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ABSTRACT 

The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several 
advantages over passive viscoelastic elements, e.g., lower weight with increased controllability.  The performance of 
the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through 
a resistive element.  In past efforts most of the proposed tuning methods were based on modal properties of the 
structure.  In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant 
points when based on den Hartog’s invariant points concept.  In this study, a design method based on the wave 
propagation approach is proposed.  Optimal tuning is investigated depending on the dynamic and geometric 
properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to 
the structure.  Active filters are proposed as shunting electronics to implement the tuning criteria.  The developed 
tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to 
other tuning methods.  The tuned circuits are relatively insensitive to changes in modal properties and boundary 
conditions, and can applied to frequency ranges in which multiple modes have effects. 

1. INTRODUCTION 
As advanced structural elements such as honeycomb panels are increasingly used in vehicles, total mass of the 

structure continues to decrease, especially in aerospace applications [1].  The decrease in airframe mass can result in 
increased cabin noise.  To maintain interior noise levels, either existing treatment must be supplemented (adding 
mass) or more efficient treatment must be developed.  Structural vibration damping contributes to the minimization 
of noise-related problems.  To increase structural damping and to minimize noise generation, it is common practice 
to apply viscoelastic materials to the structures, or to add acoustic treatments [2,3].  Recently, more active methods 
utilizing smart components and electro-mechanical couplings have been proposed [4] and have been used in the 
control of aircraft interior noise.  Control actuators often proposed in such systems are piezoelectric patches, shape 
memory alloys, and fluidic actuators.  Among them the piezoelectric patches has been most widely used in structural 
acoustic control.  Active control systems using feedback or feed forward control techniques require supporting 
electronics that typically consist of a digital signal processor system and components for sensing and actuating 
imbedded elements.  By utilizing passive shunting techniques as shown in Figure 1 the required hardware can be 
significantly reduced with increased robustness.  

The use of shunted piezoelectric patches to control structural vibration was first proposed by Forward [5] to 
stabilize optical systems.  Hagood and Flotow [6] presented a more complete analysis of the shunted damping of 
structures.  Effects from the electronic network were analyzed and incorporated in the variation of the elastic 
properties of the patch.  The performance of the piezoelectric patches in reducing the vibration response was 
significantly related to the characteristics of shunting electrical circuits.  The tuning of the values of the electronic 
components was performed based on the shunt circuit’s effect on the structure’s modal response.  Resonant shunt 
circuits were optimized using den Hartog’s invariant point concept and the pole placement technique.  Many 
approaches have been proposed to optimally tune the shunting electrical networks [7-10].  In addition to RL resonant 
circuits, various RLC circuits have been proposed [11-15].  One review of these methods can be found in the 
reference [16].  However, most of the tuning methods are based on the modal properties of the structure when 
treated with piezoelectric patches.  Consequently, the tuning applies only to a limited number of modes at natural 
frequencies.  Also, the tuning of individual circuits, each attached to one of multiple piezoelectric patches, can be 
complicated due to interaction between patches through the structure.  Difficulty also arises when the circuit’s 
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bandwidth covers a frequency range in which intermodal couplings are not negligibly small due to high modal 
density within the band. 

In this study, the optimization of the shunting electrical networks is performed based on the wave propagation 
characteristics of the structure and wave transmission characteristics through the piezoelectric patches.  The shunting 
electrical networks influences the dynamic mechanical properties of the patch.  Although many approaches have 
been proposed to separate the physical degrees of freedom between the modal properties and electrical charge, 
combining the effects of the electrical circuit to the dynamic mechanical properties and deleting the physical degrees 
of freedom related to electrical charge yield the same results since the physical quantities related to mechanical and 
electrical variables are uncoupled in the system equations when external excitation is not applied to the electrical 
circuit.  The energy dissipated as the propagating structural waves transmit and are reflected from the piezoelectric 
patch is calculated.  The optimal tuning is obtained to maximize this structural energy dissipation.  The effects of 
location of piezoelectric patches on and boundary conditions of the structure are investigated.  The performance of 
the tuning criteria is confirmed through calculating the forced vibration of the beam and is compared to a 
conventional method based on den Hartog’s invariant point concept.  An active filter technique to implement the 
optimal shunting criteria is proposed.   

