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Interest rate markets

Interest rates – Notation

B(t,T ): time-t price of a zero coupon bond for T ; B(T ,T ) = 1;

L(t,T ): time-t forward LIBOR for [T ,T + δ];

L(t,T ) =
1

δ

(
B(t,T )

B(t,T + δ)
− 1

)
F (t,T ,U): time-t forward price for T and U; F (t,T ,U) = B(t,T )

B(t,U)

“Master” relationship

F (t,T ,T + δ) =
B(t,T )

B(t,T + δ)
= 1 + δL(t,T ) (1)
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Interest rate markets

Interest rates evolution

Evolution of interest rate term structure, 2003 – 2004 (picture: Th. Steiner)
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Interest rate markets

Calibration problems
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1 Implied volatilities are constant neither across strike nor across maturity

2 Variance scales non-linearly over time (see e.g. D. Skovmand)
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LIBOR model: Axioms

LIBOR model: Axioms

Economic thought dictates that LIBOR rates should satisfy:

Axiom 1

The LIBOR rate should be non-negative, i.e. L(t,T ) ≥ 0 for all t.

Axiom 2

The LIBOR rate process should be a martingale under the corresponding
forward measure, i.e. L(·,T ) ∈M(PT+δ).

Practical applications require:

Models should be analytically tractable ( fast calibration).

Models should have rich structural properties ( good calibration).

What axioms do the existing models satisfy?
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LIBOR and Forward price model

LIBOR models I (Sandmann et al, Brace et al, . . . , Eberlein & Özkan)

Ansatz: model the LIBOR rate as the exponential of a semimartingale H:

L(t,Tk) = L(0,Tk) exp

(∫ t

0
b(s,Tk)ds +

∫ t

0
λ(s,Tk)dH

Tk+1
s

)
, (2)

where b(s,Tk) ensures that L(·,Tk) ∈M(PTk+1
).

H has the PTk+1
-canonical decomposition

H
Tk+1
t =

∫ t

0

√
csdW

Tk+1
s +

∫ t

0

∫
R

x(µH − νTk+1)(ds, dx), (3)

where the PTk+1
-Brownian motion is

W
Tk+1
t = W T∗

t −
∫ t

0

(
N∑

l=k+1

δlL(t−,Tl)

1 + δlL(t−,Tl)
λ(t,Tl)

)
√

csds, (4)
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LIBOR and Forward price model

LIBOR models II

and the PTk+1
-compensator of µH is

νTk+1(ds, dx) =

(
N∏

l=k+1

δlL(t−,Tl)

1 + δlL(t−,Tl)

(
eλ(t,Tl )x − 1

)
+ 1

)
νT∗(ds, dx).

Consequences for continuous semimartingales:

1 caplets can be priced in closed form;

2 swaptions and multi-LIBOR products cannot be priced in closed form;

3 Monte-Carlo pricing is very time consuming  coupled high
dimensional SDEs!

Consequences for general semimartingales:

1 even caplets cannot be priced in closed form!

2 ditto for Monte-Carlo pricing.
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LIBOR and Forward price model
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LIBOR and Forward price model

LIBOR models III

The equation for the dynamics yield the following matrix for the
“dependence” structure

. . . L(t,Ti−1)

. . .
...

. . .
. . .

L(t,TN−2) . . . . . . L(t,TN−2)
L(t,TN−1) . . . . . . L(t,TN−1) L(t,TN−1)

. . . L(t,TN) . . . . . . L(t,TN) L(t,TN) L(t,TN)

. . . L(t,Ti ) . . . . . . L(t,TN−3) L(t,TN−2) L(t,TN−1) L(t,TN)

Bottom line: LIBOR rates we wish to simulate.
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LIBOR and Forward price model

LIBOR models IV: Remedies

1 “Frozen drift” approximation
Brace et al, Schlögl, Glassermann et al, . . .
replace the random terms by their deterministic initial values:

δlL(t−,Tl)

1 + δlL(t−,Tl)
≈ δlL(0,Tl)

1 + δlL(0,Tl)
(5)

(+) deterministic characteristics  closed form pricing
(−) “ad hoc” approximation, no error estimates, compounded error . . .

