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1. INTRODUCTION. If two polygons have the same area, it is always possible to
decompose one of them into a finite number of polygons that can be rearranged to form
the second polygon. This is the well-known Bolyai-Gerwien theorem [3, pp. 49–56].
One might ask whether this is true in space for polyhedra. In fact, F. Bolyai and Gauss
had already asked this around 1844. Hilbert raised this question again: it was the third
of his celebrated list of twenty-three problems in 1900 [11]. The negative answer was
given by Max Dehn in 1902 [6].

Let F, F1, . . . , Fk be polyhedra. By writing F = F1 + · · · + Fk we mean that the
interiors of the polyhedra F1, . . . , Fk are pairwise disjoint and F = F1 ∪ · · · ∪ Fk .
Polyhedra F and G are equidecomposable if the polyhedron F can be suitably decom-
posed into a finite number of pieces that can be reassembled to give the polyhedron G.
To be precise, there exist polyhedra F1, . . . , Fk and G1, . . . , Gk such that Fi and Gi

are congruent and

F = F1 + · · · + Fk, G = G1 + · · · + Gk .

Dehn showed that a regular tetrahedron is not equidecomposable with a cube of the
same volume. This “bad news” also means that even though we can define the area
of polygons using elementary methods and no calculus, the limit process cannot be
avoided when defining the volume of polyhedra.

In a way, Dehn’s work has led several lives. Dehn’s own exposition was hard to
understand. In 1903 Kagan published a paper in which Dehn’s argument was consid-
erably refined and presented in a more readable fashion. In the 1950s a number of
interesting results in the theory of equidecomposability were obtained by the Swiss
geometer Hadwiger and his students. Their work allows one to take a new look at the
work of Dehn and to obtain Dehn’s basic result by using transparent ideas in a modern
treatment. The only shortcoming in this treatment is the application of the axiom of
choice through the use of a Hamel basis. Finally, a reworked version of Hadwiger’s
proof was given by Boltianskii in [3], in which consideration of the whole real line is
replaced with finitely generated subspaces of R (over the rationals). This allows one
to avoid the use of the axiom of choice.

There are many open problems still to be solved concerning the generalized third
problem of Hilbert. Sydler’s result (Theorem 4), to cite just one example, is unknown
for the n-dimensional Euclidean space En (n ≥ 5), for the sphere Sn (n ≥ 3), and for
the hyperbolic space Hn (n ≥ 3).

There is a natural idea that seemingly settles Hilbert’s third problem immedi-
ately. This makes the history of the problem even more interesting. Using this idea
in 1896(!) R. Bricard published a paper [2] in which he claimed to have proved the
non-equidecomposability of the regular tetrahedron and the cube. Bricard formulated
the following theorem:

Theorem 1. If polyhedra A(1) and A(2) with dihedral angles α1, . . . , αs and β1,

. . . , βr , respectively, are equidecomposable, then there exist positive integers mi
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(i = 1, . . . , s) and n j ( j = 1, . . . , r) such that

m1α1 + · · · + msαs = n1β1 + · · · + nrβr + pπ, (1)

where p is an integer.

We call this assertion Bricard’s condition. Now assume by contradiction that the
regular tetrahedron with dihedral angles α is equidecomposable with the cube. Then
positive integers m and n exist such that mα = n(π/2). But this contradicts the fact
that α/π is irrational (see Lemma 2). Therefore Bricard’s condition immediately re-
solves Hilbert’s third problem.

Unfortunately there was a gap in Bricard’s proof of Theorem 1. Nevertheless, it
turned out to be a true statement. Although in 1902 Dehn succeeded in proving The-
orem 1, the proof takes a roundabout approach by way of Dehn’s own solution to
Hilbert’s third problem. For this reason we cannot use Bricard’s condition to solve
Hilbert’s problem. Or can we?

Surprisingly, no direct proof of Bricard’s condition exists. The simplest published
proof we have found (see [3, pp. 121–124]) is three pages long and uses the Dehn-
Hadwiger theorem (Theorem 3). That is, Bricard’s condition is proved as a conse-
quence of the solution of Hilbert’s third problem. In this article we give a short direct
proof of Bricard’s condition that was overlooked for a century. Therefore it provides a
new solution to Hilbert’s problem. Our proof is completely elementary. Since it uses
no linear algebra, it could even be presented in a high-school math club.