2. EFFECTS OF SHUNTING NETWORKS  
When the piezoelectric patch is shunted as shown in Figure 1, the patch acts as a vibration absorber.  In this 

case, the effects of shunts on the piezoelectric materials can be analyzed using linear constitutive equation [17] as 
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where D3 is the electrical displacement, S11 is the strain, E3 is the electrical field, T11 is the stress, d31 is the 

piezoelectric constant, Es11 is compliance at constant electrical field, and T
3ε  is the electrical permeability at constant 

stress.  The dynamic displacement of the patch is coupled to electrical charges through the piezoelectric effects 

represented by the coefficients, d31.  The voltage (V) and current (I) are related to electrical variables as ∫= pt
dzEV

0 3
 

and ∫=
A

dADI 3
 where tp is the thickness and A is the area of the patch.  By taking the Laplace transform of the 

above relationships after assuming uniform spatial distribution of the electrical field and electrical displacement of 
piezoelectric patch, equation (1) is converted to a more convenient definition to derive admittance of shunting 
networks as [6] 
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where T
pC  is the inherent capacitance of the patch and s is the Laplace parameter.  In this case, shunting of the patch 

has primary impacts on the dynamic stiffness of the patch.  When the external electrical source to the piezoelectric 
patch is not present (I=0), the effects of electrical network on the elastic moduli of the shunted patch can be 
simplified as  
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where E
pE  (=1/ Es11

) is the elastic moduli of the patch at short circuit, SUY  is the electrical admittance of the shunting 

networks, and k31 is the electromechanical coupling coefficient for transverse operation (= TEsd 31131 ε ) [6].  From 

equation (3) variation of the complex moduli of the patch with the admittance of electrical circuit is obtained after 
substituting s=iω where i = 1− .  When the usual complex notation is used, ( ){ }tiexwtxw ωˆRe),( =  for w the 
displacement, complex moduli are defined as, 
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where SU
dpE ,

 is the dynamic moduli, SU
lpE ,

 is the loss moduli, and SU
Pη  is the loss factor.  Arbitrary electrical circuits 

composed of multiple resistors, capacitances, and inductances in series or in parallel can be considered.  The 
bending stiffness of the beam treated by the patch is given as 
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where 
bÊ  is the complex moduli of the beam material, Jb and Jp are the moments of inertia of the beam and the 

patch, respectively.  The bending stiffness of the beam itself is given as 
bbx JED ˆˆ

2 = .   

The variation of the complex modulus, SU
pÊ  and the bending stiffness, 

1
ˆ

xD , with respect to the admittance, YSU, 

is most significant near the values which make the imaginary part of the denominator in equation (3) close to zero, 
the resonance condition of the RLC circuit.  Consequently, its variation is limited when the shunt is consisted only of 
resistive elements.  Only when the shunting circuit is composed both of reactive and resistive elements, wide 
variation of the resulting complex modulus is possible.  The dynamic modulus of the shunted patch can be negative 
or positive.  From the wide variation of the dynamic modulus and loss factor, an arbitrary value of the dynamic 
bending stiffness, 

1
ˆ

xD , is obtained.  The condition of maximum loss factor or maximum loss moduli of the bending 

stiffness does not result in minimum structural vibration response.  Instead, the values that minimize the vibration 
and sound generation of structures and maximize the vibration energy dissipation at the patch are desired in noise 
control applications.  To achieve this goal, the forced vibration and resulting sound generation of the beam may be 
considered, which require estimation of variation of the modal properties depending on the shunting networks.  In 
this study, wave propagation characteristic of structural waves through piezoelectric patch is investigated to obtain 
optimal shunting properties without requiring calculation of the modal properties.   

3. WAVE PROPAGATION NEAR THE PIEZOELECTRIC PATCHES 
To analyze reflection, transmission, and dissipation of the wave propagating near the piezoelectric patch, wave 

propagations as shown in Figure 2 for different boundary conditions were considered.  The edge of the beam in 
Figures 2(a) and (b) at x=-L and x=-(L+Le), respectively, can be supported by geometric or general boundary 
conditions.  The beam was assumed to be infinitely long in the x-direction in order to allow for the calculation of the 
reflection ratio of the normally incident bending waves as assumed in calculating reflection ratios at viscoelastically 
supported edges [18].  The equation of motion for the free transverse vibrations (when effects of shear deformation 
and rotary inertia are neglected) is,  
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where Dx is the bending stiffness, w is the transverse displacement, and M is the mass per unit length.  To calculate 
the wave propagation characteristics at the edge, normally incident harmonic bending waves with complex 
amplitude 

22Ĉ  were assumed to propagate toward the patch from x = ∞.  The reflection, transmission and dissipation 
of the incident vibration energy are calculated by obtaining the resultant wave propagation induced by this 
disturbance near the patch.  The calculation depends on various boundary conditions, for example the different cases 
as shown in Figure 2. 

