ 0 , l ] 

Let us suppose that we define in this interval two fuzzy sets with 
their corresponding membership functions as follows: 

/ i j(x) = 1 - X 

/ i2 (x)=X 

The objective is to calculate the corresponding fuzzy model in an 
optimum form: 

Ŝ  : IfxisM} theny: 

S2 : Ifx is M2 theny : 

-•PI + P\X 

•• PI + p\x 
(19) 

In order to identify the nonlinear function, we take 6 points uni-
formly distributed {0, 0.2, 0.4, 0.6, 0.8, 1} in the interval [0, 1]. In 
the original T-S method [37], The X matrix becomes: 

1 0 0 0 
0.8 0.16 0.2 0.04 

0.6 0.24 0.4 0.16 

0.4 0.24 0.6 0.36 

0.2 0.16 0.8 0.64 

0 0 1 1 

Its rank is 3 (the condition number is 8.1154e +015). The X'X prod-
uct has the following value: 

2.2 0.4 0.8 0.4 • 

0.4 0.1664 0.4 0.2336 

X 'X= 0.8 0.4 2.2 1.8 

0.4 0.2336 1.8 1.5664 

whose determinant is 5.5707e - 017. 
Applying the proposed weighting of parameters approach for 

various values of y to examine the trade-off between the accuracy 
of the identification of the model and the condition number, the 
following results are obtained: 

For y = 0.1, the obtained fuzzy rules are: 

Ŝ  : IfxisM} theny =-0.004-0.3167X 

S2 : IfxisM^ theny = 0.3392-h0.6559x 
(20) 

The error between the original system and the identified fuzzy 
model is with an error of 0.0050. 

For y = 0.01, the obtained fuzzy rules are: 

(21) 
Ŝ  : IfxisM} theny = -0.3332x 

S2 : IfxisM^ theny = 0.3334-h0.66666x 

The error between the original system and the identified fuzzy 
model is with an error of 5.141 Oe- 005. 

For y = 0.001, the obtained fuzzy rules are: 

Ŝ  : IfxisM} theny = -0.3333x 

S2 : IfxisM^ theny = 0.3333-h0.6667x 
(22) 

The error between the original system and the identified fuzzy 
model is with an error of 5.1409e - 007. 

As it can be seen that although it is not an optimal solution, 
but it is obviously very close and presents a good estimation. In 
addition to that, it can be clearly noticed that as y is reduced, the 
accuracy of the identified model is tangibly increased though the 
condition number of the matrix Xa is about 3.6608e + 003 which is 
excessively high. In other words, Xa is ill-conditioned and this leads 
to an unreliable results. 

In the method of T-S, let us suppose that a = 0.7. The fuzzy model 
is: 

Ŝ  : IfxisM} theny =-0.0389-h0.5238x 

S2 : IfxisM^ theny =-0.5151-h 01.4762X 
(23) 



The identification error is 0.0201, which is higher than the one 
obtained in the proposed two methods. Increasing a = 0.8, the 
error is reduced to 0.0160, i.e., the identification is improved. With 
a = 0.9, the error becomes 0.0081, where the identification is again 
improved. The same occurs for a = 0.95 where the error is reduced 
to 0.0044. In other words, as the factor a is approaching unity the 
identification is improved, but it cannot reach the optimum which 
precisely occurs when a = 1. Since at this value, the matrixX is not of 
full rank and therefore the matrixXfX is not invertible. Even when 
a is approaching unity, the condition number of the matrixX starts 
increasing which indicates that XfX is approaching the singular-
ity and therefore its inverse is no longer numerically reliable. For 
instance, when a = 0.999, the condition number ofXis 5.2523e + 004 
which shows clearly a non reliable result. 

4.3. Parameters tuning using the parameters' weighting method 

The parameters' weighting method can also be used for param-
eters tuning of T-S model from local parameters obtained through 
the identification of a system in an operating region or from any 
physical input/output data. 