2 Log-normal and/or Monte Carlo methods
best log-normal approximation (e.g. Schoenmakers)
interpolations and predictor-corrector MC methods
Joshi and Stacey (2008): overview paper
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LIBOR and Forward price model

LIBOR models V: Remedies

3 Strong Taylor approximation
approximate the LIBOR rates in the drift by

L(t,Tl) ≈ L(0,Tl) + Y (t,Tl)+ (6)

where Y is the (scaled) exponential transform of H (Y = LogeH)
theoretical foundation, error estimates, simpler equations for MC
Siopacha and Teichmann; Hubalek, Papapantoleon & Siopacha
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LIBOR and Forward price model

Forward price model I (Eberlein & Özkan, Kluge)

Ansatz: model the forward price as the exponential of a semimartingale H:

F (t,Tk) = F (0,Tk) exp

(∫ t

0
b(s,Tk)ds +

∫ t

0
λ(s,Tk)dH

Tk+1
s

)
, (7)

where b(s,Tk) ensures that F (·,Tk) = 1 + δL(·,Tk) ∈M(PTk+1
).

H has the PTk+1
-canonical decomposition

H
Tk+1
t =

∫ t

0

√
csdW

Tk+1
s +

∫ t

0

∫
R

x(µH − νTk+1)(ds, dx), (8)

where the PTk+1
-Brownian motion is

W
Tk+1
t = W T∗

t −
∫ t

0

(
N∑

l=k+1

λ(t,Tl)

)
√

csds, (9)
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LIBOR and Forward price model

Forward price model II

and the PTk+1
-compensator of µH is

νTk+1(ds, dx) = exp

(
x

N∑
l=k+1

λ(t,Tl)

)
νT∗(ds, dx).

Consequences:
1 the model structure is preserved;
2 caps, swaptions and multi-LIBOR products priced in closed form.

So, what is wrong?

Negative LIBOR rates can occur!

Aim: design a model where the model structure is preserved and LIBOR
rates are positive.

Tool: Affine processes on Rd
>0.
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LIBOR and Forward price model
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Affine processes

Affine processes I

Let X = (Xt)0≤t≤T be a conservative, time-homogeneous, stochastically
continuous Markov process taking values in D = Rd

>0; and (Px)x∈D a
family of probability measures on (Ω,F), such that X0 = x , Px -a.s. for
every x ∈ D. Setting

IT :=
{

u ∈ Rd : Ex

[
e〈u,XT 〉

]
<∞, for all x ∈ D

}
, (10)

we assume that

(i) 0 ∈ I◦T ;

(ii) the conditional moment generating function of Xt under Px has
exponentially-affine dependence on x ; i.e. there exist functions
φt(u) : [0,T ]× IT → R and ψt(u) : [0,T ]× IT → Rd such that

Ex

[
exp〈u,Xt〉

]
= exp

(
φt(u) + 〈ψt(u), x〉

)
, (11)

for all (t, u, x) ∈ [0,T ]× IT × D.
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Affine processes

Affine processes II

The process X is a regular affine process in the spirit of Duffie, Filipović &
Schachermayer (2003).
Using Theorem 3.18 in Keller-Ressel (2008)

F (u) :=
∂

∂t

∣∣
t=0+

φt(u) and R(u) :=
∂

∂t

∣∣
t=0+

ψt(u) (12)

exist for all u ∈ IT and are continuous in u. Moreover, F and R satisfy
Lévy–Khintchine-type equations:

F (u) = 〈b, u〉+

∫
D

(
e〈ξ,u〉 − 1〉

)
m(dξ) (13)

and

Ri (u) = 〈βi , u〉+
〈αi

2
u, u
〉

+

∫
D

(
e〈ξ,u〉 − 1− 〈u, hi (ξ)〉

)
µi (dξ), (14)

where (b,m, αi , βi , µi )1≤i≤d are admissible parameters.
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Affine processes

Affine processes III

The time-homogeneous Markov property of X implies:

Ex

[
exp〈u,Xt+s〉

∣∣Fs

]
= exp

(
φt(u) + 〈ψt(u),Xs〉

)
, (15)

for all 0 ≤ t + s ≤ T and u ∈ IT .