When the piezoelectric patch is attached to the edge of the beam shown in Figure 2(a) the beam transverse 
displacement is given as 
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where H is the Heavyside step function, k1 and k2 are the wavenumbers related to the circular frequency as 
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2,1 xDMk ω= .  A continuous neutral surface of zero bending stiffness through the discontinuities at x=0 is 

assumed.  By attaching the patch symmetrically with respect to the neutral surface of the beam, this assumption can 
be satisfied.  By applying the boundary conditions of the beam, the complex coefficients (

11Ĉ -
14Ĉ ,

21Ĉ ,
23Ĉ ) in 

equation (7) are determined.  Note that there are six unknowns with 
22Ĉ  an input variable.  The boundary conditions 

are 
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• at x=-L (for different geometric boundary conditions) 
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After replacing equation (7) into six boundary conditions in equation (8), the unknown coefficients are 
obtained.  Consequently, the response of the beam to external excitation of the incident bending waves of complex 
magnitude 

22Ĉ  is calculated.  The same numerical procedures are repeated for the piezoelectric patches attached to 
different location of the beam.  The differences are on the number of boundary conditions and the assumed beam 
displacement functions.  The beam displacements are given as 

• when separated from edge (Figure 2(b)) 
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• when far from edges (Figure 2(c)) 
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Boundary conditions are defined in the exactly same way as shown in equation (8).  The calculation can be 
performed with and without taking into account material damping of the structure.  When the patch is applied to 
conventional metal structures, the damping in the structure itself is negligibly small in general.  In such cases, the 
dissipation of the vibrational energy through the piezoelectric patches is calculated as 
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Maximum dissipation of the vibrational energy is directly related to minimization of the forced vibration and 
sound radiation as illustrated for the case of a plate supported by viscoelastic elements [18].  Wave propagation 
characteristics are derived by calculating the effects of the shunting electrical networks on the bending stiffness of 
the beam.  From these results, the optimal shunting network that maximizes the dissipation in equation (10) is 
obtained numerically without requiring calculation of the modal properties.   

4. BEAM VIBRATION CALCULATION 
The performance of the piezoelectric patches in reducing the vibration of structures is estimated through 

calculating the forced vibration of a beam of finite size from which tuning efficiency is predicted.  Figure 3 shows 
the beam supported by general boundary conditions and controlled by piezoelectric patch.  By modifying the 
stiffness of the springs supporting the beam, the vibration characteristic of the beam of arbitrary edge conditions is 
analyzed [19, 20].  The kinetic, TK, and potential energy, VP, for transverse vibration of the beam is calculated using: 
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In the Rayleigh-Ritz method, the transverse displacement of the beam is approximated as  
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where φm are the trial functions chosen from a complete set, and αm are the generalized coordinates.  After 
substituting equation (12) into equation (11), Lagrange’s equations of motion, 
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are applied, where LS = TK-VP+WF is the system Lagrangian.  This yields a set of equations of motion 
[ ]{ } [ ]{ } { }fKKM Ve =++ αα&& ,                 (14) 
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where [M], [Ke], and [KV] are the mass and stiffness (from springs at edges and beam strain energies) matrices , 
respectively.  When the harmonic excitation of the beam is considered with time dependence of e-iωt, the equations 
of motion are 

[ ]{ } [ ]{ } { }fKKM Ve =++− ααω &&

2 .                  (15) 
The polynomial functions are used as trial functions as 
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Consequently, the mass and stiffness matrices are calculated as 
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5. RESULTS AND DISCUSSIONS 
If the shunting elements are not present in Figure 1, there is no energy loss in the system when the material 

damping is small.  Appreciable damping occurs only when electrical energy produced through piezoelectric effects 
is dissipated into the electrical network.  The patch with resistive shunting element acts as a control device of the 
system to absorb and dissipate vibration energy and to minimize undesirable vibration of the structure and noise 
generation especially when the external excitation has a broadband characteristic.  Two different shunting networks 
(resistive and resonant) are considered.  To compare results with previously published data, a beam structure and a 
piezoelectric patch of similar dimensions and material properties to those in the previous publication [6] are used in 
this study.  (L = 6.2 cm, a = 14.65 cm, t = 3.17 mm, E

bE =73 GPa, E
pE  = 63 GPa, S

pC =0.156 µf, T
eε =1700 ε°, k31 = 

0.35, d31 = 180e-12 m/v).   

