
�������������������
����


������������	
�������
�����������	����	��������

����
�������

��������������� !

���"����
#$�%

���&!�����'���()*+

,##'-..�����/������.'�'��0.�()*+

��������������������	�����	���
���	


*121���00�3,$0�##0��4��$�

	�5/�!���6����17*+8


�'#�5/���7111

���������	
��	���	�����
������������������	���	���
��	��������������
���������
���	�
����	���������������

������	����	����	
���	�������
���
 ����!�"��������	������ ���#������"���
��$��%�&����
����
���
������	 

��	� �
���
� #�
��

���
� ��������#�
��'�� ���(�� ����������� )���	� ��	�
�����	
���� *������ �		��+��� ��(�#

,�	
�
����	����#�-�	����	���� ��	��������
����#���	��������
���� 
�����	
����,����-����&��(�	
��'���

����������#�������
��'��-�	���&��(�	
��'����.�

�&��(�	
��'��%����������&��(�	
��'�������&��(�	
��'����#

����������*�	������
������������������	������/
�������$��+�	
��# �������(��$
��0�	�

�#��	�����
����

���������	
���#���������

�	�
'����
���������1������
���	������������������
��	�����

�

2�3444�!'�-��5,���������.��/�#	�$�-�	�
'�����#����6�������
+����/

�	����
�	�
�	(�#������	��
������
���

��0�����������0���#��$����	��	���
�����'�!��7����#�$��������0�
�������	��

�����	�(�#�#��������

��	�#���

���
�#����2����������
���(����������
��	���



�����������	
�����
�	����������	�
�	������	����

����������	��������������	���������� �
��!���"

��#��$��%����&	��������'()*

!����+,���-...

/#0������).���)1���*.

��������

2�����	�������������	�����	����	
������3	��	���
���	��������4��	�
�	��+	�%�����5���+�	����

�4�
���	�����
	�����������
����
����
���4��6���+������������
%��	
�����
����������������	��������	��

	
���������������	��
	�����,���6��	�����,������	������	�	�����+�������4����
%���$��
�	�	
����"�����

�6������4�
���	������ ���� �
���+�
� �����4�
	�
���	��� ���� �����+��	����������	�+������+�	�� �������


�����������+�������������������	����	
������	�������������4��+�������+	�%���������������)((.�����

4������	��
���	�����������+�	������,������
����
����
���������	���	
��������������4��6���+��������

���
%�����������
�	,���	��������������������	������������	������6
�	�����	���
�	������	���
��������	�

���
%��������3��	��������#3����
����	��
���	�����������������4����6���+�����	��3������������	��4����6���+�

������3�������������+�6����

����������	� �����������	������

����������7��3��������4�!
���
��	���2�
�������� ����������������4���������

8��	��+�����4����	�
�� 5����!�	���7��3������

���	��$	�����	������������ 9):����������	��

��������� -)..�������3�����

����+,����5��:*-).

��� �
��!���"�

����������������4����������

5����!�	���7��3�������

9.;����������	���

-)..�������3�����

����+,����5��:*-).�

	�����#��

����"<
�,��������	������



1

1. Introduction

Since 1997, economists, policymakers, and journalists have talked about the “Asian

flu.” It has generally been perceived that the adverse currency and stock market shock

that first affected Thailand in July 1997 propagated across the world with little regard for

economic fundamentals in the affected countries. Before the Asian flu, there was the

1994 Mexican “Tequila crisis,” and since then, the 1998 “Russian virus.” Emerging

markets economic crises, in general, have been characterized as contagious. According to

Webster’s dictionary, contagion is defined as “a disease that can be communicated

rapidly through direct or indirect contact.” Emerging market economic crises have led to

massive bailouts to quell contagion and have reduced support for free capital mobility.

IMF deputy managing director Stanley Fischer rationalized the 1994 Mexican bailout in

this way: “Of course, there was another justification: contagion effects. They were there

and they were substantial.”1 Contagion has led Bhagwati (1998) and others to argue that

“Capital flows are characterized, as the economic historian Charles Kindleberger of the

Massachusetts Institute of Technology has famously noted, by panics and manias.” If

markets work this way, it is not surprising that Stiglitz (1998) called for greater

regulation of capital flows, arguing that “…developing countries are more vulnerable to

vacillations in international flows than ever before.”

Even though this contagion connotes powerful images of economic and financial

plagues, it is difficult to study scientifically. Evidence of this difficulty is that there is

little agreement on even defining what financial contagion means.2 Since equity market

                                                  
1 See his statement in Calvo (1996, p. 323).
2 For a review of the difficulties in defining contagion, see Dornbusch, Park, and Claessens (2000). A
recent conference, International Financial Contagion: How it Spreads and How it Can be Stopped, jointly
sponsored by the World Bank and IMF featured almost two dozen papers including theoretical models of
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valuations reflect future economic activity, much recent research attempts to learn about

contagion by investigating whether equity markets move more closely together in

turbulent periods. Recent investigations of this issue find at best mixed results, but there

are considerable statistical difficulties involved in testing hypotheses of changes in

correlations across quiet and turbulent periods.3  Nevertheless, there does not seem to be

strong evidence that stock returns in one country are more highly correlated with returns

in other countries during crisis periods once one takes into account the fact that the

conditional correlation of stock returns is higher during such periods even if the

unconditional correlation is constant.4 A related literature demonstrates that, even though

correlations change over time, it is difficult to explain changes in correlations.5

An important difficulty with investigations of contagion that focus on correlations is

that they assume a linear propagation mechanism, where contagion is proportional to

returns. None of the concerns expressed about contagion seem based on a linear

propagation mechanism. These concerns are generally founded on the presumption that

there is something different about extremely bad events that leads to irrational outcomes,

excess volatility, and even panics. In the context of stock returns, this means that if panic

grips investors as stock returns fall and leads them to ignore economic fundamentals, one

would expect large negative returns to be contagious in a way that small negative returns

are not. Correlations that give equal weight to small and large returns are not appropriate

                                                                                                                                                      
contagion (Pritsker, 2000; Schiniasi and Smith, 2000), conceptual, survey contributions (Forbes and
Rigobon, 2000), country case studies (De Gregorio and Valdes, 2000; Eichengreen, Hale, and Mody, 2000;
Park and Song, 2000) and broad-based empirical studies (Kaminsky, Lyons, and Schmukler, 2000; Gelos
and Sahay, 2000). Other important recent contributions include Masson (1999), Glick and Rose (1999),
Kyle and Xiong (1999), Kaminsky and Reinhart (2000) and Allen and Gale (2000).
3 See Baig and Goldfajn (1998) and Forbes and Rigobon (1998).
4  See Boyer, Gibson, and Loretan (1997) and Rigobon (1998).
5  See, for instance, Erb, Harvey, and Viskanta (1995), King, Wadhwani, and Sentana (1995), Longin and
Solnik (1995, 2000), and Karolyi and Stulz (1996).
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for an evaluation of the differential impact of large returns. It could be that large shocks,

because they exceed some threshold or generate panic, propagate like wildfire across

countries, but this propagation is hidden in correlation measures by the large number of

days when little of importance happens.

In this paper, we abandon the correlation framework that previous research has

focused on to study contagion and direct our attention instead to large absolute value

daily returns. To avoid a situation where our results are dominated by a few observations,

we do not compute correlations of large returns but instead measure joint occurrences of

large returns. We show that linear models cannot explain patterns that we observe for

large absolute value returns. We find that there is more contagion of large absolute value

returns than linear models would predict. We then show that an approach that is well

established in epidemiology research on contagious diseases, the multinomial logistic

regression model, can be helpful in understanding financial contagion.6  In the

epidemiology literature, the model is used to answer questions such as: Given that N

persons have been infected by a disease, how likely is it that K other persons will be

affected by that disease?  We use multinomial logistic regressions to predict occurrences

of large returns, which we refer to as “exceedances.” With this model, we can determine

how likely it is that two Latin American countries will have large returns on a particular

day given that two countries in Asia have large returns on that day and given control

variables (or, covariates) measured using information up to the previous day. We find

                                                  
6  Hosmer and Lemeshow (1989) in the introduction to their book, Applied Logistic Regression, write that
"…the logistic regression model has become the standard method for regression analysis of polychotomous
data in many fields, but especially the health sciences. Nearly every issue of such major journals as
American Journal of Epidemiology, American Journal of Public Health, International Journal of
Epidemiology, and Journal of Chronic Diseases has articles whose analyses are based on the logistic
regression model." Other important books on epidemiological research methods, such as Breslow and Day
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that exchange rate changes, interest rate levels, and regional conditional volatility of

equity market returns are important covariates that help predict and explain contagion.

With our data, contagion differs across regions. Contagion appears to be much stronger

within Latin America than it is within Asia. Further, large positive and large negative

returns are equally contagious in Asia but not in Latin America where large negative

returns are more contagious.

Our approach enables us to consider contagion across regions as well as within

regions. An earlier literature looked extensively at the transmission of information across

advanced markets during the calendar day.7 Our investigation is related to this literature

in that we consider the impact of large returns in one region on the probability of

observing large returns in other regions. We find evidence of cross-region contagion.

However, the U.S. seems completely insulated from any Asian contagion. We show that

the extent of contagion from one region to another cannot be explained by a linear model

of the propagation of shocks.

Our approach is also related to a growing literature in the field of risk management

that shows that the behavior of tail observations for financial returns is different from the

behavior of other observations.8 This literature, drawing on a considerable statistical

literature on so-called extreme-value theory, models the distribution of the tail

observations ignoring the distribution of the other observations. In this paper, we draw

                                                                                                                                                      
(1980), Kleinbaum, Kupper, and Morgenstern (1982), Moolgavkar and Prentice (1986), and Clayton and
Hills (1993), have many applications of multinomial logistic regression.
7 Important investigations of daily and intraday international “spillovers” of returns and volatility include
studies by Eun and Shim (1989), Hamao, Masulis, and Ng (1990), King and Wadhwani (1990), Engle, Ito,
and Lin (1990), Lin, Engle, and Ito (1994), Susmel and Engle (1994), and Bae and Karolyi (1994). More
recent contributions include Ramchand and Susmel (1997), Connolly and Wang (1999), and Ng (2000).
8 See Longin (1996), Danielsson and de Vries (1997), Longin and Solnik (2000) and, especially, recent
applications to Asian markets by Kaminsky and Schmukler (1999) and Pownall and Koedijk (1999).
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inspiration from this literature in focusing on extreme returns and study the probability of

joint occurrences, which we denote as “co-exceedances,” of such returns across countries.

To apply our approach, we use a sample of daily returns that is constructed using

uniform criteria. The sample we use is given by the daily returns of the investible indices

of the International Finance Corporation (IFC indices) for 17 Asian and Latin American

markets of the Emerging Markets Database.9 These returns are particularly well suited to

our analysis because they correspond to the returns of portfolios that can be held by

foreign investors. Unfortunately, these returns are only available for a period of slightly

more than three years (880 time-series observations).

The paper proceeds as follows. In Section 2, we present our data, provide statistics on

joint occurrences of extreme returns, and calibrate the joint occurrences of extreme

returns using Monte Carlo simulation evidence. In Section 3, we motivate the use of a

multinomial logit model to explain joint occurrences of extreme events and estimate such

a model. The model is then used to show how contagion takes place within regions. In

Section 4, we investigate contagion across regions. We conclude in Section 5.

2. Can financial contagion be explained by linear models?

In this section, we first discuss our data and its properties. We then turn to the

distribution of extreme returns that we use throughout the study and investigate whether

contagion among extreme returns can be understood using a linear model.

                                                  
9 Detailed information can be obtained from The IFC Indexes: Methodology, Definitions and Practices
(February, 1998, International Finance Corporation, Washington, DC).
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2.1. Data

A number of explanations of contagion are based on actions by foreign investors. We

therefore use indices that are representative of the capitalization of stocks that foreign

investors can hold. The International Finance Corporation produces such indices for

emerging markets. We use the IFC indices from Asia and Latin America. To study the

extent to which contagion affects the U.S. and Europe, we also use the S&P 500 index for

the U.S. and the Datastream International Europe index for Europe. Our focus is on daily

returns. Daily returns are available for the IFC indices since December 31, 1995. Our

sample of daily returns therefore starts on December 31, 1995, and ends on May 14,

1999. The sample period includes the 1997 Asian crisis as well as the 1998 Russian

crisis.

Table 1 provides sample statistics, including correlations. Not surprisingly, the

properties and composition of the indices vary dramatically across countries. Malaysia

has the highest average capitalization over our sample period among the IFC indices we

use, while Sri Lanka has the smallest. Sri Lanka's index has five stocks on average, while

the index for Malaysia has 144 stocks on average. All IFC indices have a greater standard

deviation than indices for the U.S. or Europe.

Correlations within regions are higher than correlations across regions. However,

none are particularly high except for the correlations among Brazil, Argentina, Chile, and

Mexico which are all above 0.5. On a given day, trading starts in Asia and ends in the

Americas. Consequently, information that becomes available in Latin America at noon

cannot affect stock prices in Asia the same day. We consider, therefore, correlations

between returns in Asia and Latin America on the same day as well as those between
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returns in Asia today and Latin America on the preceding day. The correlation between

returns in Asia and Latin America separated by one day are roughly the same size as the

same day correlations.

Correlations have been much studied. For the reasons discussed in the introduction,

we focus instead on joint occurrences of extreme returns. At this point, we arbitrarily

define an extreme return, or exceedance, as one that lies in the 5 percent tails of the

overall return distribution. Alternative definitions are used later.10 We treat positive

extreme returns separately from the negative extreme returns. Our next step is to count

the number of joint occurrences of extreme returns, or co-exceedances, within a region.

Table 2 presents the results with three panels associated with (i) the whole sample period,

(ii) the pre-crisis period, and (iii) the crisis period. We define a co-exceedance count of i

units for negative returns as the joint occurrence of i exceedances of negative returns.

Looking at Asia first, the distribution of co-exceedances is mostly symmetric. There are

two days with seven or more countries in the bottom tail and two days with seven or

more countries in the top tail. The same symmetry holds for other numbers of co-

exceedances. The one case where there is a substantial difference between the bottom tail

co-exceedances and the top tail co-exceedances is for the category of three co-

exceedances. In that case, there are 23 days with three countries in the bottom tail and

only 13 days with three countries in the top tail. Indonesia was in the bottom tail for 13 of

the 23 days and Korea was in the bottom tail for 10 days out of the 23 days. In general, a

crisis country (Thailand, Korea, Malaysia, and Indonesia) seems more likely to be in the

                                                  
10 Longin (1996), Longin and Solnik (2000), Pownall and Koedijk (1999), and Kaminsky and Schmukler
(1999) employ conditional parametric or non-parametric measures of extreme returns. Later, we employ a
conditional approach as a robustness check on our (co-) exceedances using an EGARCH model of
conditional volatility. We also employ different sizes for the tails.
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bottom tail when other countries are in the bottom tail. Looking at the correlations of

Table 1, these patterns in extreme returns are not a complete surprise since the crisis

countries have higher correlations among themselves than with the non-crisis countries.

We report in Table 2 the average returns for each of the 10 Asian countries when more

than seven Asian countries experience an exceedance on a given day. The crisis countries

have larger negative returns on such days than non-crisis countries. Interestingly, the

absolute value average return is higher for positive returns than for negative returns on

such days.

Though Latin America has only seven countries, there are four days where all seven

countries are in the bottom tail at the same time and 10 days when six countries or more

have extreme negative returns. This contrasts with the case for positive extreme returns in

which there is only one day when six countries or more fall in the positive tail. In Latin

America and unlike Asia, therefore, there is evidence of asymmetry in that co-

exceedances of negative returns are more likely than co-exceedances of positive returns.

Further, co-exceedances are more likely. For instance, each Asian country has at least 10

extreme negative returns alone, but there are only four days where Mexico is alone in

having an extreme return. Put another way, 40 out of 44 of Mexico's negative extreme

return days occur when some other Latin American country has a negative extreme

return. As a further demonstration of the asymmetry, Mexico has 16 days out of 44

extreme positive return days where it experiences a positive extreme return alone in Latin

America.