Lemma (Flow property)

The functions φ and ψ satisfy the semi-flow equations:

φt+s(u) = φt(u) + φs(ψt(u))

ψt+s(u) = ψs(ψt(u))
(16)

with initial condition

φ0(u) = 0 and ψ0(u) = u, (17)

for all suitable 0 ≤ t + s ≤ T and u ∈ IT .
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Affine processes

Affine processes IV

1 Affine processes on R: the admissibility conditions yield

F (u) = bu +
a

2
u2 +

∫
R

(
ezu − 1− uh(z)

)
m(dz)

R(u) = βu,

for a ∈ R>0 and b, β ∈ R.
Every affine process on R is an Ornstein–Uhlenbeck (OU) process.

2 Affine processes on R>0: the admissibility conditions yield

F (u) = bu +

∫
D

(
ezu − 1

)
m(dz)

R(u) = βu +
α

2
u2 +

∫
D

(
ezu − 1− uh(z)

)
µ(dz),

for b, α ∈ R>0 and β ∈ R.
There exist affine process on R>0 which are not OU process, e.g. CIR.

20 / 36



Affine martingales

Affine LIBOR model: martingales > 1

Idea:

1 insert an affine process in its moment generating function with
inverted time; the resulting process is a martingale;

2 if the affine process is positive, the martingale is greater than one.

Theorem

The process Mu = (Mu
t )0≤t≤T defined by

Mu
t = exp (φT−t(u) + 〈ψT−t(u),Xt〉) , (18)

is a martingale. Moreover, if u ∈ IT ∩ Rd
>0 then Mt ≥ 1 a.s. for all

t ∈ [0,T ], for any X0 ∈ Rd
>0.
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Affine martingales

Affine LIBOR model: martingales > 1

Proof.

Using (17) and (15), we have that:

Ex

[
Mu

T |Ft

]
= Ex

[
exp〈u,XT 〉|Ft

]
= exp

(
φT−t(u) + 〈ψT−t(u),Xt〉

)
= Mu

t .

Regarding Mu
t ≥ 1 for all t ∈ [0,T ]: note that if u ∈ IT ∩ Rd

>0, then

Mu
t = Ex

[
exp〈u,XT 〉

∣∣Ft

]
≥ 1. (19)
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Affine martingales

Affine LIBOR model: martingales > 1

Example (Lévy process)

Consider a Lévy subordinator, then

Mu
t = exp (φT−t(u) + 〈ψT−t(u),Xt〉)

= exp ((T − t)κ(u) + u · Xt) > 1

= exp(Tκ(u)) exp (u · Xt − tκ(u)) ∈M, (20)

which is a martingale > 1 for u ∈ Rd
>0.
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Affine LIBOR model

Affine LIBOR model: Ansatz

Consider a discrete tenor structure 0 = T0 < T1 < T2 < · · · < TN ;
discounted bond prices must satisfy:

B(·,Tk)

B(·,TN)
∈M(PTN

), for all k ∈ {1, . . . ,N − 1}. (21)

Ansatz

We model quotients of bond prices using the martingales M:

B(t,T1)

B(t,TN)
= Mu1

t (22)

...