We suppose that in this case we have a first estimation 

Po- [Po Pi Ppl. •P°n\' 

of the T-S model parameters. In order to obtain such an estimation, 
the classical least square method can be used around the equilib-
rium point. The objective is to obtain a global approximation of the 
system. 

y = Po + P°M + P2X2 + •••+ P°Xn 

Let us analyze a set of input/output system samples {Xn.,X2fc 
Xnk<yk}- The parameters of the global approximation can be calcu-
lated by minimizing the following quadratic performance index: 

This first approximation can be utilized as reference parameters 
for all the subsystems. Then, the parameters' vector of the fuzzy 
model can be obtained minimizing: 

J 

m T\ 

i i = i k=\ 

\\Y -Xp 

Y 

ypo 

\Ya-Xap\ 

in = l J = 0 

. p( i l ^ ) ) 2 

+ riiPo-

X 
(27) 

where 

Po = [Po P0...P0] 

In this case, the factor y represents the degree of confidence of 

the parameters initially estimated. In a similar way to the previous 

case, different weight factors of )/('i '") can be used to each one 

of the parameters p j ' i ' " ' depending on the reliability of the initial 

parameter p° in the specific rule. 

m r-i 

k=\ i i = l i n= l J = 0 

n(ii ^ ) l 2 

O 

-xp|| ' + | | r (po-p) | | ' 

r Y 

[^Po. 
-

"X" 

r p 

(28) 

= | |ya-Xap|| 

where F is a diagonal matrix with the weight factor yf'i '"). It is 
not necessary to apply this process for all the parameters. If the 
values of some of them are known, they can be fixed beforehand or 
we can assign them a weighting factor yf'i '"' comparatively high. 

5. Identification of vectorial functions 

iyk-ykT = p-^sM (24) 
In the case of vectorial functions, 

/ : IH" ^ IH™ 

where 

Y = 

Po = 

\y\ yi y3 • 

[pg P? P^ • 

1 x i i X21 

1 X\2 X22 

1 Xln Xjn 

ym\ 

pS!f 

• • Xnl 

(25) 

In this case, if we select a sufficient number of points distributed 
in the region where it is required to obtain the approximation, 
then the matrix Xg will be of a full rank and therefore, the solution 
becomes unique, which can be calculated as follows: 

Po = (XjXg)-^XjY (26) 

y=/ (x i ,X2, . . . ,Xn) yslH™ 

This function is equivalent to m scalar functions 

yj=fj{xi,X2,... ,Xn) yslH, j = l , , , m 

Each one of these functions can be modeled as follows: 

5(iî î„) . ifxj isM'i andx2 isM'2 and .. .Xn isM'" then 

yj = p(h ^̂  in) + pj<l ^ ) x i + p<M ^ ) x 2 + ••• + p<h ^^'n)xn 

Applying the previous method for each one of these models, we get 
in basic case: 

(29) 

^ . - [ 
Pi = 

X = 

yji yj2 

„ ( i - i ) „ ( i - i ) 

yjN 

n ( r i - -m) r ) ( r i - m ) )(ri--m) 1 
J" J '-,0 '-'n '-in '̂ JO ''n 

/ ! j ; - " / ! j ; - " x „ . . . / ! ] ; - " x „ , . . . /!(;i --«> /!(;i --«)x„ . . . /!(ji --«)x„, 

and the formulation for parameters tuning becomes 

(30) 

l^iPjO. 
- Pj (31) 



It is quite usual in the modelling of T-S model, that the fuzzy sets 
of the premise part of all the subsystems are the same, fulfilling in 
this case that: 

Xi =X2 = Xm = X 

In addition to that, if the weight factors yf'i '"' of the matrix F are 

the same for all the subsystems, they can be all grouped as follows: 

J = 
Vl Y2 Ym 

T p i o rp20 rpmO. 
-

X 

r 

= Ya-XaPp 

and the solution is still: 

P = (X^^ a) X(j Ya 

[P\ P2 Pm] 
(32) 

(33) 

6. Design of an optimal controller 

In order to show the effectiveness of the proposed estimation 
methods, a design of an optimal controller is carried out for a 
dynamic system whose discrete model is following: 

x{k + \)=f{x{k),u{k)) xenm uemm 

Applying the proposed estimation method mentioned above to a 
set of points, the T-S model can be adjusted as follows: 