The Dehn-Hadwiger theorem settles Hilbert’s third problem. We mentioned earlier
that it can be used to establish Bricard’s condition, too. On the other hand, Bricard’s
condition settles Hilbert’s third problem, but it does not imply the Dehn-Hadwiger the-
orem. We introduce a new condition, which we call the “modified Bricard’s condition,”
that addresses this issue: the Dehn-Hadwiger theorem follows from it in one line.

It would be natural to prove Bricard’s condition first and then simply conclude the
negative answer to Hilbert’s third problem. Instead, we start this discussion by solving
Hilbert’s problem first. We do so because we want to show that Hilbert’s third problem
has a complete, two-page solution. The actual proof takes only one page; on the other
page we provide the proofs of two well-known lemmas.

In section 4 we also describe Dehn’s method. The interested reader can find the
details, for example, in Proofs from THE BOOK [1] or in [3].

Notation. The symbol Z signifies the set of all integers, N the set of positive integers.
If L is the union of finitely many line segments, l(L) denotes the total length of L.

2. A NEW SOLUTION TO HILBERT’S THIRD PROBLEM. Our proof is based
on an idea that we call the method of “integer measures”: Given positive real weights
a1, . . . , aN we can always replace them with positive integer weights A1, . . . , AN in
such a way that equalities between the weights are preserved, in the following sense:
if I1 and I2 are subsets of {1, . . . , N } such that∑

i∈I1

ai =
∑
j∈I2

a j , (2)

then ∑
i∈I1

Ai =
∑
j∈I2

A j . (3)
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(In fact, positive integer weights also exist such that (3) holds if and only if (2) holds.)
The foregoing statement is a consequence of Lemma 1. Since Lemma 1 is proved by
the pigeonhole principle, in some sense our solution to Hilbert’s third problem is based
on the pigeonhole principle.

Theorem 2. A regular tetrahedron is not equidecomposable with a cube of the same
volume.

Proof. We argue by contradiction. Assume that the regular tetrahedron T and the cube
C are equidecomposable:

T = P (1)

1 + · · · + P (1)

k (4)

C = P (2)

1 + · · · + P (2)

k , (5)

where P (1)

i and P (2)

i are congruent polyhedra for each i .
In the decompositions (4) and (5) consider all vertices and all possible intersections

of the edges of the P ( j )
i polyhedra. This set of points divides the edges into one or

more open line segments that we call links. Let L1, . . . , L N be all the links (coming
from both (4) and (5)), and let l(Li ) denote the length of Li . By Lemma 1 we can find
positive integers q, p1, . . . , pN such that

∣∣∣l(Li ) − pi

q

∣∣∣ <
1

2Nq
(i = 1, . . . , N ). (6)

We call m(Li ) := pi the “integer measure” of the link Li .
Consider now

�1 :=
∑ ∑

m(Li )α j , (7)

where the summation extends over all links Li in the decomposition (4) and all dihedral
angles adjoining the link Li . Notice that when we add the dihedral angles adjoining a
link Li we usually get 2π (see Figure 1(a)). However, we get π when Li lies in the
interior of a face of a polyhedron P (1)

j (see Figure 1(b)) or in the interior of a face of
T . Finally, when Li lies on an edge of T , we get the dihedral angle α = arccos(1/3)

of T .

(a) (b)

Figure 1.
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Therefore,

�1 = m1α + p1π

with m1 in N and p1 in N ∪ {0}. In exactly the same way we define �2 for the decom-
position (5) and conclude that

�2 = m2
π

2
+ p2π,

where m2 belongs to N and p2 to N ∪ {0}.
Let e be any edge of a polyhedron P (1)

i in (4), and let α j be the dihedral angle of
P (1)

i that adjoins e. In �1 the coefficient of this α j angle is simply
∑

m(Lu), where we
sum over all links forming e. Let e′ denote the edge of P (2)

i that corresponds to e, and
let α′

j be the dihedral angle adjoining e′ (so α j = α′
j ). In �2 the coefficient of this α′

j

angle is
∑

m(Lv), where we sum over all links forming e′. Using
∑

l(Lu) = l(e) =
l(e′) = ∑

l(Lv) and (6), we find that

∣∣∣∑ m(Lv) −
∑

m(Lu)

∣∣∣ = q
∣∣∣∑(m(Lv)

q
− l(Lv)

)
−

∑(m(Lu)

q
− l(Lu)

)∣∣∣
< 2Nq

1

2Nq
= 1, (8)

which implies that
∑

m(Lu) = ∑
m(Lv). In other words, the coefficients of the corre-

sponding dihedral angles in �1 and �2 are equal. Hence �1 = �2, and α/π is rational.
This contradicts the fact that α/π is irrational (see Lemma 2).