B(t,TN−1)

B(t,TN)
= M

uN−1
t , (23)

with initial conditions: B(0,Tk )
B(0,TN) = Muk

0 , for all k ∈ {1, . . . ,N − 1}.
24 / 36



Affine LIBOR model

Affine LIBOR model: initial values

Proposition

Let L(0,T1), . . . , L(0,TN) be a tenor structure of non-negative initial
LIBOR rates; let X be an affine process starting at the canonical value 1.

1 If γX := supu∈IT∩Rd
>0

E1

[
e〈u,XT 〉

]
> B(0,T1)

B(0,TN) , then there exists a

decreasing sequence u1 ≥ u2 ≥ · · · ≥ uN = 0 in IT ∩ Rd
>0, such that

Muk
0 =

B(0,Tk)

B(0,TN)
, for all k ∈ {1, . . . ,N} . (24)

In particular, if γX =∞, then the affine LIBOR model can fit any
term structure of non-negative initial LIBOR rates.

2 If X is one-dimensional, the sequence (uk)k∈{1,...,N} is unique.

3 If all initial LIBOR rates are positive, the sequence (uk)k∈{1,...,N} is
strictly decreasing.
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Affine LIBOR model

Affine LIBOR model: forward prices

Forward prices have the following form

B(t,Tk)

B(t,Tk+1)
=

B(t,Tk)

B(t,TN)

B(t,TN)

B(t,Tk+1)
=

Muk
t

M
uk+1
t

= exp
(
φTN−t(uk)− φTN−t(uk+1)

+
〈
ψTN−t(uk)− ψTN−t(uk+1),Xt

〉)
. (25)

Now, φt(·) and ψt(·) are order-preserving, i.e.

u ≤ v ⇒ φt(u) ≤ φt(v) and ψt(u) ≤ ψt(v).

Consequently: positive initial LIBOR rate yields positive LIBOR rates for
all times.
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Affine LIBOR model

Affine LIBOR model: forward measures

Forward measures are related via:

dPTk

dPTk+1

∣∣∣
Ft

=
F (t,Tk ,Tk+1)

F (0,Tk ,Tk+1)
=

B(0,Tk+1)

B(0,Tk)
× Muk

t

M
uk+1
t

(26)

or equivalently:

dPTk+1

dPTN

∣∣∣
Ft

=
B(0,TN)

B(0,Tk+1)
× B(t,Tk+1)

B(t,TN)
=

B(0,TN)

B(0,Tk+1)
×M

uk+1
t . (27)

Hence, we can easily see that

B(·,Tk)

B(·,Tk+1)
=

Muk

Muk+1
∈M(PTk+1

), for all k ∈ {1, . . . ,N − 1}. (28)
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Affine LIBOR model

Affine LIBOR model: dynamics under forward measures

The moment generating function of Xt under any forward measure is

EPTk+1

[
evXt

]
= M

uk+1

0 EPTN
[M

uk+1
t evXt ] (29)

= exp
(
φt

(
ψTN−t(uk+1) + v

)
− φt(ψTN−t(uk+1))

+
〈
ψt

(
ψTN−t(uk+1) + v

)
− ψt(ψTN−t(uk+1)), x

〉)
.

Denote by M
uk
t

M
uk+1
t

= eAk+Bk ·Xt ; the moment generating function is

EPTk+1

[
ev(Ak+Bk ·Xt)

]
=

B(0,TN)

B(0,Tk+1)
(30)

× exp
(

vφTN−t(uk) + (1− v)φTN−t(uk+1)

+ φt

(
vψTN−t(uk) + (1− v)ψTN−t(uk+1)

)
+
〈
ψt

(
vψTN−t(uk) + (1− v)ψTN−t(uk+1)

)
, x
〉)
.
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Affine LIBOR model

Affine LIBOR model: caplet pricing

We can re-write the payoff of a caplet as follows (here K := 1 + δK ):

δ(L(Tk ,Tk)− K )+ = (1 + δL(Tk ,Tk)− 1 + δK )+

=

(
Muk

Tk

M
uk+1

Tk

−K

)+

=
(

eAk+Bk ·XTk −K
)+
. (31)