S(ii--*) : lfx,(;<)isM'i andX2(/<)isM^2and... andx„(/<)isM*> 

thenx(/< + 1) = a'n-in) +A'n-''^'ix(k) + B('i-'n'u(/<) 
(34) 

a '̂i ^ '̂"' s nm A '̂i ^ '̂"' enxnm ' ( i l^^^in) mlH 

where M51 (I'l =1,2 ri) are fuzzy sets for Xi(/c),M^2 (12 = 1,2 
r2) are fuzzy sets for X2(fe) and MJf (in = 1, 2 Tn) are fuzzy sets 
forXn(fe). The fuzzy system is described as: 

V" ' . . . V ' ° w('i-*'(x(;<)) [a(;i-*'+/i('i-'«'x(;<)l 

J2'^_j • • • J27-,^^'^ -'«'(x(;<)) |B('i -'«)u(;<)] 

which is equivalent to the system: 

x{k + 1) = ao{x{k)) +A{x{kMk) + B{x{k))u{k) 

(35) 

(36) 

a time interval, minimizing a quadratic performance index of the 
form: 

k i - i 

J = ^x\k + 1 )Q_xik + 1) + u\k)Ruik) (38) 
k=ko 

Q. is a non-negative definite matrix which is called weighting 
matrix. On the other hand, R is a positive definite weighting matrix. 
Optimal selection of these matrices determines the dynamic speed 
of the controller as well as amplitudes of state variables and control 
signals. For example if R is selected small while Q. is selected large, 
more stability will be attained with large control efforts. 

The solution is well known [2-4,27,49] when the system is a 
linear one. However, it is not easy enough for the nonlinear system 
obtained before (see Eq. (36). In order to solve this problem, it is 
proposed to minimize the cost of each step instead of the global 
cost. The solution will be a suboptimal one but with a great advan-
tage due to its easy calculation. It is suggested in each step to apply 
the control action that minimizes: 

Jfc = x'{k + 1 )Qx{k +-[) + u'{k)Ru{k) (39) 

Substituting (36) in (39), we obtain: 

Jk = lao{x{k))+A{x{k))x{k) + B{x{k))u{k)]' 

X a[ao(x(/<)) + A{x{k))x{k) + B{x{k))u{k)] + u'{k)Ru{k) (40) 

Applying the gradient and equating to zero to minimize the perfor-
mance index: 

V„(k)/k = 2[aoixik))+Aixik))xik) + Bixik)Mk)]' 

X QBixik)) + 2u^ik)R = 0 

Thus, 

Ru{k) + B'{x{k))(llao{x{k)) +A{x{k))x{k) + B{x{k))u{k)] = B'{x{k)) 

xQ_[aoixik))+Aixik))xik)] + [R + B\xik))mxik))Mk) (41) 

The optimal control law is then computed as follows: 

u{k) = -[R + B'{x{k))QB{x{k))]-'B'{x{k)mao{x{k)) + A{x{k))x{k)] 

where the matrices are determined by the fuzzy system as follows: 7. Illustrative example 

S(ii--in) : Ifxi(/<)isMji andX2(/<)isM5!and... andx„(/<)isMj,n 

then ao = agi --'»' and/I = ACi --'»' and B = Bd --'»' 
(37) 

In order to calculate the rest of control coefficients, any control 
design methodology through state feedback control can be applied. 
However, these methodologies can lead to systems where the 
control action exceeds the allowed environment limits. Selecting 
closed loop poles with great negative real parts make the dynamic 
response of the system to be quick while the control effort to be 
greater than permissible levels. If selection of the closed loop poles 
saturate of control signals, dynamic behavior of the system will 
not be as same as the desired behavior even it may become unsta-
ble. Therefore optimal selection of closed loop poles will lead to a 
trade-off between speed of dynamic response and control effort. 
Together with the proposed estimation method, the well known 
Linear Quadratic Regulator (LQR) method might be an appropri-
ate choice. With this method we might not guarantee of stability, 
which needs to be analyzed a posteriori, gaining in return a balance 
between static and dynamic behavior of the system with admissible 
control actions. 

The objective is to find the control action u(/c) to transfer the 
system from any initial state x(/co) to some final state x(/ci) = 0 in 

In this section the proposed estimation method and its applica-
tion to design a FC-LQR is illustrated by two examples of an inverted 
pendulum and Van der Pol oscillator respectively. 