If we consider separately the periods before and after the devaluation of the Thai Baht

(results not reported), all Asian co-exceedances involving three countries or more take
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place after the devaluation of the Thai Baht and all Latin American co-exceedances

involving four countries or more experiencing negative extreme returns take place

afterwards. The difference before and after the Thai Baht devaluation reflects the same

result as that observed by Forbes and Rigobon (1998, 2000) and others of an increase in

correlations during the Asian crisis period. Indeed, a result of this type is difficult to

interpret because conditioning on the occurrence of large returns, we should see higher

correlations. The reason for this is that, in the presence of a common factor, large returns

are more likely to be associated with large realizations of the common factor. To

understand whether the occurrence of co-exceedances can be explained by conditioning

on large absolute value returns, we have to investigate what the distribution of co-

exceedances would be if correlations were constant during the sample period. To this

end, we perform a Monte Carlo simulation experiment.

2.2. Contagion versus co-exceedances: Monte Carlo simulation evidence.

We now consider the following experiment. Suppose that the covariance matrix of

returns is stationary over the sample period and that the returns follow a multivariate

Normal or Student-t distribution. Using that covariance matrix, we simulate 880 returns

for the Asian countries with 5,000 replications. For each replication, we identify the 5

percent quantile extreme returns for the bottom and top tail of the return distributions and

perform the same non-parametric count across countries by region as in Table 1. Doing

so provides us with a distribution of exceedances and co-exceedances. We use that

distribution to calibrate the observed sample of co-exceedances. The results are shown in
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Table 3 and for each scenario we report the simulated mean, standard deviation, 5 percent

and 95 percent quantiles, and the simulated p-value of the 5000 replications.

The distribution of the co-exceedances will depend on the assumptions made about

the returns generating process To this end, we perform the Monte Carlo simulation with

four scenarios that differ by the number of degrees of freedom underlying the

Multivariate Student-t distribution, which equals N + K –1, where N is the number of

countries (10 for Asia, 7 for Latin America) and where K is set to values ranging from

one (significant positive excess co-kurtosis) to 25 (little excess co-kurtosis,

approximating multivariate Normal). In the table, we report the results separately for Asia

and Latin America. It is immediately apparent that we observe more co-exceedances than

one would expect with a linear model for Latin America, but not necessarily for Asia. For

example, we have two days where seven or more countries in Asia have extreme negative

returns. Yet, in our simulations, we generate an average of 0.31 days where this occurs

for the low co-kurtosis (multivariate Normal) scenario, around 1 day on average in the

moderate co-kurtosis scenarios, but over 10 days with the high co-kurtosis scenario.11

The simulation p-values indicate that the low co-kurtosis (multivariate Normal) scenario

delivers only 40 replications out of 5000 (0.80 percent) in which two or more days of co-

exceedances of negative returns of seven countries occur. However, the higher co-

kurtosis scenarios generate the actual number of co-exceedances in 20 percent to 100

percent of the replications. For co-exceedances of positive returns, the results are similar.

In these cases, the sample has two co-exceedances involving seven countries or more and

                                                  
11 It is important to note that the kurtosis implied by the high co-kurtosis (K=1) scenario for the marginal
distributions of individual country index returns are much higher than the positive excess kurtosis in the
actual returns. In fact, the simulated distributions generate excess kurtosis statistics ranging from 15 to 25,
while the statistics for the actual returns are closer to the 3 to 6 range.
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this count is larger than that generated by the low co-kurtosis scenario (simulated p-value

of 0.00), but it is not unusual for the moderate to high co-kurtosis scenarios.

The results for Latin America are harder to reconcile with the simulations than the

results for Asia. In these experiments, the low co-kurtosis (multivariate Normal) scenario

fails to generate any (simulated p-values of 0.00) observations of five or more co-

exceedances of negative returns of which there are 16 in the actual sample. What is more

surprising is that even the moderate and high co-kurtosis scenario cannot deliver

simulated co-exceedance counts as large as in the actual sample, especially for the four

events with all seven Latin American countries in the bottom tail. By contrast, the

number of positive tail co-exceedances in Latin America is not dramatically different

from the simulated counts. For example, the five co-exceedance events in which five or

more Latin American countries experience returns in the top 5 percent tail occur in more

than 93 percent of the replications for the high co-kurtosis scenario.  They occur in 27

percent to 51 percent of the replications for the moderate (K equals five or 10) co-

kurtosis scenarios. This asymmetry in co-exceedance events represents another challenge

for a linear model of contagion.

One of the concerns expressed by Dornbusch et al. (2000), Baig and Goldfajn (1998),

and Forbes and Rigobon (1998, 2000) is that contagion -- as measured by changes in

cross-market correlations across quiet and turbulent periods – can be biased by

heteroscedasticity. Forbes and Rigobon (1998) show how the bias can be corrected by a

measure of the relative increase in the volatility of market returns, say, for example,

during a crisis period. To see if the co-exceedance results stem from a heteroscedasticity

bias during the Asian crisis period, we performed additional Monte Carlo simulations in



12

which we computed the covariance matrix of returns for the two regions during high and

low volatility periods. For these alternative experiments, we simulated for the full sample

period based on a multivariate distribution for which the parameters were estimated

during only subperiods associated with the highest and lowest quartiles of regional index

return volatility as computed with an EGARCH model. Interestingly, even the scenario

associated with the highest return volatility quartile was unable to deliver co-exceedance

counts of six or seven or more countries as in the actual data for Asia and Latin America.

For example, the resultant simulation p-values for bottom tail co-exceedances of six and

seven or more co-exceedances ranged from 0.86% to 2.54% for Asia and 0.00% to 0.12%

for Latin America.  Results are available from the authors.

The bottom line from our simulation experiments is that it is more difficult to explain

the distribution of co-exceedances for Latin America than Asia. Our simulation evidence

suggests that the frequency of bottom tail and top tail co-exceedances in Asia can be

generated (in 20 percent or more of the 5000 replications) with a reasonable assumption

about positive excess co-kurtosis. For Latin America, this is not the case for the bottom

tail co-exceedance events. At the same time, however, it is important to emphasize that

the number of puzzling observations is small. The events that occur too often compared

to the multivariate Student t or normal distribution model are those in which most

countries in a region have extreme returns at the same time. There are few such days, but

from the perspective of contagion studies, those days are the most interesting.
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3. Contagion within regions

In this section, we show how our approach is useful to understand contagion

within regions. In the first part of the section, we present our approach of using

multinomial logistic regressions. In the second part of the section, we provide estimates

of the regressions for Asia and Latin America.

3.1. The logistic regression approach

Extreme value theory (EVT) has proposed three possible types of limiting

distributions for minima or maxima of a variable including the Gumbel, Fréchet, and

Weibull distributions (Longin, 1996) and each of these has been applied to time series of

financial returns. These studies typically estimate the parameters of these distributions

using parametric (maximum likelihood, regression) and non-parametric approaches. We

know of one application of multivariate EVT to stock returns, but, in this case, a

dependence function between the Fréchet, Gumbel, or Weibull distributions across

variables must be assumed and it is typically a logistic function (Longin and Solnik,

2000). Our approach is different.

Exceedances in terms of extreme positive or negative returns in a particular

country can be modeled as a dichotomous variable. However, our interest in co-

exceedances to capture contagion across many countries within a region requires

classification into many categories using a polychotomous variable. Multinomial logistic

regression models, not very different from the multivariate EVT applications, are popular

approaches to estimate the probabilities associated with events captured in a

polychotomous variable (Maddala, 1986, Chapter 2; Hosmer and Lemeshow, 1989,
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Chapter 8). If Pi is the probability associated with a category i of m possible categories,

then we can define a multinomial distribution given by,

Pi = G(βi’x)/[1 + Σj=1
m-1 G(βj’x)] (1),

where x is the vector of covariates and βi  the coefficients associated with the covariates.

Often, the function G(βi’x) is simplified using a logistic function exp(βi’x) which reduces

(1) to a multinomial logistic model. The model is estimated using maximum likelihood

with (log-) likelihood function for a sample of n observations given by,

logL = Σi=1
nΣj=1

m Iij logPij (2),

where Iij is an indicator variable that equals 1 if the i-th observation falls in the j-th

category, and zero, otherwise. Because Pij is a nonlinear function of the βs, an iterative

estimation procedure is employed and, for this purpose, we choose the Broyden, Fletcher,

Goldfard, and Shanno algorithm. The matrix of second partial derivatives delivers the

information matrix and asymptotic covariance matrix of the maximum likelihood

estimator for tests of significance of the individual estimated coefficients. Goodness of fit

is measured using the pseudo-R2 approach of McFadden (1974) where both unrestricted

(full model) likelihood, Lω, and restricted (constants only) likelihood, LΩ, functions are

compared,

pseudo R2 = 1 – [logLω / logLΩ] (3).

In our application to co-exceedances across countries within Asia and Latin

America, we balance the need to have a parsimonious model, and yet one that richly

captures the range of possible outcomes. We therefore choose to restrict our categories to

total five in number: 0, 1, 2, 3, and 4 or more co-exceedances.  For a simple model of

constants, only m-1, or four parameters need to be estimated, for example. But, for every
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covariate added to the model such as the conditional volatility of returns for the regional

index, four additional parameters need to be estimated. We choose to estimate the co-

exceedances separately for positive and negative extreme returns (though we test the

importance of this distinction later). Finally, we compute the probability of a co-

exceedance of a specific level, Pi, by evaluating the covariates at their unconditional

values,

Pi
* = exp(βi’x

*)/[1 + Σj=1
m-1 exp(βj’x

*)] (4),

where x* is the unconditional mean value of x. From this measure and following Greene

(1997, Chapter 19), we compute the marginal change in the probability for a given unit

change in the independent covariate and test whether this change is statistically

significantly different from zero. Because it is often difficult to judge whether changes in

probabilities of a given co-exceedance level are large or small economically, we further

compute the sensitivity or response of our probability estimates to the full range of values

associated with different covariates instead of just at its unconditional mean. These

probabilities across the five categories add up to one and we use plots to illustrate

visually the changes in these probabilities, a new approach in finance that we call the “co-

exceedance response curve.”12

Note that our key hypotheses relate to the existence of contagion across regions as

well as measuring contagion within regions. Specifically, we will assess the importance

of the co-exceedance events within Asia and Latin America for the likelihood of an

                                                  
12 There are many examples of applications in epidemiology of multinomial logistic regression that test the
sensitivity of probabilities of difference events to groups of covariates. Gillespie, Halpern, and Warner
(1994) study lung cancer deaths per year among ex-smokers and employ covariates such as age, gender,
college attendance, smoker, and years since quitting for ex-smokers. Our co-exceedance response curves
are inspired by their study. Marketing applications to sales growth models of new product innovation or
“diffusion” employ multinomial logistic models (Lilien and Kotler, 1992).
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exceedance in the U.S. and Europe. To this end, we will need to estimate a logistic

regression model for the U.S. but it must necessarily be for a dichotomous variable, or

binomial logistic regression. This is a simple version of our multinomial logistic

regression model and all estimation procedures, inference tests, pseudo-R2, and even

“exceedance response curve” plots are computed accordingly. For simplicity, we

compute the analogous models for Europe as a single entity.

3.2. Contagion within regions.

Table 4 provides estimates of our multinomial logistic regressions for Asia and

Latin America. We estimate the regressions separately for the bottom tails and the top

tails. Panel A shows estimates for Asia and Panel B shows estimates for Latin America.

Column (1) reports estimates of regressions for the bottom tails for Asia that provide us

with estimates of probabilities of co-exceedances. We find (not reported) that there is a

probability of 69.77 percent that no Asian country has a bottom tail return. If bottom tail

exceedances were independent, this probability would be 59.87 percent.  The coefficient

β01 is associated with the event “Y = 1” or the case where one country has an extreme

return and its probability is 19.66 percent. Since there are no covariates, these

probabilities are the sample frequencies. In column (2), we add the conditional volatility

of the regional index as an explanatory variable. We find that the conditional volatility

increases the probability of extreme returns significantly. To see the impact of

conditional volatility, it is useful to evaluate the marginal probability of exceedances with

respect to the conditional volatility. An increase in conditional volatility increases the

probability of all exceedances, but the effect decreases as we look at a higher number of

joint occurrences. For instance, a 1 percent increase in the conditional volatility increases
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the probability of one exceedance by 0.146 percent and the probability of four or more

occurrences by 0.027 percent. All the partial derivatives are significant at 5 percent level

or better. The pseudo-R2 is 7.62 percent.

In column (3), we add the average exchange rate change in the region as well as

the average interest rate level in the region.13 This allows us to answer the question of

whether the probability of co-exceedances is affected by exchange rate shocks to the

region and by the level of the interest rates.  We see that this is indeed the case if we look

at the regression coefficients. If currencies fall on average, extreme returns are more

likely. Further, if interest rates are higher, exceedances are more likely. In the case of

interest rates, however, the significance of an increase in interest rates on the probability

of exceedances differs depending on whether we look at the regression coefficients or at

the partial derivatives of the exceedance probabilities. The partial derivatives are

computed at the means of the regressors and are not significant for three or four or more

exceedances. Adding exchange rate changes and the level of interest rates more than

doubles the pseudo-R2 to 17.95 percent. Further, it is clear from looking at the

probabilities of co-exceedances evaluated at the mean of the regressors that for the

probabilities of co-exceedances to be at their unconditional mean, the regressors have to

be much larger than their mean values. The significance of exchange rates as predictors

of contagion raises the question of whether the stock return contagion we measure is

actually foreign exchange contagion since we measure returns in dollars. To examine this

                                                  
13 Data on daily exchange rates relative to the U.S. dollar and interest rates for each country are obtained
from Datastream International. The interest rate series chosen is typically the short-term rate of interest
available in Datastream with availability back to 1995. We computed simple equally-weighted average
exchange rate changes and average interest rate by region for these covariates.
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issue, we estimated but do not report our models in local currency returns. Our results are

similar using local currency returns.

When we look at the top-tail events (models 4 to 6 in Table 4), we find no

evidence that contagion is less likely for positive extreme returns than it is for negative

extreme returns. A pairwise comparison of the coefficients in column (1) and (4) cannot

reject that the coefficients are equal (Wald χ2 statistic of 0.21, p-value of 0.65, not

reported). Hence, for Asia, there is no evidence that contagion is somehow more

important for negative returns than it is for positive returns. Conditional volatility is

helpful in predicting positive co-exceedances. The exchange rate coefficients are negative

and significant. In other words, the likelihood of seeing positive extreme returns in more

than one country increases when on average the exchange rate in the region appreciates.

The interest rate variables provide no information for positive co-exceedances. The

pseudo-R2s are much lower for positive returns than they are for negative returns, so that

our covariates are more successful at explaining contagion for negative returns than for

positive returns.

In the second panel of Table 4, we see that the results for Latin America differ

substantially from those for Asia. The probability of no extreme return on a day is much

higher for Latin America than it is for Asia. We estimate the probability of no extreme

return to be 82.72 percent for Latin America, while it is 69.77 percent for Asia. The

probability of having four or more Latin American countries experience an extreme

return on the same day is higher than the corresponding probability for Asia. The

explanatory variables are significant for Latin America in the same way that they are for

Asia except that interest rates do not appear to be useful in explaining contagion of
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extreme negative returns in Latin America. The partial derivatives of the probabilities

with respect to regressors are significant except for interest rates, but they are smaller for

conditional volatility and larger for exchange rates than those for Asia. Turning to the

positive extreme returns, we see that the probability of no positive extreme return is

lower than the probability of no negative extreme return. There seems to be an

asymmetry between positive and negative extreme returns in Latin America. A pairwise

comparison of the probability of positive extreme return and negative extreme return co-

exceedances confirms the asymmetry for co-exceedances of four or more extreme returns

in that co-exceedances of four or more extreme returns are more likely for negative

extreme returns than for positive extreme returns (Wald χ2 statistic of 3.17, p-value of

0.07, not reported).