For the sake of completeness we also give a proof of the following two lemmas,
which are well-known results.

Lemma 1. Let a1, . . . , an be real numbers. For each ε > 0 it is possible to approxi-
mate a1, . . . , an simultaneously by rational numbers p1/q, . . . , pn/q, in the sense that

∣∣∣∣ai − pi

q

∣∣∣∣ <
ε

q
(i = 1, . . . , n). (9)

In addition, if all ai are positive, then the pi can be chosen to be positive.

Proof. Let M be a positive integer satisfying 1/M < ε. Consider the following
Mn + 1 points of the unit cube C := [0, 1]n in Rn:

Ql := ({la1}, {la2}, . . . , {lan}) (l = 0, 1, . . . , Mn),

where {x} denotes the fractional part of x . We can decompose C into Mn congruent
small cubes whose edges have length 1/M . Since there are Mn + 1 points Ql in C ,
there must be a small cube that contains at least two of these points, say, Qu and Qv

(u �= v). But then for i = 1, . . . , n we have

|{uai } − {vai }| ≤ 1

M
.
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Thus

|(u − v)ai − pi | ≤ 1

M
(i = 1, . . . , n)

for integers pi . Letting q := |u − v| the statement follows.
If all ai are positive, then we find the rational numbers satisfying (9), where ε is

replaced with min(ε, a1, . . . , an). Clearly now all pi must be positive.

Lemma 2. If cos α = 1/3, then α/π is irrational.

Proof. Let n be a positive integer. Using the identity

cos(n + 1)ω = 2 cos ω cos nω − cos(n − 1)ω,

we can see by induction that cos nω is a polynomial of cos ω, i.e., with some polyno-
mial Tn we have cos(nω) = Tn(cos ω). We note that Tn(x) is of degree n, it has integer
coefficients, and its leading coefficient is 2n−1.

Seeking a contradiction, we suppose that α = pπ/q for integers p and q (q ≥ 1).
From the definition of Tn(x) we observe that

Tq

(
1

3

)
= Tq

(
cos

(
p

q
π

))
= cos (pπ) = ±1,

so 1/3 is a root of a polynomial with integer coefficients. For this to be the case 3 has
to divide the leading coefficient 2n−1, which is a contradiction.

Remarks. It was important in the proof of Theorem 2 that the pi in (6) be positive
integers. (Otherwise we do not get a contradiction.) Lemma 1 ensures that pi can be
chosen positive. Alternatively, instead of (6) we could require that

∣∣∣l(Li ) − pi

q

∣∣∣ <
min(1, l(L1), . . . , l(L N ))

2Nq
(i = 1, . . . , N ).

This would force pi to be positive.
The double sum in (7) can be interpreted geometrically as choosing m(Li ) points,

“basic points,” on the link Li in (4) and adding the dihedral angles at these basic points.
We can choose basic points on the links of the decomposition (5), as well. However it
may not be possible to select basic points in the two decompositions in such a way that
they correspond to each other under the isometries that take the polyhedra P (1)

j to the

polyhedra P (2)

j . On the other hand, we can choose them in such a way that the number

of basic points is the same on the corresponding edges of P (1)

j and P (2)

j .

3. PROOF OF BRICARD’S CONDITION. Assume that the polyhedra A(1) and
A(2) are equidecomposable:

A(1) = P (1)

1 + · · · + P (1)

k , (10)

A(2) = P (2)

1 + · · · + P (2)

k , (11)

where P (1)

i and P (2)

i are congruent polyhedra for each i . Bricard published the follow-
ing false proof of Theorem 1.
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Consider all links in the decompositions (10) and (11). Let e be an edge of a poly-
hedron P (1)

j in (10), and let e′ to be the corresponding edge in (11). Note that the links

forming e and e′ may not correspond to each other under an isometry that takes P (1)

j

to P (2)
j . (In fact, the number of links forming e and e′ may be different.)