Example 7.1. Inverted pendulum: 

Consider the problem of stabilizing and balancing of swing up 
of an inverted pendulum (see Fig. 2). The control of this system is 
a widely used performance measure of a controller, since this sys-
tem is unstable and highly nonlinear. The objective is to maintain 
the inverted pendulum upright with 9 despite small disturbances 
due to wind or system noises. The inverted pendulum can be rep-
resented as follows: 

e--
^ s i n 0 - c o s 6{{u + ml6'^ sin 6)/{M + m)) 

1(4/3-(mcos^e/M + m) 
(42) 

where 9 denotes the angular position (in radians) deviated from 
the equilibrium position (vertical axis) of the pendulum and 9 is 
the angular velocity, g(gravityacceleration) = 9.8 m/s^, M (mass) of 
the cart = l kg, m (mass) of the pole = 0.1 kg, / is the distance from 
the center of the mass (m) of the pole to the cart = 0.5 m. 



Centre of grcMty 

Fig. 2. Inverted pendulum system. 

•71/4 0 "^M X 

Fig. 3. Membership functions fortlie angle x of the inverted pendulum. 

Assuming that Xj =0 and X2 = 9, then (42) can be rewritten in 
state space form as follows: 

xi =9 

X2 

.9 (43) 

sin(xi) - cos(xi )((u + mlxj sin(xi ))/(M + m)) 

/(4/3 - (m cos2(xi )/(M + m)) 

The aim is to move the pendulum to its instable equilibrium 
position, i.e., Xj =X2 = 0. In order to control the system, a discrete 
controller is proposed with a sampling time of 0.1 s and a sample-
hold device is used for the control action. It is suggested to model 
the equivalent discrete system as: 

x{k + 1) = ao(x(/<)) +A{x{k))x{k) + B{x{k))u{k) 

X s 21H us lH ao s 21H A s 2 x 21H B s 21H 

(44) 

Using the proposed methodology, supposing the universe of dis-
course of the angle is {-njA, TCJA\ rad. and the one of the angular 
velocities is [-5, 5]rad/seg. Both membership functions for the 
angle x and its derivative x' are shown in Figs. 3 and 4 respectively. 

-5 " 5 X 

Fig. 4. Membership functions for the angular velocity of the inverted pendulum. 

If we apply the T-S method directly to this example, then the 
condition number of the matrix X is 3.4148e + 015, which shows 
clearly a non reliable result. 

By using the identification with the classical least square method 
in an interval close to the equilibrium point 

Xi S 
- T T TT 

l o " ' 4 0 
X2 s [-0.5, 0.5] 

The resultant linear model of the system in this interval is: 

X{k + \): 
1 . 0 7 9 0 0 . 1 0 2 6 

1 . 6 1 5 4 1 . 0 7 8 8 
x{k) + 

- 0 . 0 0 7 3 

- 0 . 1 4 9 9 
u{k) 

This approximation gives us an idea of the quantitative relation 
among various variables. By applying the tuning of parameters 
method, taking as a reference the parameters obtained through 
least square method with a weighting factor )/ = 0.001 *np, where 
np is the number of samples used in the identification, we obtain: 

lf(xi isMj)and(X2 is M') then 
"1.0696 0.1010 

x(;< + i) = 
0.0037 

0.0865 1.3784 1.0388 

lf(xi isMj)and(X2 is M^) then 

x(;< + i) = 
0.0029 

0.0610 

1.0724 0.1022 

1.4757 1.0665 

lf(xi isMj)and(X2 is M^) then 

x(;< + i) = 
0.0034 

0.0795 

1.0786 0.1035 

1.6547 1.0958 

S21 : lf(x, isM2)and(X2isMi)then 

x(;< + i) = 
0.0001 

0.0021 

1.0831 0.1023 

1.6833 1.0687 

x(k) + 

x(k) + 

x(k) + 

m + 

-0.0041 

-0.0707 

-0.0053 

-0.1074 

-0.0062 

-0.1361 

-0.0075 

-0.1499 

uQi) 

u(k) 

u(,k) 

u(,k) 

lf(xi isM2)and(X2 is M^) then 

x(;< + i) = 
-0 .0000 

-0 .0000 

1.0875 0.1028 

1.7990 1.0861 
x(k) + 

-0.0078 

-0.1599 

S23 : If (x, is M2) and (X2 is M^) then 

x(;< + i) = 
-0 .0000 

-0.0006 

1.0831 0.1022" 