We also include the U.S. and Europe in third and fourth panels of Table 4. For the

U.S., the coefficient on the conditional volatility of the market is positive and significant

for both negative and positive tail events, but the partial derivative of the probability of

an exceedance with respect to the conditional volatility is significant only for positive tail

events. Exchange rate and interest rate levels do not offer any predictive power.14 The

pseudo-R2s are low especially for the bottom tail. For Europe, there is clear evidence that

an increase in the conditional volatility of returns increases the probability of tail events.

The evidence is more mixed for exchange rate and interest rate variables. The pseudo-R2s

are substantially higher than those of the emerging market regions for the positive tail

                                                  
14 For the U.S. we employed the equally-weighted average exchange rate for both the Asian and Latin
American regions in the binomial tests as well as the daily Fed funds rate. For Europe, we used the DM-
U.S. dollar bilateral exchange rate and the short rate in Germany as a proxy.
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events, but adding interest rate and exchange rate variables has almost no impact on

pseudo-R2s.

Figure 1 illustrates the co-exceedance response curve of Asia associated with the

model in column (3) of Table 4. Note that these plots apply only to the bottom tail events.

Such curves are important in understanding the impact of the covariates on the

probability of exceedances. In the tables, we provide estimates of the partial derivatives

of the exceedance probabilities with respect to the regressors evaluating the partial

derivatives at the means of the regressors. However, these partial derivatives give an

incomplete picture of the impact of changes in the regressors because the probabilities are

not linear functions of the regressors. Plotting the probability of exceedances as a

function of a regressor over the whole relevant range of the regressor permits us to better

assess how changes in the regressor affect the probability of exceedances. Consider the

top plot that shows the sensitivity of implied conditional probabilities of different

numbers of co-exceedances to the conditional volatility of Asian index returns. The

different areas of the plot correspond to different co-exceedance events. Clearly, the

probability of various co-exceedances in Asia increases with the conditional volatility,

but it does so nonlinearly, so that a linear approximation provides an incomplete picture

of the impact of changes in the conditional volatility. At very high levels of volatility

(about 3.5 percent per day), for example, the probability of two or more co-exceedances

reaches almost 45 percent. An obvious issue is that one has to be cautious in evaluating

such a result because we end up focusing on a subset of an already small number of tail

events The two bottom plots are associated with the model for the exchange rate change

and interest rate level covariates. Interestingly, the sensitivity of co-exceedances to
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interest rate levels is similar to conditional volatility, but the sensitivity to exchange rate

changes – no doubt in large part due to the crisis period – is dramatic and highly non-

linear. The response curve slope is relatively flat until rather large average exchange rate

depreciations of 1 percent or more after which the probability of regional contagion rises

to a maximum of 50 percent to 80 percent.

Two robustness checks follow. First, we provide a full set of Wald χ2 tests of the

restriction that the regression coefficients are the same for positive exceedances and

negative exceedances to which we have already referred above. We find that for Asia we

cannot reject the hypothesis that positive and negative return joint exceedances are

equally likely. For Latin America, there is an asymmetry in co-exceedances of four or

more where negative co-exceedances are more likely. Second, it is important to

remember that the analysis of Table 4 uses contemporaneous covariates. We also

extended the analysis to incorporate some dynamics in co-exceedances by considering

whether knowing the number of extreme returns of yesterday is helpful in predicting the

number of extreme returns today. The results (not reported) show that the lagged values

of co-exceedances are statistically significant for Latin America, Asia, less so for Europe,

but clearly not for the exceedances in the U.S. This specification ignores, however, the

lagged effects of the interest rate, exchange rate, and regional conditional volatility

covariates or the multi-day horizon for measuring co-exceedance events. We address

these supplementary issues in the next section.

How well specified these particular models are is an open question. Our primary

focus is on the extent of contagion across regions, so it is important that our tests
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condition on reasonable covariates or factors that affect contagion within regions. We

offer a number of sensitivity tests to address this concern in this and later sections.

4. Contagion across regions.

In this section, we investigate contagion across regions. The type of question we

address is whether the fact that there are co-exceedances, or joint occurrences of extreme

returns, of a given number in Asia can help predict the number of co-exceedances or

extreme returns in Latin America or in other regions. In the first part of the section, we

answer this type of question using a base model. In the second part of the section, we

explore alternate specifications.

4.1. The base case model.

To investigate the question we are interested in, we re-estimate the models of Table 4

for Asia, Latin America, U.S., and Europe, respectively, but add two covariates related to

co-exceedances (Yjt
*) and regional market volatility (hjt

*) from each of the other regions

during the preceding trading session that day. Timing conventions are important since

U.S. and Latin American markets open after the markets for Asia have closed. Therefore,

we add to the Asian contagion regressions the number of extreme returns in Latin

America on the previous trading day and the conditional volatility of the Latin American

regional index as of the previous day. The re-estimated model for Asia is given in column

(1) of Table 5 for the bottom tails and in column (4) for the top tails. The regression

coefficients on the number of exceedances in Latin America are significant (β5k for k

equals 1 to 4 are all significant at the one percent level). In evaluating the derivative of
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the exceedance probabilities (“∆ prob” in table), we note that an increase in the number

of exceedances in Latin America increases the probability of all four exceedance

outcomes in Asia except for the outcome of four exceedances or more for negative tail

events. It seems surprising at first that the coefficient β54 is significant but its associated

probability, P4, is not, but this no doubt reflects the non-linear logistic mapping (e.g.

equation 1).  It is also important to note that the slope of the probability function is

evaluated at the unconditional mean of the covariate, which does not capture the possible

non-linearity in the response function.15

A concern with these results is that the number of exceedances in Latin America

might proxy for an exceedance in the U.S. This turns out not to be the case. We re-

estimated our regressions adding a variable that takes a value of one if the U.S. has an

exceedance and zero otherwise. Adding this dummy variable does not change our results.

This indicates that there is something unique about contagion among emerging markets.

The coefficients are significant for all exceedance outcomes for positive tails, but the

partial derivatives of the probabilities are not. We add two Wald chi-squared statistics

associated with tests of the null hypothesis that the block of coefficients associated with

the conditional volatility and the number of exceedances in the other market are jointly

zero. The conditional volatility of Latin America does not seem to be very helpful in

predicting exceedances in Asia. Introducing this variable weakens the estimates of the

                                                  
15 Greene (1997, p. 667) also points out that computation of the marginal effects of the regressors on the
probabilities in multinomial logit models and the standard errors are likely to be “exceedingly complex.”
The challenge is the higher dimensionality which complicates the use of the linear approximation approach
for the inverse of the Hessian at the maximum likelihood estimates. He states that “for any particular xk,
∂Pj/∂xk need not even have the same sign as βjk” (footnote 44, p. 667).
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impact of changes in the conditional volatility of Asia on the probability of exceedances

in Asia.

When we turn to contagion from the U.S. (Models 2 and 5), we see that the

coefficient on the U.S. exceedance has a significant coefficient, but the effect on the

probability is small.  Again, however, the conditional volatility of the U.S. is not helpful

to predict exceedances in Asia. Further, whether the U.S. had an extreme return seems

more helpful in predicting the number of negative extreme returns in Asia than the

number of positive extreme returns, although the Wald statistics indicate both are

significant at the one percent level. Finally, the results from adding European covariates

(models 3 and 6) are similar to those obtained from adding U.S. covariates. Comparing

the regressions of Table 5 for Asia with those of Table 4, we see that the pseudo-R2 is

substantially higher in all cases. We also see that we cannot reject the hypothesis that the

new coefficients on the conditional variances and on the number of exceedances are

significantly different from zero, except that the Latin American conditional volatility

does not significantly affect the number of positive exceedances in Asia.

The contagion tests for Latin America are presented in the second panel. Remember

that Asia closes before the markets in Latin America open on the same day; as a result,

we use same day returns in measuring contagion from Asia to Latin America. For the

negative extreme returns, we find that Latin America has more negative extreme returns

if Asia has more negative extreme returns. The results for conditional volatility are more

mixed, except that the coefficient on conditional volatility is significant for four or more

exceedances. The same results apply for extreme returns from the U.S. and Europe.

Surprisingly, positive exceedances for four countries or more become less likely for Latin
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America when the conditional volatility of Asia is high. The pseudo-R2s of the Latin

American regressions increase much more by adding covariates from another region than

the pseudo-R2s of Asia. For all the regressions, we cannot reject the hypothesis that the

coefficients on the added variables are significant.

Finally, we turn to the U.S. and Europe in the third and fourth panels of Table 5.

Asian extreme returns or conditional volatility have no effect on the probability of a

negative extreme return for the U.S. or the probability of a positive extreme return for the

U.S. In contrast, extreme returns from Latin America and from Europe have a significant

effect. Since markets in Latin America are open when markets in the U.S. are open, a

concern is that contagion from Latin America is really contagion indirectly from the U.S.

itself. Finally, Europe's probability of negative extreme returns is significantly affected

by extreme returns in all other regions. Again, however, we have to be concerned about

the interpretation of this result, since European markets are open part of the time when

U.S. and Latin American markets are open.

The co-exceedance response curve plots in Figure 2 for Asia show how the

conditional volatility and the number of extreme returns in Latin America, U.S., and

Europe affects the probability of extreme returns in Asia. The plots for Latin America,

U.S., and Europe are given in Figures 3, 4, and 5, respectively. We can see that the

probability of exceedances in Asia increases as the conditional volatility of the Latin

American returns increases and as the number of exceedances in Latin America

increases. However, the impact of an increase in the number of Latin American

exceedances on the probability of four or more exceedances in Asia never exceeds 5

percent.  The impact of Asian exceedances on the probability of one or two exceedances
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in Latin America (Figure 3) seems modest and the impact of Asian exceedances on three

and four exceedances in Latin America is similar to the impact of Latin American

exceedances on the probability that Asia will have three or four or more exeedances.

Viewed from this perspective, contagion seems sharper from Latin America to Asia than

it is from Asia to Latin America. Further, contagion affecting emerging markets is

stronger than contagion affecting developed countries. Figure 4 shows that the U.S. is

largely unaffected by co-exceedances or conditional volatility from Asia. It is somewhat

more dramatically affected by co-exceedances in Latin America, but as discussed earlier,

the relation between exceedances in Latin America and an exceedance in the U.S. is hard

to interpret. Europe is even more insulated from these effects than the U.S.

4.2. Calibrating contagion across regions: Monte Carlo evidence.

The returns among countries of the regions we consider are correlated as evidenced

by Table 1. One would, therefore, expect that extreme returns in one region are more

likely to be accompanied by extreme returns in another region and that the co-exceedance

patterns derive from a linear model. To evaluate whether our new multinomial logistic

regression approach can uncover non-linearities in co-exceedances, we extend the

simulation experiment in Section 2.2. In this experiment, we perform Monte Carlo

simulations of 880 returns (corresponding to the December 31, 1995 to May 14, 1999

period) for each country in Asia and Latin America using 1000 replications using the

historical variance-covariance matrix and assumptions about the joint returns generating

process. As before, we propose the multivariate Student t distribution and allow for

different scenarios that correspond to a range of values for the degrees of freedom

underlying the distribution. Specifically, N+K–1 is the degrees of freedom where N is the
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number of markets  (17, for all of Latin America and Asia) and we allow K to take values

of 1 (significant positive excess co-kurtosis), 5, 10, and 25 (low co-kurtosis,

approximating the multivariate Normal). For each replication, we count co-exceedance

events in both regions and estimate the multinomial logistic regression model of Table 5.

To proceed with the experiments, we only examine whether the number of co-

exceedances in one region can be forecast with the number of co-exceedances in another

region. We perform the experiments for contagion from Latin America to Asia and from

Asia to Latin America. Table 6 summarizes the key findings.

 We find that we cannot explain the coefficients on co-exceedances from the other

region for Asia or Latin America. Looking at the high co-kurtosis (K=1) scenario, we

cannot explain the magnitude of these coefficients. For example, the β1j coefficients

associated with Yjt
*
 co-exceedances from the other region for Asia yield a simulation p-

value of at most 6 percent for the high co-kurtosis scenario in the bottom tails. For Latin

America, the highest simulation p-value for any co-exceedance coefficient is 2 percent

for the top tail in the highest co-kurtosis scenario. Perhaps even more striking, the

pseudo-R2 is at least three times higher in the data than it is in any of the simulations.

Earlier we discussed alternative Monte Carlo simulation experiments to address the

potential bias in the frequency of co-exceedances induced by heteroscedasticity

(Dornbusch et al., 2000; Baig and Goldfajn, 1998; and, Forbes and Rigobon, 1998, 2000).

We repeat the contagion experiment, as for the multivariate Student t distribution above,

but we computed the covariance matrix of returns for the two regions separately during

high and low volatility periods. That is, we simulated for the full sample period based on

a multivariate distribution for which the parameters were estimated during only
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subperiods associated with the highest and lowest quartiles of regional index return

volatility as computed with an EGARCH model. Whether for Asian or Latin American

returns, the simulated β1j coefficients associated with Yjt
*
 co-exceedances from the other

region were almost never as large as in the actual data even for the high volatility

scenario. Simulation p-values of at most five percent result for the high volatility scenario

in the bottom tails in Asia and at most only one percent occur for Latin America. Again,

these results are available from the authors.

4.3. Alternate specifications.

We turn next to several alternate specifications. Though we do not reproduce these

results, we re-estimated our multinomial logistic regressions with Monday dummies.

These dummies are insignificant. We also re-estimated the models of Table 6 using local

currency returns. The results were unchanged. In Table 7, we report our contagion tests

using lagged conditioning variables. Though it is an in-sample experiment, it allows us to

investigate the predictability of contagion. We see immediately that the pseudo-R2 falls.

However, the significance of yesterday's co-exceedances from the other regions is not

less than the significance of same day co-exceedances. The table provides evidence that

contagion across regions is predictable and that the number of co-exceedances of another

region provides useful information in predicting contagion.

A concern we have expressed is that contagion is just the outcome of high volatility.

We investigated this concern in a preliminary way with our Monte Carlo simulations

using high co-kurtosis scenarios. Another approach to investigate this concern is to define

exceedances differently from how we have defined them so far. With the exceedances
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defined in terms of the sample period returns, we necessarily have an outcome where we

have more exceedances in periods of higher conditional volatility. Alternatively, we can

define exceedances using conditional volatility itself, so that the probability of observing

an exceedance is always the same (assuming multivariate normality for returns and a

constant conditional mean). In Table 8, we define positive extreme returns to be those

that exceed 1.65 times the conditional volatility and negative extreme returns those that

are below –1.65 times the conditional volatility. The main impact of defining extreme

returns this way is that a region's conditional volatility is no longer useful in predicting

that region's co-exceedances. However, co-exceedances in one region still provide useful

information in predicting co-exceedances in another region. For instance, the number of

co-exceedances in Latin America still helps explain the number of co-exceedances in

Asia. Surprisingly, with this definition of exceedances, interest rates are no longer useful

to predict exceedances, but exchange rate changes still are.

We use two more definitions of exceedances. We re-estimate (not reported) the base

model regression but use exceedances computed over three days instead of over one day

as regressors. That is, a co-exceedance event is defined as one in which more than one

market experiences an extreme return within a moving three-day window. The objective

of this robustness check is to assess in a rough way the nature of the dynamics in co-

exceedances within a region. Overall, the results are similar to those of the base case in

Table 5 for Asia, but weaker for Latin America. Finally, we define exceedances by the

2.5 percent quantile rather than the 5 percent quantile. Proceeding this way, we have

fewer exceedances. The results (again, not reported) reveal a similar pattern in
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coefficients, partial derivatives of probabilities relative to covariates and co-exceedance

responses to Table 5, but inference tests lose power.

Throughout the paper, we reported estimates for multinomial logistic models. We

considered several alternative specifications, including the ordered multinomial logit

model and the negative binomial regression model. The ordered logit model is proposed

for multinomial choice variables, such as bond ratings, opinion surveys, levels of

insurance coverage, which are inherently ordered. In unreported results, we replicated our

contagion tests across regions using the ordered model and found that our inferences

about the co-exceedance variable Y*
j (coefficients and marginal effects) and the pseudo-

R2 were consistent and very similar. We preferred the unordered multinomial model as it

imposes less structure on the relative probabilities of different co-exceedance events.