Assume that by breaking the links up into smaller links we are able to achieve
an invariant decomposition into links, that is, the links forming an edge e and the
corresponding edge e′ corresponds to each other. Let �1 denote the sum of dihedral
angles at all links in the decomposition of A(1). (If an edge e is decomposed into g
links, then the dihedral angle α that adjoins e will appear g times in the sum �1.) We
define �2 for the links in (11) in a similar manner.

When adding the dihedral angles adjoining a link, we get 2π , π , αi , αi − π , β j , or
β j − π depending on where the link is. (For more details, see the correct proof that we
will give shortly.) This observation leads to:

�1 = m1α1 + · · · + msαs + p1π,

�2 = n1β1 + · · · + nrβr + p2π,

with the mi and n j in N and integers p1 and p2. The fact that the links correspond to
each other implies that the two sums are equal: �1 = �2.

Thus the foregoing argument contains a proof of formula (1) provided that there
exists an invariant decomposition into links. Bricard assumed that such decomposition
always exists, but this is false. (For a counterexample, see [3, p. 120].) Boltianskii
concludes [3, p. 121]: “Thus the proof proposed by Bricard contains a gap that cannot
be filled.”

We give the following simple direct proof of Bricard’s condition:

Proof. Let L1, . . . , L N list all links in the decompositions (10) and (11). By Lemma 1
we can find positive integers q, p1, . . . , pN such that

∣∣∣l(Li ) − pi

q

∣∣∣ <
1

2Nq
(i = 1, . . . , N ).

Let

�1 :=
∑ ∑

m(Li )α j ,

where the summation extends over all links Li in the decomposition (10) and all dihe-
dral angles adjoining the link Li . (Recall that m(Li ) := pi signifies the integer measure
of Li .)

Let si denote the sum of the dihedral angles adjoining a link Li . Define ki to be 1
when Li lies in the interior of a face of a polyhedron P (1)

j or A(1), otherwise define ki

to be 0. Notice that if Li lies on an edge of A(1), then si is of the form si = αl − kiπ ,
otherwise si = 2π − kiπ . Therefore, there exist positive integers m1, . . . , ms and an
integer p1 such that

�1 = m1α1 + · · · + msαs + p1π.

If we define �2 in a similar manner for the decomposition (11), then we arrive by the
same argument at:

�2 = n1β1 + · · · + nrβr + p2π,
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with n1, . . . , nr in N and p2 in Z. Exactly as in our solution of Hilbert’s third problem
we see now that �1 = �2, whence Bricard’s condition follows.

4. DEHN’S METHOD. After simplifications, Dehn’s method of attacking Hilbert’s
third problem can be sketched as follows. If M = {x1, . . . , xn} is a finite set of real
numbers, we use V (M) in the ensuing discussion to signify the vector space that is
generated by M over the rational numbers Q:

V (M) =
{ n∑

i=1

qi xi : qi ∈ Q

}
.

Linear functionals on V (M) are also called additive functions. In fact, a function f :
V (M) → R is additive if and only if f (x + y) = f (x) + f (y) for all x and y in
V (M). (This property implies that f (wx) = w f (x) whenever x is in V (M) and w is
rational.)

Now let A be a polyhedron, let α1, α2, . . . , αs be the dihedral angles of A, and let
l1, l2, . . . , ls be the lengths of the corresponding edges of A. If f : V ({α1, . . . , αs, π})
→ R is an additive function satisfying f (π) = 0, we denote the sum

l1 f (α1) + l2 f (α2) + · · · + ls f (αs)

by f (A) and call it the Dehn invariant at f of the polyhedron A. (We remark that
from an algebraic point of view the Dehn invariant can be defined by tensor products:∑

li ⊗Q αi in R ⊗Q (R/(πQ)).)
The following theorem is called the Dehn-Hadwiger theorem:

Theorem 3 (Dehn-Hadwiger). Let A(1) and A(2) be polyhedra, and let M be the set
containing the number π and all dihedral angles of A(1) and A(2). If f : V (M) → R

is an additive function such that f (π) = 0 and f (A(1)) �= f (A(2)), then A(1) and A(2)

are not equidecomposable.