1.6833 1.0683 

S î : lf(x, isM3)and(X2isMi)then 

x(;< + i) = 
-0.0035 

-0.0802 

1.0786 0.1034" 

1.6536 1.0954 

S32 : If (x, is M^) and (X2 is M2 ) then 

x(;< + i) = 
-0.0029 

-0.0612 

1.0724 0.1022 

1.4756 1.0663 

x(k) + 
• -0.0075 

-0.1494 

x(k) + 
" -0.0062 

-0.1362 

x(k) + 
• -0.0053 

-0.1066 

5̂ 3 : If (x, is M^) and (X2 is M^) then 

x(;< + i) = 
-0.0037 

-0.0873 

1.0696 0.1010 

1.3774 1.0392 
x(k) + 

-0.0042 

-0.0714 

u(k) 

u(k) 

u(,k) 

u(,k) 

u(k) 

which has a mean square error of 7.9608e - 006. It has been taken 
into account that the system has an instable equilibrium point in 
[0 0], therefore, it should fulfill that 

. (2 .2) . 

To achieve this target, we can either fix the value of this parameter 
or assign it a very large weighting factor as explained in Section 
(4.3). In this case, a weighting factor of lOOy has been assigned to 
this parameter. 

For the control system, it is required to minimize the following 
performance index: 

Jfc=X^(/< + l ) 
1 0 0 0 

0 1 
xik + 'i) + u\k)[Om]uik) 

Fig. 5 shows the controlled system behavior subjected initial con-
ditions [15°0]'̂  and [-10°0]'^. Fig. 6 shows the controlled system 
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Fig. 5. Transient response of the inverted pendulum controlled by the fuzzy LQR. 

15, 

4 5 6 
Time (seconds) 

Fig. 6. Transient response of the inverted pendulum controlled by the fuzzy LQR 
subjected to disturbances. 

-10 0 10 

Angle(deg.) 

Fig. 7. Trajectories of the system for several initial conditions. 

Fig. 8. Membership functions for X. 

behavior subjected to disturbances. Fig. 7 shows several trajectories 
of the system for several initial conditions. 

Example 7.2. Van der Pol Oscillator: 

The second order nonlinear differential equation: 

y + ( y ^ - i ) y + y = " 

X2=y 

X = F(x, u) 
is the famous Van der Pol equation [34]. It is well known that for 
u = 0, the equation has a unique singular point (0, 0) which is an 
unstable focus. Moreover, when u = 0, the system displays a sus-
tained oscillation independent of initial conditions known as limit 
cycle of amplitude A = 2 and natural frequency (o=\. 

The objective is to apply the methodology used in the previous 
example to guide the system to its equilibrium point. Using the 
proposed methodology with a universe of discourse of x is [- 3, 3] 
and the one of its derivatives is [-5, 5]. Three membership func-
tions overlapped by pairs are assigned forx and its derivative as in 
the previous example. Both membership functions for the x and its 
derivative x are shown in Figs. 8 and 9 respectively. 

If we apply the T-S method directly to this example, then the 
condition number of the matrix X is 1.8716e + 016, which shows 
clearly a non reliable result 

By using the identification with the classical least square method 
in an interval close to the equilibrium point, the resultant linear 
model of the system in this interval is: 

X{k + \): 
0.9949 

-1.1055 
0.1048 
1.0966 

x{k) + 
0.0051 
0.1046 

u{k) 

Fig. 9. Membership functions forx. 



Fig. 10. Transient response of tlie Van der Pol system controlled by the fuzzy LQR. 