Nevertheless, these additional results are available from the authors. The negative

binomial model, a generalization of a Poisson regression model that allows the variance

to differ from the mean, is often used to study count data, such as the number of shipping

accidents by type per year (Greene, 1997, Chapter 19). In this model, we do not need to

assign categories as in the ordered and unordered logit models and, as a result, the system

is smaller with only one coefficient is estimated for each covariate.16 We replicated our

tests for contagion across region with this model (unreported) and found that our

inferences about contagion effects were even stronger. Pseudo-R2 for bottom-tail co-

exceedances for Asia, for example, increased from 19 percent to 22 percent for Yj
* from

Latin America; those from Asia to Latin America increased from 15 percent to 27

                                                  
16 We tested the restriction in the multinomial logit models in Section 4.1that the coefficients across the
categories of one, two, three and four or more co-exceedances are equal and rejected these restrictions
easily for the case of Asia and Latin America. These restricted models are closest in spirit to the negative
binomial model.
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percent. Contagion shocks from Asia and Latin America to the U.S. were measurably

lower, however.

5. Conclusion

In this paper, we have proposed a new approach to the study of contagion. The

key presumption of our approach is that contagion is a nonlinear phenomenon: If there is

contagion, small return shocks have to propagate differently from large return shocks.

We, therefore, investigate the propagation of large return shocks within regions and

across regions. Such an approach faces two problems. First, focusing on large return

shocks, by definition, decreases sample size and limits the power of our tests. One must

be careful not to let our inferences be dominated by a few datapoints. As a result, we

choose to focus on counts of co-incidences of extreme returns rather than on correlations

of joint extreme returns. Our modeling approach employs the multinomial logistic

regression approach to reflect this new and different focus. Second, one would expect

large returns to be more highly correlated than small returns. As a result, one has to make

sure that the apparent contagion of large returns is not simply the outcome of

conditioning a study on large returns. We use Monte Carlo simulations to calibrate our

results to what one would find if returns satisfied a multivariate Student t distribution

with different scenarios associated with co-kurtosis in returns. We find that we have too

many cases where large negative returns occur in most countries of a region, particularly

for Latin America. Further, we find that the number of large negative returns in one

region is more useful to predict the number of large negative returns in another region

than if the returns in the two regions were distributed multivariate Student t or
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multivariate normal with different levels of market volatility. We also find that the

number of joint occurrences of extreme returns within a region can be predicted using

regional conditional volatility, the level of interest rates, and exchange rate changes.

Contagion is a source of great concern for policymakers and has generated a large

and growing academic literature. We find in our study of emerging markets that the

propagation of large negative returns across regions is anomalous if stock return indices

follow a linear return generating model that allows for significant co-kurtosis. Whether

this anomalous propagation should be a matter of serious concern will depend on the

views of readers. Nevertheless, our paper has a number of clear results:

1) Contagion is more important in Latin America than in Asia.

2) Contagion from Latin America to other regions of the world is more important

than contagion from Asia.

3) The U.S. is largely insulated from contagion from Asia.

4) Contagion is predictable conditional on prior information.

A natural extension of our study would be to investigate whether alternate

distributional assumptions besides multivariate Student t could explain our results.

Further, our study uses daily returns and focuses on same day, lagged one-day, and even

three-day contagion. But a useful extension of the study would be to look at longer-

horizon contagion. Such an analysis would make it possible to investigate whether there

are thresholds of cumulative returns above which propagation of returns becomes more

intense. It would also be useful to apply the approach to a broader cross-section of

individual stock or sector index returns within countries. The approach developed in this

paper would be well suited for such analyses.
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Table 1. Summary statistics of daily returns on International Financial Corporation (IFC) emerging markets indices, December 31, 1995 to May 14,
1999. Each index from the Emerging Market Database (EMDB) is adjusted to reflect accessibility of the market and individual stocks for foreign investors.
Summary statistics include the mean, median, standard deviation (S.D.), number of stocks, average US dollar market value of index in millions, and correlations
of daily index returns. EMDB countries include China (CHN), Korea (KOR), Philippine (PHI), Taiwan (TWN), India (INA), Indonesia (IND), Malaysia (MAL),
Pakistan (PAK), Sri Lanks (SRI), Thailand (THA), Argentina (ARG), Brazil (BRA), Chile (CHI), Colombia (COL), Mexico (MEX), Peru (PER), and Venzuela
(VEN). We also include daily returns of S&P 500 index for US and Datastream International Europe index. The correlations in the upper triangular matrix are
between daily returns of Asian indices in calendar time t and those of Latin America, U.S., and Europe indices in calendar time t-1.

CHN KOR PHI TWN INA IND MAL PAK SRI THA ARG BRA CHI COL MEX PER VEN US Europe

Mean in percent -0.052 -0.058 -0.051 0.027 0.010 -0.111 -0.087 -0.063 -0.044 -0.161 0.040 0.035 -0.013 -0.003 0.064 -0.008 0.069 0.095 0.076

S.D. in percent 2.436 3.406 2.206 1.693 1.636 4.611 2.930 2.337 1.402 3.111 2.111 2.602 1.178 1.370 1.898 1.328 2.489 1.079 0.873

Median 0.000 -0.043 -0.015 0.000 0.000 0.000 -0.031 0.000 0.000 -0.113 0.059 0.096 -0.014 0.000 0.059 0.002 0.011 0.081 0.123

No. of  Stocks 36 161 42 93 77 50 144 24 5 70 31 74 45 15 62 21 10

Mkt. Value 5,554 25,784 15,355 49,408 14,520 19,986 103,333 4,092 390 15,039 28,083 80,119 39,048 6,755 74,378 7,635 5,041

Correlation CHN KOR PHI TWN INDIA IND MAL PAK SRI THA ARG BRA CHI COL MEX PER VEN US Europe
CHN 1.00 0.18 0.15 0.17 0.05 0.20 0.15 0.09 0.18 0.20

KOR 0.12 1.00 0.14 0.15 0.14 0.02 0.16 0.11 0.10 0.10 0.17
PHI 0.29 0.22 1.00 0.29 0.25 0.24 0.09 0.29 0.20 0.18 0.22 0.30
TWN 0.22 0.12 0.23 1.00 0.15 0.09 0.13 0.04 0.17 0.10 0.05 0.13 0.19
INA 0.09 0.11 0.13 0.05 1.00 0.04 0.10 0.10 0.02 0.07 0.06 0.04 0.07 0.05
IND 0.29 0.18 0.43 0.22 0.11 1.00 0.16 0.14 0.16 0.11 0.16 0.16 0.10 0.14 0.15
MAL 0.32 0.20 0.29 0.19 0.12 0.40 1.00 0.08 0.10 0.11 0.02 0.11 0.07 0.08 0.22 0.10
PAK 0.08 0.01 0.03 0.12 0.06 0.07 0.12 1.00 0.01 0.04 0.01 0.02 0.03 -0.01 0.02 0.02 0.01
SRI -0.02 0.03 0.10 0.03 0.05 0.08 0.03 0.06 1.00 0.09 0.11 0.12 0.06 0.12 0.16 0.10 0.05 0.16
THA 0.26 0.28 0.44 0.24 0.16 0.39 0.39 0.11 0.11 1.00 0.17 0.13 0.17 0.04 0.17 0.12 0.13 0.12 0.18

ARG 0.13 0.12 0.16 0.07 0.04 0.13 0.15 0.09 -0.01 0.15 1.00

BRA 0.07 0.15 0.16 0.06 0.06 0.09 0.07 0.06 0.03 0.13 0.72 1.00

CHI 0.14 0.10 0.21 0.10 0.08 0.16 0.11 0.11 0.05 0.17 0.55 0.52 1.00

COL 0.03 0.06 0.07 0.09 0.04 0.13 0.06 0.04 0.07 0.07 0.16 0.15 0.22 1.00

MEX 0.12 0.13 0.19 0.03 0.07 0.11 0.17 0.08 -0.02 0.12 0.67 0.65 0.53 0.13 1.00

PER 0.12 0.10 0.18 0.04 0.12 0.13 0.14 0.05 0.01 0.15 0.46 0.46 0.44 0.17 0.48 1.00

VEN 0.15 0.08 0.13 0.09 0.08 0.12 0.11 0.06 -0.04 0.17 0.32 0.29 0.28 0.11 0.34 0.26 1.00

US 0.03 0.11 0.12 0.03 0.02 0.04 0.00 0.03 0.06 0.06 0.52 0.48 0.37 0.09 0.49 0.29 0.17 1.00

Europe 0.16 0.14 0.20 0.08 0.09 0.15 0.21 0.02 0.02 0.20 0.37 0.35 0.37 0.12 0.46 0.39 0.25 0.35 1.00



39

Table 2. Summary statistics of (co-) exceedances for daily emerging market index returns, December 31, 1995 to May 14, 1999. Extreme returns are
defined as exceedances beyond a threshold, θ. For example, “top tail” (“bottom tail”) exceedances for China’s daily index returns correspond to the subset of
ordered returns that comprise the highest (lowest) five percent of all returns. Co-exceedances represent joint occurrences of exceedances across country indices
by day. A co-exceedance of i means that i countries have an exceedance jointly. Co-exceedances are reported for i = 1,…,6 separately and for i equal to seven or
more as >7. For example, of 880 trading days, there are 50 occurrences of bottom tail co-exceedances for Asia with two countries only, and 13 of those
occurrences include China with co-exceedances of a particular number. “Cum. %” cumulates the fraction of the total number of return observations (880 days) by
category. Numbers in parenthesis are the number of Mondays.

Number of (co-) exceedances in the bottom tails Number of (co-) exceedances in the top tails

  Mean
  return
when > 7

> 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 > 7
  Mean
  return
when > 7

CHN   -3.63% 1 1 2 5 8 13 14 614 600 15 14 4 2 5 2 2 7.23%

KOR   -8.09% 1 2 4 1 10 11 15 614 600 15 14 1 8 3 2 1 8.78%

PHI   -9.70% 1 1 4 6 7 9 16 614 600 14 8 5 9 4 2 2 11.20%

TWN   -4.22% 1 2 3 3 4 10 21 614 600 29 3 4 4 1 1 2 5.89%

INA   -5.30% 2 2 2 3 2 6 27 614 600 27 8 2 2 3 1 1 3.46%

IND   -9.70% 2 1 3 5 13 8 12 614 600 12 10 7 8 4 1 2 23.40%

MAL   -5.29% 2 3 5 4 7 13 10 614 600 13 10 8 7 4 1 1 10.60%

PAK   -5.63% 1 2 2 1 4 11 23 614 600 28 12 0 2 1 0 1 3.70%

SRI   -5.90% 1 1 2 2 5 9 24 614 600 33 7 1 3 0 0 0 -

THA   -8.21% 2 3 3 6 9 10 11 614 600 9 12 7 7 5 2 2 13.82%

Total   -6.57% 2(1) 3(1) 6(2) 9(3) 23(4) 50(10) 173(42) 614(113) 600(109) 195(46) 49(10) 13(3) 13(5) 6(1) 2(1) 2(1) 9.79%

Cum. % 0.2% 0.6% 1.3% 2.3% 4.9% 10.6% 30.2% 100.0% 100.0% 31.8% 9.7% 4.1% 2.6% 1.1% 0.5% 0.2%

ARG -11.91% 4 6 5 5 9 7 8 728 680 13 11 8 7 4 0 1 8.43%

BRA -13.34% 4 5 5 5 10 4 11 728 680 14 15 7 4 3 0 1 8.93%

CHI   -5.55% 4 6 5 6 4 6 13 728 680 15 14 5 5 4 0 1 6.23%

COL   -3.63% 4 3 3 2 3 5 24 728 680 31 7 1 2 2 0 1 2.16%

MEX -10.18% 4 6 6 5 8 11 4 728 680 16 11 7 6 3 0 1 7.00%

PER   -6.44% 4 4 3 5 4 8 16 728 680 18 9 6 7 3 0 1 5.67%

VEN   -5.69% 4 6 3 4 7 7 13 728 680 31 5 5 1 1 0 1 6.80%

Total   -8.11% 4(1) 6(0) 6(0) 8(2) 15(5) 24(5) 89(19) 728(144) 680(136) 138(25) 36(9) 13(5) 8(1) 4(0) 0(0) 1(0) 6.46%

Cum. % 0.5% 1.1% 1.8% 2.7% 4.4% 7.2% 17.3% 100.0% 100.0% 22.7% 7.0% 3.0% 1.5% 0.6% 0.1% 0.1%
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Table 3. Monte Carlo simulation results of (co-) exceedances for daily emerging market returns. Under the null hypothesis that national emerging market
index returns in Asia and Latin America are drawn from a multivariate Student-t distribution, we employ a Monte Carlo simulation to evaluate the number of
(co-) exceedances within each region. We compute the sample mean and the variance-covariance matrix of returns and generate 5000 random realizations. For
each realization we compute the number of (co-) exceedances for a random threshold θ where θ equals five percent as in Table 2. Summary statistics of the
distribution of co-exceedance counts across the 5000 replications include the mean, standard deviation, 5% quantile, 95% quantile, and simulated p-value (the
number of replications with co-exceedances in a given category exceeding the actual number of co-exceedances). Four different scenarios are run which reflect
the degrees of freedom underlying the multivariate Student-t distribution, where degrees of freedom equal N + K – 1, where N is the sum of number of countries
(10 for Asia, 7 for Latin America) and K equals 1 (high excess kurtosis and co-kurtosis), 5, 10 and 25 (low excess kurtosis and co-kurtosis, approximating
multivariate Normal distribution).
Panel A: Asia

Number of (co-) exceedances in the bottom tails Number of (co-) exceedances in the top tails

> 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 > 7

Actual 2 3 6 9 23 50 173 614 600 195 49 13 13 6 2 2

Monte Carlo Simulations

A. High Co-kurtosis (K=1) Scenario

    Simulated Mean 10.05 8.59 12.11 16.49 22.41 32.01 54.27 723.06 722.50 54.76 32.13 22.35 16.73 12.12 8.58 9.83

    Standard Deviation 2.79 2.68 3.12 3.74 4.75 5.69 7.92 8.26 8.18 8.06 5.48 4.38 3.72 3.14 2.61 2.59

    (5th, 95th) quantile (6,15) (5,13) (7,17) (11,23) (15,30) (23,42) (41,67) (710,737) (709,735) (42,68) (23,41) (15,29) (10,23) (7,18) (6,13) (6,14)

    p-value 1.00 0.99 0.98 0.98 0.38 0.00 0.00 1.00 1.00 0.00 0.00 0.98 0.81 0.98 1.00 1.00

B. Moderately High Co-kurtosis (K=5) Scenario

    Simulated Mean 1.53 2.65 5.61 12.00 24.87 56.05 150.04 626.25 626.21 150.21 55.98 24.78 11.91 5.72 2.64 1.54

    Standard Deviation 1.22 1.54 2.32 3.20 4.61 6.74 10.69 8.39 8.85 11.54 6.68 4.31 3.13 2.29 1.58 1.17

   (5th, 95th) quantile (0,4) (0,6) (2,10) (7,18) (18,33) (45,68) (133,168) (612,640) (611,640) (132,169) (45,67) (18,32) (7,18) (2,10) (0,5) (0,4)

    p-value 0.20 0.26 0.34 0.78 0.61 0.80 0.01 0.93 1.00 0.00 0.84 1.00 0.28 0.34 0.48 0.20

C. Moderately Low Co-kurtosis (K=10) Scenario

    Simulated Mean 0.59 1.51 3.95 9.73 23.32 60.51 177.03 602.36 602.66 176.84 60.28 23.35 9.77 3.94 1.53 0.63

    Standard Deviation 0.77 1.17 1.87 2.79 4.02 6.59 11.86 8.42 8.59 11.69 6.86 4.43 2.80 1.94 1.24 0.77

   (5th, 95th) quantile (0,2) (0,4) (1,7) (5,14) (17,30) (50,71) (157,197) (589,616) (588,616) (158,196) (49,71) (16,31) (5,15) (1,7) (0,4) (0,2)

    p-value 0.02 0.05 0.09 0.52 0.47 0.94 0.64 0.07 0.59 0.06 0.94 0.99 0.09 0.10 0.19 0.02

D. Low Co-kurtosis (K=25) Scenario

    Simulated Mean 0.31 0.87 2.89 7.87 21.86 62.77 195.48 586.95 586.41 196.60 62.13 21.89 8.00 2.76 0.93 0.29

    Standard Deviation 0.56 0.94 1.59 2.56 4.08 6.61 11.28 7.77 7.69 11.25 6.76 4.13 2.65 1.61 0.93 0.52

   (5th, 95th) quantile (0,1) (0,3) (1,6) (4,12) (15,29) (52,74) (177,214) (575,600) (574,599) (179,216) (51,73) (15,28) (4,12) (0,6) (0,3) (0,1)

    p-value 0.01 0.01 0.02 0.26 0.33 0.97 0.98 0.00 0.03 0.52 0.97 0.98 0.03 0.02 0.06 0.00
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Table 3. Continued.