The proof of this theorem is based on the ingenious idea that the Dehn invariants are
preserved under decompositions of polyhedra. More precisely, the following property
of Dehn invariants holds: Let P = P1 + · · · + Pk be a decomposition of a polyhedron
P into polyhedra P1, . . . , Pk . If M ′ is a (finite) set that contains all dihedral angles of
P, P1, . . . , Pk together with the number π and f : V (M ′) → R is an additive function
satisfying f (π) = 0, then

f (P) = f (P1) + · · · + f (Pk). (12)

Assume that A(1) and A(2) are equidecomposable and that (10) and (11) hold. Let f :
V (M) → R be an additive function satisfying f (π) = 0. We emphasize that in Theo-
rem 3 the domain of f is V (M). However, in its proof we must use an additive function
that is defined on a larger vector space V (M ′). Namely, let M ′ be the set containing the
number π and all the dihedral angles of P (1)

i and P (2)

j (i, j = 1, . . . , k). Now recall the
theorem that any linear functional f : V (M) → R can be extended to the larger vector
space V (M ′). Since P (1)

i and P (2)

i are congruent, we have f (P (1)

i ) = f (P (2)

i ). This and
property (12) imply f (A(1)) = f (A(2)), establishing the Dehn-Hadwiger theorem.

All that is required for the proof of Theorem 2 is to construct an additive function
f such that f (π) = 0 and f (T ) �= f (C), where T is the regular tetrahedron with
dihedral angle α and edge length l, and C is the cube with the same volume as T .
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Set M = {α, π/2, π} and notice that V (M) = V ({α, π}). We define f on V (M) by
f (r1α + r2π) = r1, where r1 and r2 are arbitrary rational numbers. Then f is a well-
defined function, since α/π is irrational (Lemma 2): each x in V (M) can be expressed
uniquely in the form x = r1α + r2π. Clearly, f is an additive function on V (M). From
f (π/2) = 0 we have f (C) = 0. On the other hand, f (T ) = 6l f (α) = 6l �= 0. From
f (T ) �= f (C) we conclude that the regular tetrahedron is not equidecomposable with
the cube.

5. NECESSARY AND SUFFICIENT CONDITIONS. The theory of equidecom-
posability was enriched by a remarkable result in 1965, when Sydler proved that
Dehn’s necessary condition is also a sufficient condition for the equidecomposabil-
ity of two polyhedra. This result is called Sydler’s theorem. It is a deep theorem whose
proof the reader can find in [3, pp. 142–166].

Theorem 4 (Dehn-Sydler). Let A(1) and A(2) be polyhedra of equal volume, and let
M be the set containing all dihedral angles of A(1) and A(2) and the number π . Then
A(1) and A(2) are equidecomposable if and only if f (A(1)) = f (A(2)) holds for each
additive function f : V (M) → R satisfying f (π) = 0.

But what can we say about Bricard’s condition? It turns out that, if we suitably mod-
ify Bricard’s condition, we can get a different necessary and sufficient condition for
equidecomposability. With the help of Sydler’s theorem we will prove the following:

Theorem 5. Let A(1) and A(2) be polyhedra of equal volume and with dihedral angles
α1, . . . , αs and β1, . . . , βr , respectively, and let l1, . . . , ls and l ′

1, . . . , l ′
r be the lengths

of the edges of A(1) and A(2) that are adjacent to those angles. Then A(1) and A(2)

are equidecomposable if and only if (a) there exist s + r + 1 sequences of rational
numbers {m1,k}∞

k=1, . . . , {ms,k}∞
k=1,{n1,k}∞

k=1, . . . , {nr,k}∞
k=1, {pk}∞

k=1 such that

mi,k → li , n j,k → l ′
j (k → ∞) (13)

for each i in {1, . . . , s} and each j in {1, . . . , r} and (b) the equation

m1,kα1 + · · · + ms,kαs = n1,kβ1 + · · · + nr,kβr + pkπ (14)

holds for k = 1, 2, 3, . . . .

(We refer to the combined conditions (13) and (14) in this theorem as the modified
Bricard condition.)