Time (seconds) 

Fig. 11. Transient response of the Van der Pol system controlled by the fuzzy LQR 
subjected to various disturbances. 
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By applying the tuning of parameters method, taking as a refer-
ence the parameters obtained through least square method with a 
weighting factor )/ = 0.3, we obtain: 

If (x, is M\) and (xj is M') then 

x(;< + i) = 
0.0028 

0.0809 

0.9509 0.0933 

-0.7242 0.7771 
x(k) + 

0.0036 

0.0582 
u(k) 

lf(xi isMj)and(X2 is M^) then 

x(;< + i ) = 
-0.0004 

-0.0123 

0.9957 0.0965 

-0.0847 0.8581 
x(k) + 

0.0041 

0.0744 
u(,k) 

S " : lf(x, isMj)and(X2 is M^) then 

x(;< + i) = 
-0.0021 

-0.0602 

1.0442 0.0998 

0.6911 0.9489 
x(k) + 

0.0043 

0.0834 
u(,k) 

S" : lf(x, isM2)and(X2isMi)then 

x(;< + l) = 
-0.0003 

-0.0078 

0.9904 0.1056 

-0.2668 1.1140 
x(k) + 

0.0054 

0.1116 
u(k) 

S22 : If (x, is M2) and (X2 is M2) then 

x(;< + i) = 
0.0000 

0.0000 

0.9952 0.1059 

-0.0898 1.1291 

lf(xi isM2)and(X2 is M^) then 

x(;< + i) = 
0.0002 

0.0054 

0.9903 0.1055 

-0.2680 1.1130 

x(k) + 

x(k) + 

0.0053 

0.1093 

0.0055 

0.1139 

u(k) 

u(,k) 

S î : lf(x, isM3)and(X2isMi)then 

x(;< + i) = 
0.0030 

0.0828 

1.0438 0.0997 

0.6801 0.9476 
x(k) + 

0.0042 

0.0800 
u(,k) 

5̂ 2 : lf(x, isM3)and(X2 isM^jthen 

x(;< + i) = 
0.0002 

0.0078 

0.9957 0.0965 

-0.0821 0.8594 
x(k) + 

0.0041 

0.0746 
u(k) 

S33 : lf(x, isM3)and(X2 isM^jthen 

x(;< + l) = 
-0.0020 

-0.0583 

0.9505 0.0933 

-0.7340 0.7773 
x(k) + 

0.0035 

0.0566 
u(k) 

which has a mean square error of 4.3502e - 004. 
For the control system, it is required to minimize the following 

performance index: 

Jfc =/(/< + !) 
20 0 
0 1 

x(/<+l) + u^(/<)[0.01]u(/<) 

Fig. 10 shows transient response of the Van der Pol system con-
trolled by the fuzzy LQR subjected to initial conditions [3 0]̂ ^ 
and [-2 0]'̂ . Fig. 11 shows the transient response of the system 

- 3 - 2 - 1 0 1 2 3 
y 

Fig. 12. Trajectories of the Van der Pol system for several initial conditions. 

subjected to various disturbances. Fig. 12 shows several trajectories 
in state space form of the system for several initial conditions. 

8. Conclusions 

A new efficient approach has been presented to improve the 
local and global approximation of Takagi-Sugeno (T-S) fuzzy 
model. The main problem of T-S identification method is that it 
cannot be applied when the membership functions are overlapped 
by pairs. This restricts the use of the T-S method because this 
type of membership function has been widely used during the last 
two decades in the stability, controller design and are popular in 
industrial control applications. The approach developed here can 
be considered as a generalized version of T-S method with opti-
mized performance in approximating nonlinear functions. An easy 
approach, based on the known parameters' weighting method has 
been applied for tuning T-S parameters to improve the choice of 
the performance index and minimize it. 

A global fuzzy controller (FC) based Linear Quadratic Regulator 
(LQR) has been proposed in order to show the effectiveness of the 
estimation method developed here in control applications. 



Illustrative examples of an inverted pendulum and Van del Pol 
system have been chosen to evaluate the robustness and remark-
able performance of the proposed method and the high accuracy 
obtained in approximating nonlinear and unstable systems locally 
and globally in comparison with the original T-S model. Simulation 
results have shown the potential, simplicity and generality of the 
algorithm. As future objectives, it is aimed to extend the proposed 
estimation method for multivariable nonlinear systems. The sec-
ond target is to examine other control methodologies and compare 
them with the proposed LQR. It will also be an interesting issue to 
examine the validity of the proposed control method for tracking 
control problems for several typical reference inputs such as step, 
ramp, etc. 
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