Then we can price caplets by Fourier-transform methods:

C(Tk ,K ) = B(0,Tk+1)EPTk+1

[
δ(L(Tk ,Tk)− K )+

]
=

KB(0,Tk+1)

2π

∫
R

Kiv−R
ΛAk+Bk ·XTk

(R − iv)

(R − iv)(R − 1− iv)
dv (32)

where ΛAk+Bk ·XTk
is given by (30).
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Example: CIR martingales

CIR martingales

The Cox-Ingersoll-Ross (CIR) process is given by

dXt = −λ (Xt − θ) dt + 2η
√

XtdWt , X0 = x ∈ R>0, (33)

where λ, θ, η ∈ R>0. This is an affine process on R>0, with

Ex

[
euXt

]
= exp

(
φt(u) + x · ψt(u)

)
, (34)

where

φt(u) = −λθ
2η

log
(
1− 2ηb(t)u

)
and ψt(u) =

a(t)u

1− 2ηb(t)u
, (35)

with

b(t) =

{
t, if λ = 0
1−e−λt

λ , if λ 6= 0
, and a(t) = e−λt .
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Example: CIR martingales

CIR martingales: closed-form formula I

Definition

A random variable Y has location-scale extended non-central chi-square
distribution, Y ∼ LSNC−χ2(µ, σ, ν, α), if Y−µ

σ ∼ NC−χ2(ν, α)

Then we have that

Xt

PTN∼ LSNC−χ2

(
0, ηb(t),

λθ

η
,

xa(t)

ηb(t)

)
,

and

Xt

PTk+1∼ LSNC−χ2

(
0,

ηb(t)

ζ(t,TN)
,
λθ

η
,

xa(t)

ηb(t)ζ(t,TN)

)
,

hence

log

(
B(t,Tk)

B(t,Tk+1)

)
PTk+1∼ LSNC−χ2

(
Ak ,

Bkηb(t)

ζ(t,TN)
,
λθ

η
,

xa(t)

ηb(t)ζ(t,TN)

)
.

31 / 36



Example: CIR martingales

CIR martingales: closed-form formula II

Then, denoting by M = log
(

B(Tk ,Tk )
B(Tk ,Tk+1)

)
the log-forward rate, we arrive at:

C(Tk ,K ) = B(0,Tk+1) EPTk+1

[(
eM −K

)+
]

= B(0,Tk+1)
{

EPTk+1

[
eM1{M≥log K}

]
−K PTk+1

[M ≥ log K]
}

= B(0,Tk) · χ2
ν,α1

(
log K− Ak

σ1

)
−K? · χ2

ν,α2

(
log K− Ak

σ2

)
,

(36)

where K? = K · B(0,Tk+1) and χ2
ν,α(x) = 1− χ2

ν,α(x), with χ2
ν,α(x) the

non-central chi-square distribution function,

ν =
λθ

η
, σ1,2 =

Bkηb(Tk)

ζ1,2
, α1,2 =

xa(Tk)

ηb(Tk)ζ1,2
,

and

ζ1 = 1− 2ηb(Tk)ψTN−Tk
(uk), ζ2 = 1− 2ηb(Tk)ψTN−Tk

(uk+1).
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Example: CIR martingales

CIR martingales: volatility surface
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Example of an implied volatility surface for the CIR martingales.
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Example: CIR martingales

Γ-OU martingales: volatility surface
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Summary and Outlook

Summary and Outlook

1 We have presented a LIBOR model that

is very simple (Axiom 0 !), and yet . . .
captures all the important features . . .
especially positivity and analytical tractability.

2 Future work:

thorough empirical analysis
extensions: multiple currencies, default risk

3 M. Keller-Ressel, A. Papapantoleon, J. Teichmann (2009)
A new approach to LIBOR modeling.
Preprint, arXiv/0904.0555

Thank you for your attention!
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