Panel B: Latin America
Number of (co-) exceedances in the bottom tails Number of (co-) exceedances in the top tails

> 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 > 7

Actual 4 6 6 8 15 24 89 728 680 138 36 13 8 4 0 1

Monte Carlo Simulations

A. High Co-kurtosis (K=1) Scenario

    Simulated Mean 1.16 4.11 8.32 13.86 20.49 30.79 55.13 745.14 744.77 55.24 31.17 20.71 13.54 8.43 4.05 1.10

    Standard Deviation 1.07 1.89 2.54 3.22 4.10 5.39 7.85 6.97 7.21 8.20 5.45 4.15 3.37 2.67 1.87 1.00

   (5th, 95th) quantile (0,3) (1,8) (4,13) (9,19) (14,27) (22,40) (43,68) (733,756) (733,756) (42,69) (23,40) (14,28) (8,19) (4,13) (1,7) (0,3)

    p-value 0.00 0.11 0.76 0.96 0.93 0.87 0.00 0.99 1.00 0.00 0.15 0.97 0.94 0.93 0.99 0.31

B. Moderately High Co-kurtosis (K=5) Scenario

    Simulated Mean 0.10 0.66 2.54 6.89 17.06 42.23 127.45 682.07 682.02 127.59 42.14 16.97 7.08 2.40 0.70 0.10

    Standard Deviation 0.30 0.78 1.50 2.40 3.58 5.56 9.87 6.93 7.35 10.39 5.75 3.72 2.33 1.50 0.81 0.31

   (5th, 95th) quantile (0,1) (0,2) (0,5) (3,11) (12,23) (33,52) (111,145) (670,693) (670,694) (110,145) (33,52) (11,23) (3,11) (0,5) (0,2) (0,1)

    p-value 0.00 0.00 0.01 0.25 0.75 1.00 1.00 0.00 0.60 0.15 0.85 0.81 0.27 0.10 0.51 0.00

C. Moderately Low Co-kurtosis (K=10) Scenario

    Simulated Mean 0.03 0.32 1.49 5.16 15.01 43.18 146.35 667.45 667.79 145.91 43.15 15.03 5.27 1.51 0.31 0.03

    Standard Deviation 0.18 0.55 1.18 2.14 3.42 5.49 10.07 6.73 7.01 10.43 5.47 3.42 2.08 1.24 0.56 0.17

   (5th, 95th) quantile (0,0) (0,1) (0,4) (2,9) (10,21) (34,52) (129,163) (656,679) (656,679) (129,163) (34,52) (10,21) (2,9) (0,4) (0,1) (0,0)

    p-value 0.00 0.00 0.00 0.07 0.55 1.00 1.00 0.00 0.03 0.76 0.90 0.65 0.07 0.02 0.27 0.00

D. Low Co-kurtosis (K=25) Scenario

    Simulated Mean 0.01 0.13 0.93 4.13 13.52 42.90 159.59 657.78 658.06 159.07 43.10 13.62 4.08 0.89 0.17 0.02

    Standard Deviation 0.11 0.37 0.95 1.95 3.26 5.32 9.79 6.51 6.54 9.99 5.45 3.29 1.94 0.92 0.41 0.13

   (5th, 95th) quantile (0,0) (0,1) (0,3) (1,7) (9,19) (34,52) (144,176) (647,668) (648,669) (143,175) (35,53) (9,19) (1,7) (0,3) (0,1) (0,0)

    p-value 0.00 0.00 0.00 0.02 0.37 1.00 1.00 0.00 0.00 0.98 0.90 0.49 0.02 0.00 0.15 0.00
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Table 4. Multinomial logit regression results for daily return co-exceedances of emerging market indices,
December 31, 1995 to May 14, 1999. The number of co-exceedances of daily returns is modeled as an ordered
polychotomous variable and estimated using a multinomial logit regression model. Pj is defined as the probability
that a given day is associated with j co-exceedances where j equals 0, 1, 2, 3, 4 or more (five categories). The
multinomial logit regression model is given by

Pj = exp(x’βj) / [1 + ∑kexp(x’βk)]
where β is the vector of coefficients, x, the vector of independent variables, and k equals 1 to 4. The probability that
there are no (co-) exceedances equals P0 = 1 / [1 + ∑kexp(x’βk)], which represents our base case. The independent
variables, x, include the intercept, conditional volatility of regional index at time t (ht), the average exchange rate
(per $US) changes in the region (et), and the average interest rate level in the region (it). The conditional volatility is
estimated as EGARCH(1,1) using the IFC investible regional index. The likelihood for the multinomial logit model
(McFadden, 1975) is numerically evaluated using the Broyden, Fletcher, Goldfarb, and Shanno algorithm. Partial
derivatives of probabilities with respect to the vector of independent variables are computed at the means of x
(Greene, 1997, Chapter 19) and are reported next to the coefficient estimates. Goodness of fit is measured by
McFadden’s pseudo-R2 equal to 1- (Lω/LΩ) where Lω is the unrestricted likelihood, and LΩ is the restricted
likelihood (Maddala, 1983, Chapter 2). The logit regression is estimated separately for positive (top tail) and
negative (bottom tail) co-exceedances. a, b, c denotes significance levels at the 1%, 5%, and 10%, respectively.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob.

Asia
β01 (constant) -1.267a -0.140a -2.450a -0.309a -3.948a -0.568a -1.124a -0.132a -1.623a -0.204a -2.066a -0.304a

β02 -2.508a -0.111a -4.596a -0.176a -6.407a -0.234a -2.505a -0.110a -4.253a -0.166a -4.863a -0.165a

β03 -3.285a -0.071a -5.561a -0.097a -7.570a -0.083a -3.832a -0.049a -6.361a -0.055b -5.970a -0.033
β04 -3.424a -0.065a -6.702a -0.073b -9.736a -0.040 -3.261a -0.071a -5.805a -0.087a -6.955a -0.056c

β11 (hit) 1.109a 0.146a 0.663a 0.095a 0.482a 0.057b 0.519a 0.073c

β12 1.780a 0.067a 1.210a 0.045a 1.469a 0.058a 1.490a 0.052a

β13 1.906a 0.032b 0.977a 0.010 1.968a 0.017c 2.070a 0.012c

β14 2.510a 0.027b 1.572a 0.006 1.977a 0.030b 1.791a 0.014c

β21 (eit) 1.339a 0.194a -0.821a -0.119a

β22 1.946a 0.069a -2.017a -0.069a

β23 2.934a 0.033a -2.834a -0.016c

β24 3.317a 0.014c -2.887a -0.023b

β31 (iit) 0.152a 0.023a 0.037 0.006
β32 0.176a 0.006b 0.040 0.001
β33 0.185a 0.002 -0.061 0.000
β34 0.223a 0.001 0.065 0.001
Log-Likelihood -805.303 -743.914 -660.785 -803.779 -765.002 -709.020
Pseudo-R2 7.62% 17.95% 4.82% 11.79%
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Table 4. Continued.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob.

Latin
β01 (constant) -2.102a -0.166a -2.828a -0.223a -3.359a -0.268a -1.595a -0.174a -1.938a -0.220a -2.918a -0.341a

β02 -3.412a -0.080a -4.344a -0.096a -2.598a -0.045c -2.939a -0.100a -3.681a -0.123a -4.702a -0.126a

β03 -3.882a -0.058a -4.876a -0.067a -4.200a -0.049b -3.957a -0.051a -5.614a -0.050b -4.841a -0.039c

β04 -3.412a -0.080a -4.894a -0.088a -5.549a -0.067b -3.957a -0.051a -5.872a -0.046b -6.618a -0.045c

β11 (hit) 0.486a 0.039a 0.511a 0.040a 0.246a 0.027b 0.270a 0.030b

β12 0.595a 0.013a 0.746a 0.014b 0.488a 0.016a 0.503a 0.013b

β13 0.626a 0.008b 0.705a 0.008b 0.883a 0.008b 1.046a 0.009b

β14 0.833a 0.015a 0.808a 0.010b 0.965a 0.008b 1.049a 0.007b

β21 (eit) 3.271a 0.259a -2.620a -0.312a

β22 3.726a 0.069a -4.187a -0.114a

β23 4.112a 0.048b -2.500a -0.018
β24 5.266a 0.063a -3.299a -0.021c

β31 (iit) 0.017 0.002 0.057b 0.007b

β32 -0.132b -0.003 0.053 0.001
β33 -0.065 -0.001 -0.057 -0.001
β34 0.002 0.000 0.035 0.000
Log-Likelihood -575.936 -546.435 -502.041 -655.652 -627.044 -593.904
Pseudo-R2 5.12% 12.83% 4.37% 9.42%

US
β01 (constant) -2.944a -0.140a -3.522a -0.164a -4.647b -0.211a -2.944a -0.140a -4.243a -0.181a -2.680 -0.114
β11 (hit) 0.456c 0.021a 0.375 0.017 0.970a 0.041a 0.996a 0.042a

β21 (eit) 0.609c 0.028b -0.086 -0.004
β31 (iit) 0.226 0.010 -0.301 -0.013
Log-Likelihood -174.693 -173.318 -171.582 -174.693 -165.777 -165.518
Pseudo-R2 0.79% 1.79% 5.11% 5.53%

Europe
β01 (constant) -2.944a -0.140a -4.764a -0.178a -2.868a -0.099b -2.944a -0.140a -5.631a -0.165a -3.168a -0.082b

β11 (hit) 1.907a 0.071a 1.680a 0.058a 2.649a 0.078a 2.514a 0.065a

β21 (eit) -0.565b -0.020b 0.023 0.001
β31 (iit) -0.418 -0.014 -0.582c -0.015a

Log-Likelihood -174.693 -158.750 -155.934 -174.693 -142.518 -140.722
Pseudo-R2 9.92% 10.74% 18.41% 19.45%
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Table 5. Contagion test results of multinomial logit regression for daily return co-exceedances of emerging
market indices, December 31, 1995 to May 14, 1999. The number of co-exceedances of daily returns is modeled
as an ordered polychotomous variable and estimated using a multinomial logit regression model. Pj is defined as the
probability that a given day is associated with j co-exceedances where j equals 0, 1, 2, 3, 4 or more (five categories).
The multinomial logit regression model is given by

Pj = exp(x’βj) / [1 + ∑kexp(x’βk)]
where β is the vector of coefficients, x, the vector of independent variables, and k equals 1 to 4. The probability that
there are no (co-) exceedances equals P0 = 1 / [1 + ∑k=1,4exp(x’βk)], which represents our base case. The independent
variables, x, include those in Table 3 plus the number of daily return co-exceedances from another region (Y*) and a
measure of conditional volatility from another region (h*

j). The conditional volatility is estimated as EGARCH(1,1)
using the IFC investible regional index. Partial derivatives of probabilities with respect to the vector of independent
variables are computed at the means of x and are reported next to the coefficient estimates. Goodness of fit is
measured by McFadden’s pseudo-R2 equal to 1- (Lω/LΩ) where Lω is the unrestricted likelihood, and LΩ is the
restricted likelihood (Maddala, 1983, Chapter 2). The logit regression is estimated separately for positive (top tail)
and negative (bottom tail) co-exceedances. χ2 (hjt

*) and χ2 (Yjt
*) are Wald chi-squared tests for the restrictions that

βk1= βk2= βk3=βk4=0 where k is 4 and 5, respectively. a, b, c denotes significance levels at the 1%, 5%, and 10%,
respectively.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob.

Asia From Latin From US From Europe From Latin From US From Europe

β01 (constant) -4.175a -0.609a -4.522a -0.662a -4.386a -0.643a -2.207a -0.334a -1.838a -0.260a -2.244a -0.341a

β02 -6.775a -0.242a -7.338a -0.261a -6.660a -0.240a -5.283a -0.175a -5.400a -0.176a -4.933a -0.165a

β03 -8.729a -0.071c -8.797a -0.077c -9.128a -0.060c -7.103a -0.031 -7.000a -0.039 -6.753a -0.034
β04 -10.17a -0.034 -10.89a -0.029 -10.52a -0.030 -9.125a -0.045 -8.848a -0.057c -9.263a -0.043
β11 (hit) 0.255 0.036 0.420b 0.059 0.258 0.033 0.454b 0.066 0.607a 0.095b 0.285 0.036
β12 0.682c 0.026 0.848a 0.031c 0.918a 0.037b 1.408a 0.048b 1.238a 0.039b 1.261a 0.045a

β13 -0.076 -0.002 0.818b 0.007 0.442 0.003 1.960a 0.009 1.522a 0.008 1.671a 0.009
β14 1.063c 0.004 1.558a 0.004 1.261a 0.004 1.117b 0.005 0.922c 0.005 1.263a 0.006
β21 (eit) 1.354a 0.198a 1.342a 0.197a 1.402a 0.206a -0.787a -0.119a -0.817a -0.121a -0.764a -0.114a

β22 2.007a 0.070a 1.995a 0.070a 1.997a 0.071a -1.906a -0.063a -2.015a -0.065a -1.921a -0.065a

β23 3.209a 0.027b 2.986a 0.027b 3.226a 0.021b -2.723a -0.012c -2.860a -0.016c -2.761a -0.014c

β24 3.445a 0.011 3.381a 0.009 3.505a 0.010 -2.846a -0.014c -3.000a -0.019b -2.893a -0.013c

β31 (iit) 0.175a 0.027a 0.172a 0.026a 0.155a 0.024a 0.046b 0.008 0.029 0.004 0.036 0.006
β32 0.210a 0.007b 0.211a 0.007b 0.178a 0.006b 0.066 0.002 0.076 0.002 0.041 0.001
β33 0.259a 0.002 0.237a 0.002 0.206a 0.001 0.001 0.000 -0.001 0.000 -0.054 0.000
β34 0.249a 0.001 0.826a 0.001 0.241a 0.001 0.198b 0.001 0.166b 0.001 0.113 0.001
β41(hjt

*) 0.174c 0.026 0.433a 0.066c 0.959a 0.151a -0.013 -0.002 -0.167 -0.034 0.488c 0.083
β42 0.225 0.008 0.625a 0.022c 0.552 0.014 -0.048 -0.002 0.162 0.007 0.261 0.005
β43 0.559a 0.005 0.301 0.002 1.405a 0.009 -0.096 0.000 0.640c 0.004 1.153c 0.006
β44 0.123 0.000 -0.203 -0.001 0.423 0.001 0.224 0.001 0.972a 0.007c 1.988a 0.009
β51 (Yjt

*) 0.319a 0.048a 0.646c 0.091 0.176 0.011 0.311a 0.049b -0.538 -0.114 0.626 0.098
β52 0.397a 0.013b 1.047c 0.036 1.198b 0.048c 0.576a 0.018b 1.505a 0.059a 1.447a 0.049b

β53 0.643a 0.005c 2.390a 0.023c 2.809a 0.021c 0.933a 0.004 0.331 0.002 0.927 0.004
β54 0.731a 0.002 2.974a 0.008 2.806a 0.009 0.988a 0.005c 1.399b 0.010 1.093c 0.004
Log-Likelihood -644.588 -647.525 -637.479 -690.851 -695.796 -694.985
Pseudo-R2 19.96% 19.59% 20.84% 14.04% 13.43% 13.54%
χ2 (hjt

*) 8.434c 10.308b 16.733a 2.241 12.875a 17.078a

χ2 (Yjt
*) 21.211a 25.826a 31.515a 31.772a 15.609a 9.454b
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Table 5. Continued.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob.