Proof. Suppose first that A(1) and A(2) are equidecomposable. The proof of the mod-
ified Bricard condition is basically the same as the proof of Bricard condition with a
slight alteration.

Let 1 > ε1 > ε2 > · · · be any sequence converging to zero, let L1, . . . , L N be the
links in (10) and (11), and let k be a fixed positive integer. By Lemma 1 we can find
rational numbers p(k)

1 /q(k), . . . , p(k)
N /q(k) with positive numerators and denominator

such that

∣∣∣l(Li ) − p(k)

i

q(k)

∣∣∣ <
εk

2Nq(k)
(i = 1, . . . , N ). (15)

Then m(Li ) = p(k)

i is the integer measure of Li . Following the proof of Theorem 1
verbatim we arrive at equation (1), keeping in mind that now in (1) the integers mi and
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n j and p all depend on k (m(Li ) also depends on k). We define

mi,k = mi

q(k)
(i = 1, . . . , s), n j,k = n j

q(k)
( j = 1, . . . , r), pk = p

q(k)
.

For each positive integer k relation (1) takes the form

m1,kα1 + · · · + ms,kαs = n1,kβ1 + · · · + nr,kβr + pkπ.

Let the dihedral angle α1 adjoin the edge e1 of the polyhedron A(1) (so l(e1) = l1).
From the way we have established (1) it follows that m1 = ∑

m(Lu), where the sum
extends over all links Lu forming e1. If in

∑
l(Lu) we sum over the same links, we

conclude on the basis of the triangle inequality and (15) that

∣∣∣l1 − m1

q(k)

∣∣∣ =
∣∣∣∑ l(Lu) −

∑
m(Lu)

q(k)

∣∣∣ < N
εk

2Nq(k)
< εk .

By letting k → ∞ we see that m1,k = m1/q(k) → l1. This argument works for any
edge of A(1) or A(2), which proves (13). Accordingly, the modified Bricard condition
holds.

To prove the other direction of Theorem 5, suppose that the modified Bricard con-
dition is satisfied. We would like to show that A(1) and A(2) are equidecomposable.

By Theorem 4, it is enough to show that f (A(1)) = f (A(2)) holds for any additive
function f : V (M) → R satisfying f (π) = 0, where M is the set consisting of the
number π and the dihedral angles of A(1) and A(2). From (14) we get

f (m1,kα1 + · · · + ms,kαs) = f (n1,kβ1 + · · · + nr,kβr + pkπ),

so by the linearity of f

m1,k f (α1) + · · · + ms,k f (αs) = n1,k f (β1) + · · · + nr,k f (βr ) + pk f (π). (16)

Here f (π) = 0 and mi,k → li and n j,k → l ′
j as k → ∞, whence f (A(1)) = f (A(2)).

This completes the proof of Theorem 5.

Remark. The necessity part of Theorem 5 is the following statement: if A(1) and A(2)

are equidecomposable, then the modified Bricard condition is satisfied. Notice that this
statement implies the Dehn-Hadwiger theorem in one line (see (16)).

6. DECOMPOSITIONS OF RECTANGLES. The method of integer measures can
be applied successfully to certain other problems whose solutions involve additive
functions. We provide an example.

Suppose that the rectangle R can be decomposed into finitely many rectangles with
disjoint interiors and that these rectangles can be translated in such a way that we get
a decomposition of another rectangle R′. In this event we say that the rectangles R and
R′ can be decomposed into each other by translations of rectangles.

Theorem 6. Let R and R′ be rectangles in parallel positions with dimensions a ×
b and c × d, respectively. It is possible to decompose R into R′ by translations of
rectangles if and only if ab = cd and a/c is rational.

October 2007] A NEW APPROACH TO HILBERT’S THIRD PROBLEM 673



Proof. If ab = cd and a/c is rational, then a/c = d/b = u/v, where u and v are
positive integers, so a/u = c/v and b/v = d/u. Therefore both rectangles can be de-
composed into uv rectangles with dimensions (a/u) × (b/v). Thus the two rectangles
R and R′ can be decomposed into each other by translations of rectangles.