A. Resistive shunting 
When the shunting network consists only of a resistor, the resistor increases the material damping of the 

piezoelectric patches by dissipating converted electrical energy into heat.  Using the wave propagation approach, the 
amount of energy dissipation is calculated as presented in section 2.  Figure 4 shows the energy dissipation on 
patches attached to different locations of the beam at the fundamental frequency.  Figure 4 (a) shows the variation 
with separation distance from the clamped edge of the beam.  The maximum dissipation occurs when the patch is 
attached to the clamped edge of the beam.  With increasing separation distance, the energy dissipation is decreased.  
The maximum dissipation occurred at approximately the same resistance values regardless of the position of the 
patch relative to the edge.  Obviously, the optimal position of the patch to maximize its performance to induce 
maximum energy dissipation is near the clamped edge.  Figure 4 (b) shows the comparison for the patch attached to 
edge of the beam with different boundary conditions – clamped, free, simply-supported (Figure 2 (a)), and far from 
both edges (Figure 2 (c)).  The maximum amount of energy dissipation occurred when the edge is clamped.  For 
other boundary conditions, the energy dissipation was smaller.  The energy dissipation was negligibly small when 
the patch is attached to the free edge.   

Figure 5 shows the variation of the energy dissipation with frequency and resistance when the patch is attached 
to the beam’s edge (Figure 1(a)).  For each frequency, there is one maximum in the amount of the energy 
dissipation.  When the patch is attached to the free edge (Figure 5(b)), non-negligible energy dissipation occurs only 
at high frequencies where the length of the patch is comparable to the excitation wavelength (λ=10 cm at f=2 kHz).  
Figure 6 shows optimal resistance values taken from Figure 5 at the point of maximum energy dissipation.  The 
optimal values are relatively insensitive to boundary conditions, and are very similar to the values that induce 
maximum material damping of the patch and the maximum modal damping of the beam [6].   

For the structure and patch considered in this study, the amount of energy dissipation obtained using purely 
resistive shunting is generally less than 5 %.  This amount of damping does not justify the added cost and 
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complexity when compared to passive techniques [18].  To increase the dissipation, the current flowing through the 
resistor must be amplified.  This is accomplished with resonant shunting circuits. 

B. Resonant shunting  
When a resonant shunting element is used, the condition of the maximum dissipation is very sensitive to circuit 

parameters.  Optimization of the resonant network is not as straight forward as the resistive network.  Until now 
many optimization techniques have been proposed.  When the resonant shunting is used, the resonance due to the 
capacitance of the patch and the inductance of the shunting network significantly increases the current flowing 
through the resistance and consequently increases the energy dissipation and damping capabilities of the patch.  To 
investigate these effects, the RLC circuit shown in Figure 1 is considered.  Other configurations, such as RLC in 
parallel as discussed in several other publications, are also possible.   

Figure 7 shows the variation of the vibration energy dissipation with R and L when C=0 at fundamental 

frequency of the beam (f=33.5 Hz).  Lres is the resonant inductance value, ( ) 12 −S
pCω .  The calculation was repeated 

for different boundary conditions of the beam.  In the simulation results, the performance of the patch in dissipating 
the vibration energy when the boundary condition is clamped is better than that of any other boundary conditions.  
When the boundary condition is clamped or infinite, there are values of R and L that induces completely dissipation 
of the incident vibrational energy near R≈300 Ω and L=0.97 Lres at fundamental frequency.  This condition 
corresponds to the values that lead the dynamic stiffness, 

1
ˆ

xD , to be negative and the loss factor to be positive.  As 

the resistance and inductance values deviate from the optimal value, the amount of vibrational energy dissipation 
starts to decrease very rapidly.  Dissipation is more sensitive to the inductance value.  The optimal inductance value 
is smaller than the resonant inductance by 1-2 %.   