Latin From Asia From US From Europe From Asia From US From Europe

β01 (constant) -3.681a -0.294a -3.388a -0.276a -4.057a -0.327a -2.753a -0.323a -2.459a -0.288a -3.175a -0.380a

β02 -3.382a -0.055c -3.224a -0.051c -3.445a -0.058b -4.798a -0.126a -4.453a -0.106a -5.557a -0.136a

β03 -5.093a -0.053c -4.207a -0.039c -5.216a -0.053b -5.312a -0.037c -6.046a -0.040c -5.657a -0.025
β04 -7.219a -0.058c -7.113a -0.047c -6.863a -0.045c -6.757a -0.033 -6.245a -0.034c -7.220a -0.038
β11 (hit) 0.332a 0.026b 0.483a 0.039a 0.057 0.004 0.387a 0.046b 0.427a 0.051b 0.050 0.006
β12 0.615a 0.011b 0.551a 0.009c 0.178 0.003 0.513a 0.013c 0.662a 0.016c -0.150 -0.004
β13 0.487b 0.005 0.728a 0.007c 0.072 0.001 1.012a 0.007c 0.585b 0.004 0.385 0.002
β14 0.435b 0.003 0.417c 0.002 0.051 0.000 1.324a 0.007c 1.278a 0.007c 0.547a 0.003
β21 (eit) 3.164a 0.253a 3.084a 0.252a 3.116a 0.249a -2.531a -0.304a -2.727a -0.329a -2.576a -0.313a

β22 3.497a 0.058b 3.450a 0.056b 3.474a 0.061b -4.156a -0.110a -4.429a -0.106a -4.392a -0.108a

β23 3.977a 0.041b 3.607a 0.033c 3.889a 0.039c -2.442b -0.015 -2.573a -0.015 -2.327c -0.009
β24 5.485a 0.044b 5.321a 0.035b 5.126a 0.033b -3.146a -0.014 -3.885a -0.020 -2.802a -0.013
β31 (iit) 0.021 0.002 0.021 0.002 0.029 0.003 0.060a 0.008b 0.055b 0.007c 0.060a 0.008b

β32 -0.086 -0.002 -0.128b -0.002 -0.129a -0.003 0.061 0.002 0.063a 0.001 0.049 0.001
β33 -0.038 0.000 -0.062 -0.001 -0.058 -0.001 -0.048 0.000 -0.039 0.000 -0.133 -0.001
β34 0.018 0.000 0.003 0.000 -0.025 0.000 0.103 0.000 0.044 0.000 0.014 0.000
β41(hjt

*) 0.432c 0.036 0.029 0.001 1.320a 0.105b -0.469b -0.058c -0.547c -0.068 0.630 0.070
β42 -0.243 -0.006 0.454 0.008 1.754a 0.031 -0.291 -0.006 -0.736 -0.017 2.095a 0.054b

β43 0.352 0.004 -0.374 -0.004 1.867a 0.019 -0.125 0.000 0.975b 0.008 2.879a 0.014
β44 1.216a 0.010 1.060a 0.007 2.544a 0.017 -2.024a -0.010 -0.982 -0.005 1.589b 0.008
β51 (Yjt

*) 0.808 0.005 -0.427 -0.046 1.002b 0.077c 0.218b 0.025c 0.446 0.043 0.204 0.022
β52 0.625a 0.011b 2.468a 0.045b 1.571a 0.028c 0.429a 0.011b 2.326a 0.059a 0.429 0.010
β53 0.482a 0.005 2.892a 0.029b 2.137a 0.022c 0.623a 0.004 2.248a 0.015 1.543a 0.008
β54 0.408b 0.003 3.418a 0.024c 3.055a 0.021c 0.798a 0.004 2.552a 0.014 1.940a 0.011
Log-Likelihood -486.539 -470.333 -474.289 -581.178 -575.472 -574.989
Pseudo-R2 15.52% 18.34% 17.65% 11.36% 12.33% 12.31%
χ2 (hjt

*) 10.023b 8.921c 23.167a 9.842b 12.992a 22.763a

χ2 (Yjt
*) 17.933a 65.230a 36.074a 20.815a 33.485a 12.520a

US From Asia From Latin From Europe From Asia From Latin From Europe

β1 (constant) -4.533c -0.204b -4.281c -0.128c -4.529b -0.173c -1.591 -0.064 -4.039c -0.152c -3.759 -0.141
β2 (hit) 0.381 0.017 -0.639c -0.019 -0.301 -0.012 0.738a 0.030a 0.518 0.019 0.463c 0.017
β3 (eit) 0.611c 0.027c 0.599c 0.018c 0.632c 0.024c -0.069 -0.003 -0.086 -0.003 -0.134 -0.005
β4 (iit) 0.213 0.010 0.193 0.006 0.165 0.006 -0.596 -0.024 -0.035 -0.001 -0.133 -0.005
β4 (hjt

*) -0.131 -0.006 0.202 0.006 0.909c 0.035c 0.705 0.028b 0.125 0.005 0.758c 0.028
β4 (Y

*
jt) 0.167 0.008 0.976a 0.029a 2.063a 0.079a -0.023 -0.001 0.622a 0.023a 1.633a 0.061a

Log-Likelihood -171.119 -136.513 -157.298 -162.882 -155.099 -155.712
Pseudo-R2 2.05% 21.86% 9.96% 6.77% 11.22% 10.77%
χ2 (hjt

*) 0.168 0.961 3.685c 2.532 0.599 2.925c

χ2 (Yjt
*) 0.905 66.565a 23.161a 0.022 22.363a 15.163a

Europe From Asia From Latin From US From Asia From Latin From US

β1 (constant) -2.830a -0.079c -2.626b -0.079c -3.249a -0.103b -3.154a -0.076c -3.491a -0.091b -3.257a -0.084b

β2 (hit) 1.362a 0.038a 0.896c 0.027 1.521a 0.048a 2.223a 0.053a 2.563a 0.067a 2.545a 0.065a

β3 (eit) -0.505b -0.014c -0.410 -0.012 -0.339 -0.011 0.027 0.001 0.017 0.000 -0.007 0.000
β4 (iit) -0.560c -0.016c -0.433 -0.013 -0.362 -0.012 -0.627b -0.015b -0.498 -0.013c -0.546c -0.014c

β4 (hjt
*) 0.319 0.009 0.083 0.002 0.071 0.002 0.169 0.004 -0.119 -0.003 -0.113 -0.003

β4 (Y
*
jt) 0.531a 0.015a 0.628a 0.019a 1.871a 0.059a 0.322a 0.008b 0.276c 0.007c 0.742 0.019

Log-Likelihood -146.433 -142.984 -147.557 -137.632 -138.974 -139.696
Pseudo-R2 6.18% 19.16% 15.53% 21.22% 20.45% 20.04%
χ2 (hjt

*) 1.023 0.259 0.057 0.271 0.593 0.163
χ2 (Yjt

*) 16.604a 28.101a 18.956a 5.416b 3.681c 2.276
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Table 6. Monte Carlo simulation results of contagion tests using multinomial logit regression for daily return co-exceedances of emergin market
indices. Under the null hypothesis that international emerging market index returns in Asia and Latin America are drawn from a multivariate Student-t
distribution, we employ a Monte Carlo simulation to evaluate the impact of the number of co-exceedances in one region on that of the other region. For each
realization, we compute the number of (co-) exceedances for a threshold θ where θ equals 5% as in Tables 2 and 3. We compute the sample mean and
covariance matrix of returns for all 10 Asian and 7 Latin American indices and generate 1000 random realizations. For each realization, we model and
estimate the number of co-exceedances as an ordered polychotomous variable using a multinomial logit regression model. Pj is defined as the probability that
a given day is associated with j co-exceedances where j equals 0, 1, 2, 3, 4 or more (five categories). The multinomial logit regression model is given by,

Pj = exp(x’βj) / [1 + ∑kexp(x’βk)]
where β is the vector of coefficients, x, the vector of independent variables, and k equals 1 to 4. The probability that there are no (co-) exceedances equals P0

= 1 / [1 + ∑k=1,4exp(x’βk)], which represents our base case. The independent variables, x, include only a constant and the co-exceedances in the other region,
as generated by the simulation. The first column reports estimates for the actual indices. a, b, c denotes significance levels at the 1%, 5%, and 10%,
respectively. Goodness of fit is measured by McFadden’s pseudo-R2 equal to 1- (Lω/LΩ) where n is the number of observations, Lω is the unrestricted
likelihood, and LΩ is the restricted likelihood (Maddala, 1983, Chapter 2). The logit regression is estimated separately for positive (top tail) and negative
(bottom tail) co-exceedances. Four different scenarios are run which reflect the degrees of freedom underlying the multivariate Student-t distribution, where
degrees of freedom equal N + K – 1, where N is the sum of number of countries (17 in total with 10 for Asia, 7 for Latin America) and K equals 1 (high
excess kurtosis and co-kurtosis), 5, 10 and 25 (low excess kurtosis and co-kurtosis, approximating multivariate Normal distribution). For each scenario, we
report the mean, standard deviation (“S.D.”), 5% and 95% fractiles of the 1000 replications. We also compute the simulation p-value (“p-val”) which counts
the number of simulation estimates that are greater than those with the actual data.

Panel A. Asia
Actual High Co-kurtosis (K=1) Scenario Moderately High Co-kurtosis (K=5) Scenario Moderately Low Co-kurtosis (K=10) Scenario Low Co-kurtosis (K=25) Scenario

A. Top tails
Coefficient Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val

β01 -1.200a -1.135 0.034 -1.194 -1.082 0.96 -1.127 0.037 -1.178 -1.062 1.00 -1.120 0.037 -1.183 -1.061 0.98 -1.132 0.031 -1.183 -1.085 0.98
β02 -2.674a -2.501 0.066 -2.614 -2.388 1.00 -2.494 0.059 -2.587 -2.407 1.00 -2.512 0.062 -2.622 -2.422 0.99 -2.505 0.062 -2.598 -2.401 1.00
β03 -4.000a -3.812 0.130 -4.007 -3.627 0.94 -3.829 0.127 -4.065 -3.622 0.91 -3.843 0.144 -4.059 -3.630 0.85 -3.856 0.126 -4.057 -3.643 0.87
β04 -3.895a -3.248 0.100 -3.419 -3.093 1.00 -3.251 0.098 -3.429 -3.099 1.00 -3.254 0.100 -3.400 -3.064 1.00 -3.276 0.107 -3.450 -3.125 1.00
β11 (Y

*
jt) 0.231b 0.013 0.096 -0.138 0.174 0.00 -0.012 0.112 -0.208 0.133 0.00 -0.032 0.114 -0.224 0.152 0.00 0.005 0.090 -0.136 0.146 0.00

β12 0.440a -0.043 0.210 -0.453 0.257 0.00 -0.054 0.185 -0.361 0.209 0.00 -0.001 0.175 -0.272 0.270 0.00 -0.029 0.216 -0.379 0.220 0.00
β13 0.429 -1.349 5.908 -1.175 0.349 0.04 -1.514 6.361 -2.465 0.436 0.06 -1.018 5.359 -1.136 0.448 0.06 -0.860 4.937 -1.084 0.446 0.06
β14 0.951a -0.402 2.763 -0.943 0.347 0.00 -0.116 0.366 -0.907 0.366 0.00 -0.442 3.339 -1.086 0.312 0.00 -0.331 3.073 -0.638 0.376 0.00
Log-L -787.386 -800.179 1.447 -801.830 -797.465 0.00 -800.313 1.309 -801.910 -797.944 0.00 -800.112 1.610 -802.009 -797.454 0.00 -800.368 1.416 -801.930 -797.824 0.00
Pseudo-R2 0.021 0.005 0.002 0.003 0.008 0.00 0.005 0.002 0.003 0.008 0.00 0.005 0.002 0.003 0.008 0.00 0.005 0.002 0.003 0.008 0.00

B. Bottom tails
Coefficient Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val

β01 -1.407a -1.094 0.283 -1.392 -0.864 0.95 -0.974 0.112 -1.163 -0.827 0.99 -0.954 0.083 -1.092 -0.840 1.00 -0.937 0.080 -1.057 -0.807 1.00
β02 -2.785a -2.214 0.264 -2.547 -1.974 0.97 -2.118 0.142 -2.358 -1.899 1.00 -2.085 0.128 -2.293 -1.877 1.00 -2.096 0.126 -2.285 -1.921 1.00
β03 -3.442a -3.261 0.230 -3.587 -2.919 0.82 -3.216 0.219 -3.580 -2.937 0.81 -3.196 0.187 -3.541 -2.909 0.89 -3.211 0.212 -3.630 -2.917 0.86
β04 -3.880a -3.836 0.276 -4.319 -3.397 0.61 -3.925 0.345 -4.462 -3.466 0.48 -3.979 0.311 -4.526 -3.599 0.47 -3.927 0.318 -4.460 -3.470 0.52
β11 (Y

*
jt) 0.448a -0.056 0.210 -0.284 0.269 0.03 -0.171 0.153 -0.435 0.074 0.00 -0.208 0.136 -0.425 0.017 0.00 -0.217 0.125 -0.430 -0.024 0.00

β12 0.668a -0.212 0.364 -0.755 0.320 0.03 -0.398 0.282 -0.879 0.025 0.00 -0.455 0.297 -1.028 -0.064 0.00 -0.448 0.265 -0.851 -0.068 0.00
β13 0.481b -1.247 5.266 -1.596 0.512 0.06 -1.613 6.488 -1.719 0.119 0.02 -7.540 18.180 -6.610 0.047 0.00 -3.009 10.209 -2.996 -0.034 0.00
β14 0.853a -6.740 11.954 -30.209 0.518 0.02 -2.242 13.538 -9.571 0.107 0.00 -9.541 13.251 -8.753 0.213 0.00 -4.004 14.594 -3.035 -0.009 0.00
Log-L -781.276 -817.510 36.938 -831.142 -806.527 0.03 -822.867 6.017 -830.232 -813.092 0.00 -822.398 4.256 -828.756 -813.831 0.00 -822.614 4.924 -829.120 -813.398 0.00
Pseudo-R2 0.031 0.009 0.017 0.002 0.014 0.03 0.008 0.004 0.003 0.017 0.00 0.010 0.004 0.004 0.017 0.00 0.009 0.004 0.004 0.016 0.00
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Table 6. Continued.