To prove the other direction, suppose that the two rectangles can be decomposed
into each other by translations of rectangles:

R = [s, S] × [t, T ] = ∪n
i=1[xi , Xi ] × [yi , Yi ],

R′ = [s ′, S′] × [t ′, T ′] = ∪n
i=1[x ′

i , X ′
i ] × [y′

i , Y ′
i ],

where the rectangles [xi , Xi ] × [yi , Yi ] and [x ′
i , X ′

i ] × [y′
i , Y ′

i ] correspond to each other.
We may assume that R and R′ are in the upper half-plane, and that [s, S] ∩ [s ′, S′] = ∅.
Obviously R and R′ must have the same area: ab = cd.

On the x-axis the points x1, X1, . . . , xn, Xn break [s, S] up into subintervals
L1, . . . , Lu , while the points x ′

1, X ′
1, . . . , x ′

n, X ′
n partition [s ′, S′] into subintervals

Lu+1, . . . , L N . (By subintervals we mean closed and non-degenerate subintervals.) By
Lemma 1 we can find positive integers q, p1, . . . , pN such that

∣∣∣l(Li ) − pi

q

∣∣∣ <
1

2Nq
(i = 1, . . . , N ).

As earlier we write m(Li ) = pi and call it the integer measure of the interval Li . For
a subset I of {1, . . . , N } we extend the definition of m by defining

m(∪i∈I Li ) =
∑
i∈I

m(Li ). (17)

The important property of m is that it is “equality preserving,” in the sense that
for any subsets I1 and I2 of {1, . . . , N }, m(∪i∈I1 Li ) = m(∪ j∈I2 L j ) holds whenever
l(∪i∈I1 Li ) = l(∪ j∈I2 L j ). This property follows from the idea presented at (8).

Since l([xi , Xi ]) = l([x ′
i , X ′

i ]) for each i , we have m([xi , Xi ]) = m([x ′
i , X ′

i ]), so the
following two sums are equal:

n∑
i=1

m([xi , Xi ])l([yi , Yi ]) =
n∑

i=1

m([x ′
i , X ′

i ])l([y′
i , Y ′

i ]). (18)

If L j ( j ∈ I (i)) denote the subintervals forming [xi , Xi ], then

m([xi , Xi ]) = m(∪ j∈I (i) L j ) =
∑
j∈I (i)

m(L j ), (19)

and

n∑
i=1

m([xi , Xi ])l([yi , Yi ]) =
n∑

i=1

∑
j∈I (i)

m(L j )l([yi , Yi ]) (20)

We now interchange the order of summation. Fix an integer k in {1, . . . , u}. What
is the coefficient of m(Lk) in the double sum at (20)? Since k is in I (i) if and only if
Lk ⊂ [xi , Xi ], to obtain the coefficient of m(Lk) we must add the heights l([yi , Yi ]) of
those rectangles [xi , Xi ] × [yi , Yi ] that lie above Lk . Since this sum equals b we gain
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the following “additive property”:

n∑
i=1

m([xi , Xi ])l([yi , Yi ]) =
( u∑

k=1

m(Lk)

)
b. (21)

Similarly,

n∑
i=1

m([x ′
i , X ′

i ])l([y′
i , Y ′

i ]) =
( N∑

k=u+1

m(Lk)

)
d. (22)

By (18), (21), and (22) d/b is rational, as is a/c (= d/b).

Remark. The extension of m at (17) is not really necessary, for we can set up the
double sum at (20) without it. But the extension of m lets us formulate (18), which
makes the argument more elegant.

In 1903 Dehn proved the following statement [7]:

Corollary. A rectangle with dimensions a × b can be tiled using finitely many squares
if and only if a/b is rational.

Proof. If a/b is rational then a/u = b/v for positive integers u and v. Therefore the
rectangle can be tiled with uv squares.

To prove the opposite direction assume that the rectangle is tiled with squares. Ro-
tate the rectangle (together with its tiling) by 90◦. The new rectangle has dimensions
b × a. Notice that the original rectangle and the new rectangle can be decomposed into
each other by translations of rectangles (in fact, by using the squares of our tilings).
Hence, by Theorem 6, a/b is rational.
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An Oral Exam Question

p q

Let C be the contour shown above. At oral examinations of Ph.D. candidates, I
often asked the following question: if f is analytic in C \ {p, q}, is

∫
C f (z) dz =

0? (Solution on p. 743)

—Submitted by Peter Lax,
Courant Institute of Mathematical Sciences, New York
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