In Figure 7(a) and (d), there are another values of R and L than induces complete dissipation of the incident 
vibrational energy near R≈5 Ω and L=0.96 Lres.  This condition results in positive dynamic moduli and loss factor of 

1
ˆ

xD .  However, the occurrence of this optimal value is extremely sensitive to the inductance values, L, and requires 

very small value of R which may not easy to implement using conventional RLC circuit in actual situations 
especially when the required inductance value is large.  In the following studies, this condition was not considered 
and only the optimal values that induce complete vibration energy dissipation with negative dynamic moduli of 

1
ˆ

xD  

was selected as the optimal values.   
Figure 8 shows the variation of these optimal inductance and resistance with frequency.  The values obtained 

from the den Hartog’s invariant point concept are plotted also.  The optimal values are similar to each other, but 
considerable difference exists in the values of the resistance.  To implement the condition calculated in Figure 8, 
frequency dependent variation of the resistance and inductance is required.  To satisfy this condition, it is more 
straightforward to consider frequency-dependent admittance values.  Figure 9 shows the admittance of the electrical 
circuit that results in complete absorption of the incident vibrational energy.  The variation of the admittances when 
the shunting elements are composed of constant values of R and L is also plotted.  The optimal value of R and L was 
taken as the value that completely absorbs the vibration energy at the first resonance of the beam under 
consideration.  Note that the desired value of admittance increases with increasing frequency.  However, the 
admittance of the RL-circuit decreases with increasing frequency.  Consequently, the performance of the shunting 
network decays very rapidly as the excitation frequency deviates from the design frequency.  This is an inherent 
disadvantage of the shunting circuit composed only of a resistor and an inductor even when its performance is 
improved by adopting the tuning method to minimize the modal response peaks, as in den Hartog’s invariant point 
concept.  To resolve this problem, an RLC circuit was considered to generate the increasing admittance with 
increasing frequency.   

The values of R, L, and C were determined by matching the optimal admittance values (real and imaginary 
parts) and the first derivative of the imaginary part with respect to frequency at the tuning frequency.  Matching the 
derivatives of the imaginary parts was necessary due to the strong dependence of performance on the reactance 
value.  For the beam and the patch considered in this study, the values were determined as R=299 Ω, L=0.4460 H, 
and C=-0.1615 µF.  A negative capacitance was required to achieve the desired variation of the admittance with 
frequency.  The results are shown in Figure 10.  The admittance follows the desired optimal values very closely near 
the tuning frequency.  A negative capacitance could be implemented with an active filter such as a negative 
impedance converter.  However, such a design would require an external power source.   
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C. Forced vibration of beam  
To compare the capabilities of the various tuning criteria, the forced vibration response of a finite beam 

controlled by the shunts located at the clamped edge was considered.  Figure 11 shows the forced vibration response 
calculated using the Rayleigh-Ritz method presented in section 4 for different values of elements in the RLC shunt 
circuit.  When the admittance matches the optimal values over the entire frequency range, the modal response of the 
beam completely disappears and the beam response closely resembles that of an infinite beam.  This suggests that 
the incident vibrational energy to the piezoelectric patch is completely absorbed and is dissipated into heat.  When 
the RLC circuit employing negative capacitance is used to approximate the frequency dependent admittance, as in 
Figure 10, the performance is limited to a finite frequency range.  The first (fundamental) modal response of the 
beam completely disappears.  The shunting is also effective in reducing the response of the second and third modal 
response.  At higher frequencies the damping capability rapidly decreases since the admittance deviates from the 
optimal values calculated here when the frequency increases from the design frequency.  Compared to tuning 
methods based on the modal properties and den Hartog’s invariant point concept, the current method based on the 
wave propagation approach is superior in regulating the forced vibration response of the beam.   