Panel B. Latin America
Actual High Co-kurtosis (K=1) Scenario Moderately High Co-kurtosis (K=5) Scenario Moderately Low Co-kurtosis (K=10) Scenario Low Co-kurtosis (K=25) Scenario

A. Top tails
Coefficient Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val

β01 -1.687 a -1.715 0.166 -1.877 -1.523 0.45 -1.654 0.100 -1.826 -1.500 0.67 -1.662 0.091 -1.797 -1.515 0.62 -1.684 0.098 -1.826 -1.523 0.50
β02 -3.228a -2.891 0.181 -3.222 -2.589 0.95 -2.869 0.168 -3.160 -2.663 0.96 -2.895 0.160 -3.181 -2.643 0.97 -2.867 0.172 -3.154 -2.613 0.97
β03 -4.655a -3.717 0.265 -4.243 -3.312 1.00 -3.749 0.239 -4.186 -3.368 1.00 -3.739 0.258 -4.149 -3.357 1.00 -3.734 0.266 -4.195 -3.362 1.00
β04 -4.612a -3.960 0.287 -4.419 -3.455 1.00 -4.102 0.282 -4.535 -3.708 0.97 -4.054 0.305 -4.619 -3.687 0.93 -4.090 0.297 -4.531 -3.710 0.95
β11 (Y

*
jt) 0.196b -0.041 0.118 -0.264 0.107 0.02 -0.025 0.114 -0.208 0.160 0.01 -0.012 0.115 -0.199 0.172 0.01 0.015 0.094 -0.143 0.141 0.00

β12 0.474a -0.068 0.263 -0.543 0.247 0.00 -0.037 0.216 -0.474 0.260 0.00 -0.022 0.205 -0.385 0.261 0.00 -0.055 0.240 -0.352 0.269 0.00
β13 0.825a -0.168 0.521 -0.902 0.344 0.00 -0.136 0.516 -0.797 0.350 0.00 -0.106 0.432 -0.934 0.405 0.00 -0.149 0.447 -1.081 0.397 0.00
β14 0.794a -0.235 0.555 -1.166 0.315 0.00 -0.178 0.691 -1.330 0.457 0.00 -0.309 0.714 -1.507 0.305 0.00 -0.179 0.596 -1.350 0.432 0.00
Log-L -639.184 -647.523 18.328 -662.352 -627.289 0.18 -654.561 7.768 -666.227 -640.886 0.04 -653.713 8.075 -664.776 -639.370 0.05 -653.306 8.399 -665.422 -638.629 0.06
Pseudo-R2 0.025 0.004 0.003 0.001 0.010 0.00 0.004 0.002 0.001 0.007 0.00 0.004 0.002 0.001 0.008 0.00 0.004 0.002 0.001 0.008 0.00

B. Bottom tails
Coefficient Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val Mean S.D. 5% 95% p-val

β01 -2.232 a -1.726 0.189 -1.968 -1.539 0.98 -1.672 0.104 -1.835 -1.517 1.00 -1.666 0.091 -1.793 -1.506 1.00 -1.647 0.098 -1.799 -1.501 1.00
β02 -3.995a -2.912 0.165 -3.222 -2.689 1.00 -2.880 0.151 -3.098 -2.621 1.00 -2.885 0.164 -3.151 -2.649 1.00 -2.868 0.169 -3.138 -2.639 1.00
β03 -4.376a -3.762 0.284 -4.237 -3.351 0.97 -3.772 0.303 -4.346 -3.337 0.95 -3.749 0.298 -4.262 -3.318 0.96 -3.718 0.263 -4.133 -3.354 0.97
β04 -3.966a -3.964 0.307 -4.491 -3.488 0.50 -4.035 0.290 -4.592 -3.638 0.46 -4.027 0.279 -4.522 -3.638 0.43 -4.140 0.293 -4.594 -3.617 0.30
β11 (Y

*
jt) 0.271a -0.003 0.106 -0.154 0.146 0.00 -0.022 0.114 -0.239 0.146 0.01 -0.024 0.111 -0.210 0.145 0.00 -0.016 0.099 -0.153 0.148 0.00

β12 0.754a -0.075 0.223 -0.447 0.270 0.00 -0.023 0.214 -0.385 0.269 0.00 -0.050 0.206 -0.441 0.208 0.00 -0.044 0.178 -0.346 0.196 0.00
β13 0.687a -0.145 0.416 -0.915 0.380 0.00 -0.072 0.456 -0.627 0.363 0.00 -0.039 0.373 -0.648 0.370 0.00 -0.135 0.400 -0.955 0.400 0.00
β14 0.734a -0.053 0.384 -0.621 0.402 0.00 -0.303 0.640 -1.300 0.366 0.00 -0.237 0.505 -1.256 0.316 0.00 -0.213 0.684 -1.382 0.344 0.00
Log-L -554.004 -646.100 20.092 -661.772 -629.783 0.01 -652.392 8.683 -664.250 -638.171 0.00 -653.680 7.163 -666.067 -642.163 0.00 -655.455 7.771 -665.857 -638.776 0.00
Pseudo-R2 0.038 0.004 0.002 0.001 0.008 0.00 0.004 0.002 0.001 0.008 0.00 0.003 0.002 0.001 0.006 0.00 0.003 0.002 0.001 0.007 0.00
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Table 7. Contagion test results of multinomial logit regression for daily return co-exceedances of emerging
market indices using lagged conditioning variables, December 31, 1995 to May 14 1999. The number of co-
exceedances of daily returns is modeled as an ordered polychotomous variable and estimated using a multinomial
logit regression model. Pj is defined as the probability that a given day is associated with j co-exceedances where j
equals 0, 1, 2, 3, 4 or more (five categories). The multinomial logit regression model is given by Pj = exp(x’βj) / [1 +
∑k=1,4exp(x’βk)] where β is the vector of coefficients and x is the vector of independent variables. The probability
that there are no (co-) exceedances equals P0 = 1 / [1 + ∑kexp(x’βk)] where k equals 1 to 4, which represents our base
case. The independent variables, x, include the intercept, conditional volatility of regional index at time t (ht), the
lagged average exchange rate (per $US) changes in the region (et-1), the lagged average interest rate level in the
region (it-1), the number of daily return co-exceedances from another region (Y*

j), and a measure of conditional
volatility from another region (h*

j). The conditional volatility is estimated as EGARCH(1,1) using the IFC investible
regional index. For the contagion test from Latin, US, and Europe to Asia, lagged h*

j and Y*
j are used to adjust for

the nonsynchronous trading. Partial derivatives of probabilities with respect to the vector of independent variables
are computed at the means of x and are reported next to the coefficient estimates. Goodness of fit is measured by
McFadden’s pseudo-R2 equal to 1- (Lω/LΩ) where Lω is the unrestricted likelihood, and LΩ is the restricted
likelihood (Maddala, 1983, Chapter 2). The logit regression is estimated separately for positive (top tail) and
negative (bottom tail) co-exceedances. χ2 (hjt

*) and χ2 (Yjt
*) are Wald chi-squared tests for the restrictions that βk1=

βk2= βk3=βk4=0 where k is 4 and 5, respectively. a, b, c denotes significance levels at the 1%, 5%, and 10%,
respectively.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob.

Asia From Latin From US From Europe From Latin From US From Europe

β01 (constant) -3.728a -0.503a -4.082a -0.559a -3.949a -0.540a -2.224a -0.309a -1.902a -0.241a -2.276a -0.316a

β02 -6.153a -0.227a -6.748a -0.247a -6.143a -0.226a -5.428a -0.201a -5.436a -0.202a -5.221a -0.196a

β03 -8.157a -0.106b -8.022a -0.101b -8.664a -0.092b -8.138a -0.051 -8.131a -0.064c -8.066a -0.058
β04 -9.227a -0.065c -9.258a -0.053 -9.689a -0.060 -9.374a -0.079c -9.053a -0.097b -9.749a -0.077c

β11 (hit) 0.340 0.041 0.435b 0.055 0.308 0.035 0.217 0.021 0.404b 0.055 0.093 0.001
β12 0.954a 0.038b 0.974a 0.037b 1.074a 0.043b 1.178a 0.047b 1.044a 0.039b 1.018a 0.042b

β13 0.472 0.005 1.147a 0.015 0.788c 0.008 1.781a 0.012 1.372a 0.011 1.424a 0.011
β14 1.903a 0.014 2.051a 0.013 1.785a 0.012 1.195a 0.010 0.998b 0.010 1.153a 0.009
β21 (eit-1) 0.285c 0.036 0.327b 0.043c 0.327b 0.044c -0.254c -0.040 -0.299b -0.046c -0.241c -0.037
β22 0.529a 0.020c 0.600a 0.022b 0.524a 0.019c -0.311 -0.010 -0.382c -0.012 -0.288 -0.009
β23 1.031a 0.014b 1.011a 0.013b 1.055a 0.012c -0.597c -0.004 -0.663b -0.005 -0.621c -0.004
β24 0.925a 0.007c 1.016a 0.006c 1.000a 0.006c -0.670a -0.005 -0.790a -0.008c -0.733a -0.006
β31 (iit-1) 0.138a 0.020a 0.142a 0.020a 0.125a 0.018a 0.057 0.009 0.039 0.005 0.044 0.007
β32 0.159a 0.005c 0.175a 0.006b 0.144a 0.005c 0.095a 0.003 0.094c 0.003 0.077c 0.003
β33 0.241a 0.003c 0.222a 0.003 0.220a 0.002 0.114 0.001 0.121 0.001 0.086 0.001
β34 0.227a 0.002 0.255a 0.001 0.257a 0.002 0.250a 0.002 0.222a 0.002 0.196a 0.002
β41(hjt

*) 0.136 0.020 0.370b 0.057c 0.843a 0.130a 0.043 0.007 -0.087 -0.021 0.587a 0.094c

β42 0.134 0.005 0.495b 0.018 0.364 0.008 -0.001 -0.001 0.243 0.010 0.426 0.011
β43 0.340c 0.005 -0.085 -0.003 0.902 0.009 -0.087 -0.001 0.615c 0.005 1.189a 0.008
β44 -0.306 -0.003 -0.891b -0.007 -0.403 -0.004 0.195 0.002 0.846a 0.010c 1.945a 0.015
β51 (Yjt

*) 0.313a 0.045b 0.714c 0.095 0.209 0.013 0.312a 0.046b -0.564 -0.116 0.551 0.081
β52 0.359a 0.012c 1.067c 0.037 1.155b 0.047c 0.586a 0.021b 1.302a 0.060a 1.316a 0.051b

β53 0.512a 0.006c 2.233a 0.030c 2.425a 0.028b 0.926a 0.006 0.118 0.002 0.755 0.004
β54 0.554a 0.004 2.458a 0.015 2.346a 0.016 0.913a 0.007c 1.079c 0.014 0.916 0.006
Log-Likelihood -707.106 -707.056 -699.483 -733.904 -741.998 -738.498
Pseudo-R2 12.20% 12.21% 13.15% 8.70% 7.69% 8.13%
χ2 (hjt

*) 6.388 8.777c 12.990a 1.714 10.452b 18.832a

χ2 (Yjt
*) 16.023a 20.472a 29.857a 34.327a 12.426a 8.160c
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Table 7. Continued.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob.

Latin From Asia From US From Europe From Asia From US From Europe

β01 (constant) -3.583a -0.296a -3.178a -0.267a -3.776a -0.317a -2.865a -0.340a -2.674a -0.314a -3.234a -0.392a

β02 -2.977a -0.048c -2.771a -0.045 -2.980a -0.051c -4.523a -0.144a -4.442a -0.134a -5.089a -0.157a

β03 -4.969a -0.056b -3.943a -0.038 -4.934a -0.053b -5.790a -0.042c -6.617a -0.047c -6.097a -0.028
β04 -6.170a -0.083b -6.747a -0.076b -6.013a -0.057b -8.745a -0.038 -8.273a -0.050c -8.704a -0.045
β11 (hit) 0.302a 0.024b 0.475a 0.040a 0.105 0.009 0.291a 0.034b 0.287b 0.034c 0.002 0.000
β12 0.598a 0.011b 0.560a 0.010c 0.221 0.004 0.492a 0.016b 0.483a 0.015c -0.047 -0.002
β13 0.346 0.004 0.696a 0.007 0.030 0.000 0.823a 0.006c 0.426c 0.003 0.266 0.001
β14 0.564a 0.008b 0.509a 0.005 0.291 0.003 1.119a 0.005 0.863a 0.005c 0.458b 0.003
β21 (eit) -0.288 -0.027 -0.297 -0.028 -0.406 -0.037 0.299 0.040 0.245 0.034 0.262 0.037
β22 -0.653 -0.013 -0.315 -0.006 -0.420 -0.008 -0.197 -0.009 -0.331 -0.013 -0.384 -0.015
β23 1.259c 0.016 0.963 0.011 1.239b 0.015 0.431 0.003 0.174 0.001 0.128 0.001
β24 0.627 0.010 0.394 0.005 0.277 0.003 0.812 0.004 0.725 0.005 0.490 0.003
β31 (iit) 0.029 0.003 0.026 0.003 0.028 0.003 0.072a 0.009b 0.065a 0.008b 0.069a 0.009b

β32 -0.097 -0.002 -0.130a -0.003 -0.145a -0.003 0.060 0.002 0.061a 0.002 0.041 0.001
β33 -0.031 0.000 -0.053 -0.001 -0.058 -0.001 -0.008 0.000 0.010 0.000 -0.099 -0.001
β34 0.003 0.000 0.034 0.000 -0.040 0.000 0.217a 0.001 0.142b 0.001 0.112b 0.001
β41(hjt

*) 0.425c 0.036 -0.055 -0.006 1.148a 0.094b -0.499a -0.062c -0.394 -0.051 0.502 0.054
β42 -0.239 -0.006 0.273 0.005 1.690a 0.031c -0.430 -0.012 -0.397 -0.012 1.643a 0.054b

β43 0.516 0.006 -0.547 -0.006 1.799b 0.019 -0.132 0.000 0.928b 0.008 2.844a 0.014
β44 0.972a 0.014 0.817a 0.010 2.074a 0.020 -2.041a -0.009 -0.252 -0.001 1.295c 0.006
β51 (Yjt

*) 0.121 0.008 -0.178 -0.029 1.284a 0.104b 0.243a 0.028c 0.329 0.027 0.491 0.057
β52 0.692a 0.013b 2.719a 0.052a 1.892a 0.035b 0.445a 0.014b 2.062a 0.068a 0.957c 0.030
β53 0.470b 0.006 3.058a 0.033b 2.368a 0.026c 0.666a 0.005 2.186a 0.016c 1.694a 0.008
β54 0.448a 0.006c 3.565a 0.042b 3.500a 0.034b 0.913a 0.004 2.220a 0.014 2.301a 0.012
Log-Likelihood -523.481 -504.684 -503.544 -606.102 -605.650 -600.874
Pseudo-R2 9.11% 12.38% 12.84% 7.56% 7.63% 8.36%
χ2 (hjt

*) 8.917c 6.783 19.213a 11.65b 9.185c 19.700a

χ2 (Yjt
*) 24.654a 80.258a 54.731a 24.797a 33.041a 16.843a

US From Asia From Latin From Europe From Asia From Latin From Europe

β1 (constant) -0.644 -0.028 -0.083 -0.002 -0.754 -0.028 -0.389 -0.015 -3.025 -0.111 -2.336 -0.086
β2 (hit) 0.550b 0.024c -0.404 -0.012 -0.024 -0.001 0.780a 0.031a 0.622b 0.023c 0.570b 0.021c

β3 (eit) -0.664 -0.029c -0.229 -0.007 -0.620 -0.023c -0.180 -0.007 -0.383 -0.014 -0.325 -0.012
β4 (iit) -0.582 -0.026 -0.645 -0.019 -0.613 -0.023 -0.841c -0.033c -0.250 -0.009 -0.422 -0.016
β4 (hjt

*) -0.045 -0.002 0.179 0.005 0.890b 0.033c 0.733a 0.029b 0.111 0.004 0.705 0.026
β4 (Y

*
jt) 0.175 0.008 0.969a 0.029a 2.054a 0.077a -0.025 -0.001 0.625a 0.023a 1.642a 0.060a

Log-Likelihood -170.544 -136.830 -156.799 -161.910 -154.384 -154.932
Pseudo-R2 2.38% 21.68% 10.25% 7.32% 11.63% 21.32%
χ2 (hjt

*) 0.020 0.872 4.019b 5.668b 0.484 2.509
χ2 (Yjt

*) 1.049 61.366a 24.130a 0.026 20.959a 14.675a

Europe From Asia From Latin From US From Asia From Latin From US

β1 (constant) -2.886b -0.081c -2.722b -0.083c -3.268a -0.104b -3.251a -0.078c -3.555a -0.092b -3.353a -0.086b

β2 (hit) 1.360a 0.038a 0.956c 0.029c 1.525a 0.049a 2.261a 0.054a 2.598a 0.067a 2.578a 0.066a

β3 (eit) -0.313 -0.009 -0.076 -0.002 -0.126 -0.004 0.170 0.004 0.138 0.004 0.151 0.004
β4 (iit) -0.552c -0.016c -0.418 -0.013 -0.365 -0.012 -0.610b -0.015b -0.490 -0.013c -0.532c -0.014c

β4 (hjt
*) 0.357 0.010 0.074 0.002 0.093 0.003 0.162 0.004 -0.120 -0.003 -0.106 -0.003