6. CONCLUSIONS AND FUTURE WORK 
The absorption and subsequent dissipation of structural vibration energy by piezoelectric patches was 

investigated.  Dissipating converted electrical energy through piezoelectric effects into shunting electrical networks 
enhanced the damping of structural vibrations.  Performance was strongly dependent on the parameters of the 
shunting elements.  Optimization of these parameters was performed based on wave propagation characteristics, i.e., 
absorption, transmission, and reflection of bending waves propagating toward the piezoelectric patches attached to 
various locations of the beam.  Following this approach, the modal properties of the beam were not considered in 
obtaining the optimal properties.  The method applies to a broad range of frequencies and to frequency ranges 
affected by a large number of modes.  The coupling between patches through modal response interaction of the 
beam can be neglected in the presented tuning method.   

When a resistive shunting element was used, the vibration energy dissipation was maximum when the patch 
was attached to a clamped edge as opposed to the simply supported or free edge.  When the patch was attached to 
the free edge, energy dissipation occurred only at high frequencies where the dimension of the patch was 
comparable to the wavelength of the propagating bending wave.  The complete absorption of the incident vibration 
energy occurred when a resonant shunting network was used.  The inherent disadvantage of using RL networks with 
frequency-independent resistance and inductance values was identified –the admittance of constant RL circuit 
decreases with increasing frequency while the calculated optimal admittance in this study increases with increasing 
frequency.  Complete absorption was obtained at the design frequency when an RLC circuit with negative 
capacitance was employed.  Implementation of a negative capacitance requires active filters such as a negative 
impedance converter.  The RLC circuit designed according to wave propagation characteristics resulted in much 
better structural vibration control compared to conventional methods based on modal properties of the beam.  
Without requiring complicated control systems, such as feedback and feedforward controllers, the piezoelectric 
patches can achieve significantly improved performance by using a simple RLC circuit with appropriate tuning.  
Although, this technique was demonstrated here on a beam shunted with piezoelectric patch using RL or RLC 
electrical networks, the proposed numerical procedures can be applied to different electrical networks with minor 
modifications.  Similar optimization procedures can be applied to a shunt patch attached to a plate by neglecting 
Poisson effects as for the optimization of the boundary stiffness of a viscoelastically-supported plate [18].  The 
experimental confirmation of the developed optimization method is in progress.   
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Figure 1.  Shunted damping of flexural vibration using a 
piezoelectric patch.  
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Figure 2. Wave propagation near the piezoelectric patch 

attached to different locations: (a) at edge, (b) near an edge, 
and (c) far from edges.  
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Figure 3.  Flexural vibration of the beam under generally 

supported boundary condition. 
 
 

101 102 103 104 105 106 107 108
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

D
is

si
pa

tio
n 

(%
)

R (Ω)

L
e
: , 0;

     , 0.2 L;
     , 0.4 L;
     , 0.6 L;
     , 0.8 L;
     , L

 

101 102 103 104 105 106 107 108
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

D
is

si
pa

tio
n 

(%
)

R (Ω)

 Clamped
 Free
 Simply-supported
 Infinite

 
(a)   (b) 

Figure 4.  Vibration energy dissipation of piezoelectric patches 
shunted by resistive networks.  (a) Effect of separation 
distance from clamped edge, and (b) effects of several 

different boundary conditions.   
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Figure 5.  Dissipation of incident vibration energy vs. 
frequency and resistance for resistive shunt and different 

boundary conditions at edges of beam: (a) clamped, (b) free, 
and (c) simply supported; and (d) far from both edges.  
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Figure 6.  Optimal resistance calculated from two different 
tuning criteria: maximum dissipation of incident vibrational 

energy and maximum loss factor.   
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(a)   (b) 

 
(c)   (d) 

Figure 7.  Dissipation of incident vibration energy vs. 
inductance and resistance for RL shunt and different boundary 

conditions at edges of beam: (a) clamped, (b) free, and (c) 
simply supported; and (d) far from both edges. f=33.5 Hz.   
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Figure 8.  Optimal values of resistance and inductance to 
induce complete absorption of incident bending waves at 

piezoelectric patches attached to the clamped edge of the beam 
and its comparison to values calculated to minimize the modal 

response using den Hartog’s invariant point concept [6].   
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Figure 9.  Optimal variation of the admittance to induce 
complete absorption of incident bending waves, and the 

admittance of the RL-circuit. 
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Figure 10.  Optimal variation of the admittance to induce 
complete absorption of incident bending waves, and their 

approximation using RLC circuit (with negative capacitance). 
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Figure 11.  Damping of beam vibration using piezoelectric 

patches shunted by resonant shunting networks and 
comparison of different optimization criteria. 