β4 (Y
*
jt) 0.524a 0.015a 0.639a 0.020a 1.928a 0.062a 0.318b 0.008b 0.267b 0.007c 0.706 0.018

Log-Likelihood -147.339 -143.809 -148.060 -137.489 -138.882 -139.579
Pseudo-R2 15.66% 17.68% 15.25% 21.30% 20.50% 20.11%
χ2 (hjt

*) 1.242 0.165 0.103 0.246 0.609 0.158
χ2 (Yjt

*) 15.964a 27.641a 20.754a 5.244b 3.367c 1.957
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Table 8. Contagion test results of multinomial logit regression for daily return co-exceedances from
conditional extreme returns, December 31, 1995 to May 14, 1999. Extreme returns are defined in terms of
exceedances beyond a random threshold, θ, controlling for time-varying volatility. Specifically, the time-series of
conditional volatilities, hit, for each country index i at time t are obtained using EGARCH(1,1) model. Then, a
return, rit, is defined as extreme if |rit| > 1.65hit. The number of co-exceedances of daily returns is modeled as an
ordered polychotomous variable and estimated using a multinomial logit regression model. Pj is defined as the
probability that a given day is associated with j co-exceedances where j equals 0, 1, 2, 3, 4 or more (five categories).
The multinomial logit regression model is given by

Pj = exp(x’βj) / [1 + ∑kexp(x’βk)]
where β is the vector of coefficients, x, the vector of independent variables, and k equals 1 to 4. The probability that
there are no (co-) exceedances equals P0 = 1 / [1 + ∑k=1,4exp(x’βk)], which represents our base case. The independent
variables, x, include those in Table 5. The conditional volatility is estimated as EGARCH(1,1) using the IFC
investible regional index. Partial derivatives of probabilities with respect to the vector of independent variables are
computed at the means of x and are reported next to the coefficient estimates. Goodness of fit is measured by
McFadden’s pseudo-R2 equal to 1- (Lω/LΩ) where Lω is the unrestricted likelihood, and LΩ is the restricted
likelihood (Maddala, 1983, Chapter 2). The logit regression is estimated separately for positive (top tail) and
negative (bottom tail) co-exceedances. χ2 (hjt

*) and χ2 (Yjt
*) are Wald chi-squared tests for the restrictions that βk1=

βk2= βk3=βk4=0 where k is 4 and 5, respectively. a, b, c denotes significance levels at the 1%, 5%, and 10%,
respectively.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob.

Asia From Latin From US From Europe From Latin From US From Europe

β01 (constant) -1.717a -0.250a -1.854a -0.272a -1.690a -0.247a -0.100 0.026 0.339 0.109 -0.174 0.008
β02 -2.743a -0.117a -2.884a -0.124a 2.735a -0.118a -2.271a -0.086b -2.338a -0.093b -2.114a -0.078b

β03 -6.251a -0.029 -4.441a -0.027 -6.660a -0.030 -5.486a -0.058c -5.095a -0.062b -5.312a -0.052c

β04 -6.956a -0.027 -7.141a -0.025 -7.627a -0.022 -6.183a -0.023 -6.317a -0.025 -5.471a -0.023
β11 (hit) 0.070 0.014 0.155 0.026 0.192 0.033 -0.176 -0.029 -0.131 -0.021 -0.398c -0.069
β12 -0.070 -0.004 -0.006 -0.002 0.026 -0.001 -0.250 -0.008 -0.143 -0.004 -0.323 -0.008
β13 -0.880 -0.005 0.174 0.001 -0.429 -0.002 -0.247 -0.002 -0.125 -0.001 -0.519 -0.004
β14 -0.226 -0.001 0.793 0.003 0.341 0.001 -0.380 -0.001 -1.347 -0.005 -0.810 -0.003
β21 (eit) 0.918a 0.133a 0.916a 0.132a 0.923a 0.135a -0.744a -0.121a -0.767a -0.124a -0.734a -0.120a

β22 1.640a 0.072a 1.615a 0.072a 1.639a 0.072a -1.122a -0.036b -1.149a -0.037b -1.125a -0.036b

β23 2.685a 0.012c 2.370a 0.014c 2.640a 0.012c -1.204a -0.011 -1.247a -0.012 -1.234a -0.010
β24 2.615a 0.010 2.459a 0.008 2.594a 0.007 -2.208a -0.008 -2.458a -0.009 -2.357a -0.009
β31 (iit) 0.015 0.002 0.017 0.003 0.007 0.001 -0.053 -0.010 -0.064b -0.011 -0.057c -0.009
β32 0.001 0.000 0.005 0.000 -0.002 0.000 -0.059 -0.002 -0.072 -0.002 -0.114b -0.004
β33 0.084 0.000 0.050 0.000 0.042 0.000 0.078 0.001 0.043 0.001 -0.002 0.000
β34 0.068 0.000 0.052 0.000 0.025 0.000 0.060 0.000 0.077 0.000 -0.030 0.000
β41(hjt

*) 0.101 0.016 0.205 0.035 0.171 0.026 -0.074 -0.018 -0.330 -0.069 0.348 0.044
β42 0.030 0.000 0.143 0.005 0.033 -0.001 0.269c 0.011 0.509c 0.023 1.348a 0.048b

β43 0.541c 0.003 -0.965 -0.007 1.634b 0.008 0.281 0.003 0.536 0.007 1.990a 0.019c

β44 0.587b 0.002 0.153 0.000 1.508c 0.005 0.245 0.001 1.357a 0.006 2.075a 0.008
β51 (Yjt

*) 0.330a 0.050b 0.495 0.076 0.978a 0.148b 0.220b 0.033 0.778 0.118 0.772b 0.128b

β52 0.397a 0.016c 0.378 0.012 1.276a 0.053c 0.464a 0.016c 1.724a 0.060c 0.919 0.027
β53 0.972a 0.004 1.502 0.009 3.086a 0.014 0.780a 0.008c 1.853c 0.019 1.797b 0.016
β54 0.881a 0.003 3.305a 0.012 3.575a 0.010 1.099a 0.004 2.612b 0.009 1.334 0.005
Log-Likelihood -697.347 -705.028 -694.452 -716.500 -719.632 -716.018
Pseudo-R2 13.41% 12.45% 13.77% 10.89% 10.47% 10.92%
χ2 (hjt

*) 6.850 2.448 6.289 5.426 13.746a 25.653a

χ2 (Yjt
*) 27.957a 18.042a 33.401a 24.378a 11.434b 10.021b
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Table 8. Continued.

Bottom tails Top tails
(1) (2) (3) (4) (5) (6)

Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob. Coeff. ∆ prob.

Latin From Asia From US From Europe From Asia From US From Europe

β01 (constant) -2.332a -0.237a -2.479a -0.256a -2.769a -0.283a -1.032a -0.104 -1.372a -0.152c -1.709a -0.195b

β02 -3.354a -0.057c -3.341a -0.054c -3.006a -0.047 -4.086a -0.152a -3.893a -0.138a -4.729a -0.172a

β03 4.300a -0.047c -4.644a -0.047c -4.541a -0.043c -4.703a -0.023 -4.646a -0.031 -4.567a -0.023
β04 -7.356a -0.035 -6.968a -0.028 -8.015a -0.021 -5.935a -0.037 -5.841a -0.039 -5.638a -0.022
β11 (hit) -0.192c -0.019 -0.228 -0.024 -0.598a -0.062a -0.165 -0.021 -0.388a -0.053b -0.686a -0.088a

β12 -0.598c -0.011 -0.391 -0.007 -0.338 -0.005 -0.204 -0.007 -0.179 -0.004 -0.747a -0.024
β13 -0.234 -0.002 -0.382 -0.004 -0.940a -0.009 -0.711c -0.004 -0.479 -0.003 -1.299b -0.006
β14 -0.677b -0.003 -0.306 -0.001 -1.618a -0.004 0.305c 0.002 0.252 0.002 -0.031 0.001
β21 (eit) 1.963a 0.200a 1.975a 0.205a 2.192a 0.223a -1.892a -0.241a -2.081a -0.268a -2.165a -0.277a

β22 2.817a 0.048c 2.588a 0.042c 2.535b 0.040 -2.069a -0.067c -2.215a -0.070b -2.312a -0.075b

β23 3.573a 0.039c 3.722a 0.037c 4.293a 0.041c -3.873a -0.019 -3.080a -0.019 -3.668a -0.018
β24 5.186a 0.025 4.896a 0.019 5.622a 0.014 -2.063c -0.011 -2.148b -0.012 -2.923b -0.011
β31 (iit) 0.015 0.002 0.016 0.002 0.015 0.002 0.019 0.002 0.021 0.002 0.024 0.003
β32 -0.029 -0.001 -0.026 -0.001 -0.031 -0.001 0.094a 0.004c 0.095a 0.003c 0.100a 0.004c

β33 -0.031 0.000 -0.039 0.000 -0.073 -0.001 -0.041 0.000 -0.019 0.000 -0.073c 0.000
β34 0.083 0.000 0.066 0.000 0.022 0.000 0.046 0.000 0.047b 0.000 -0.013 0.000
β41(hjt

*) 0.254c 0.025 0.423 0.044 1.570a 0.163a -0.591a -0.080b 0.073 0.012 0.964a 0.119b

β42 0.685 0.012 0.291 0.004 -0.012 -0.005 -0.293 -0.008 -0.352 -0.014 1.410a 0.048
β43 0.504 0.005 1.056b 0.011 3.049a 0.030c 1.156a 0.007 0.837 0.006 3.398a 0.018
β44 1.276b 0.006 0.538 0.002 4.671a 0.012 -0.284 -0.001 0.021 0.000 1.614a 0.006
β51 (Yjt

*) 0.228b 0.023c 1.397a 0.142b 1.095a 0.109b 0.190c 0.021 0.409 0.034 0.104 0.013
β52 0.238 0.004 2.671a 0.045b 2.200a 0.037b 0.476a 0.017b 2.393a 0.087a 0.933c 0.037
β53 0.607a 0.007c 3.087a 0.031b 1.825a 0.017 0.859a 0.004 3.077a 0.021c 1.820a 0.010
β54 0.551b 0.003 4.041a 0.016 3.186a 0.008 0.727a 0.004 2.444b 0.016 -9.240b -0.043
Log-Likelihood -527.476 -513.919 -506.847 -621.423 -625.432 -624.926
Pseudo-R2 8.42% 10.77% 11.99% 5.23% 5.61% 4.69%
χ2 (hjt

*) 7.701c 6.729 38.794a 13.793a 3.633 17.322a

χ2 (Yjt
*) 12.929a 52.751a 39.805a 20.200a 26.270a 11.142b

US From Asia From Latin From Europe From Asia From Latin From Europe

β1 (constant) -6.511a -0.201a -6.467a -0.137b -7.005a -0.182a -2.721 -0.054 -2.469 -0.043 -3.539 -0.059
β2 (hit) -0.181 -0.006 -1.129 -0.024 -1.070c -0.028c -0.664 -0.013 -1.255 -0.022 -1.419b -0.024b

β3 (eit) 0.710 0.022c 0.587 0.012 0.786c 0.020c -0.096 -0.002 -0.032 -0.001 -0.446 -0.007
β4 (iit) 0.731 0.023c 0.650 0.014 0.713 0.019 -0.172 -0.003 -0.160 -0.003 -0.014 -0.002
β4 (hjt

*) -0.590 -0.018 0.208 0.004 0.999c 0.026c 0.289 0.006 0.390 0.007 1.992a 0.033a

β4 (Y
*
jt) 0.138 0.004 1.007a 0.021a 2.138a 0.056a 0.608a 0.012a 0.821a 0.014a 2.344a 0.039a

Log-Likelihood -130.784 -108.730 -122.132 -94.862 -90.260 -89.497
Pseudo-R2 0.77% 5.62% 2.70% 0.98% 2.01% 2.19%
χ2 (hjt

*) 2.104 0.516 3.145c 0.411 2.527 11.468a

χ2 (Yjt
*) 0.390 53.275a 21.213a 9.237a 21.038a 17.953a

Europe From Asia From Latin From US From Asia From Latin From US

β1 (constant) -2.329c -0.101c -1.551 -0.065 -2.166c -0.096 -0.014 0.000 0.320 0.012 0.121 0.004
β2 (hit) -0.393 -0.017 -1.338c -0.056c -0.169 -0.007 -2.041a -0.073a -1.348 -0.048 -1.916a -0.067b

β3 (eit) -0.072 -0.003 0.057 0.002 0.190 0.008 -1.444a -0.051a -1.437a -0.052a -1.444a -0.051a

β4 (iit) -0.194 -0.008 -0.263 -0.011 -0.198 -0.009 -0.456c -0.016c -0.497c -0.018c -0.489b -0.017c

β4 (hjt
*) 0.149 0.006 0.338 0.014 0.034 0.001 0.286 0.010 -0.215 -0.008 0.199 0.007

β4 (Y
*
jt) 0.629a 0.027a 0.738a 0.031a 2.332a 0.103a 0.211 0.007 -0.049 -0.002 1.651a 0.058b

Log-Likelihood -170.489 -168.126 -169.912 -161.056 -161.664 -159.040
Pseudo-R2 2.41% 3.76% 2.74% 7.81% 7.46% 8.97%
χ2 (hjt

*) 0.230 2.364 0.006 0.744 0.434 0.171
χ2 (Yjt

*) 20.793a 28.887a 29.761a 1.125 0.041 7.630a
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Figure 1. Co-Exceedance response curve of Asia.
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Figure 2. Co-Exceedance response curve of Asia to the conditional volatility and
the number of co-exceedances of overseas market.

From Latin to Asia

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.63 1.76 2.89 4.03 5.16 6.29 7.42

Conditional Volatility of Overseas Market

Im
p

lie
d

 C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

 o
f 

C
o

-
E

xc
ee

d
an

ce
 E

ve
n

t 
(Y

=0
,1

,2
,3

 o
r 

4+
)

P=4

P=3

P=2

P=1

P=0

From Latin to Asia

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4

Number of Co-Exceedances of Overseas Market 

Im
p

lie
d

 C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

 o
f 

C
o

-
E

xc
ee

d
an

ce
 E

ve
n

t 
(Y

=0
,1

,2
,3

, o
r 

4+
)

P=4

P=3

P=2

P=1

P=0

From US to Asia

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.10 0.76 1.43 2.09 2.75 3.42 4.08

Conditional Volatility of Overseas Market

Im
p

lie
d

 C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

 o
f 

C
o

-
E

xc
ee

d
an

ce
 E

ve
n

t 
(Y

=0
,1

,2
,3

 o
r 

4+
)

P=4

P=3

P=2

P=1

P=0

From US to Asia

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1

Number of Co-Exceedances of Overseas Market

Im
p

lie
d

 C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

 o
f 

C
o

-
E

xc
ee

d
an

ce
 E

ve
n

t 
(Y

=0
,1

,2
,3

 o
r 

4+
)

P=4

P=3

P=2

P=1

P=0

From Europe to Asia

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.38 0.66 0.93 1.21 1.49 1.77 2.04

Conditional Volatility of Overseas Market

Im
p

lie
d

 C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

 o
f 

C
o

-
E

xc
ee

d
an

ce
 E

ve
n

t 
(Y

=0
,1

,2
,3

 o
r 

4+
)

P=4

P=3

P=2

P=1

P=0

From Europe to Asia

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1

Number of Co-Exceedances of Overseas Market

Im
p

lie
d

 C
o

n
d

it
io

n
al

 P
ro

b
ab

ili
ty

 o
f 

C
o

-
E

xc
ee

d
an

ce
 E

ve
n

t 
(Y

=0
,1

,2
,3

 o
r 

4+
)

P=4

P=3

P=2

P=1

P=0



55

Figure 3. Co-Exceedance response curve of Latin to the conditional volatility and
the number of co-exceedances of overseas market.
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Figure 4. Co-Exceedance response curve of US to the conditional volatility and
the number of co-exceedances of overseas market.
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Figure 5. Co-Exceedance response curve of Europe to the conditional volatility
and the number of co-exceedances of overseas market.
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