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Many industries are developing robust models, capable of analyzing huge and complex data by using machine learning (ML) while
delivering faster and more accurate results on vast scales. ML is a subfield of artificial intelligence, which is broadly defined as the
capability of a machine to imitate intelligent human behavior. ML tools enable organizations to swiftly identify profitable
opportunities and potential risks. Besides these uses, ML also has a wide range of applications in our daily lives. So, the
development in ML is most important in this age of digital system to solve more complex problems. In order to further
develop ML and diminish the uncertainties to improve accuracy, an innovative concept of complex bipolar intuitionistic fuzzy
sets (CBIFSs) is introduced in this article. Further, the Cartesian product of two CBIESs is defined. Moreover, the complex
bipolar intuitionistic fuzzy relations (CBIFRs) and their types with suitable examples are defined. In addition, some important
results and properties are also presented. The proposed modeling techniques are used to study different ML factors and their
interrelationship, so that the functionality of ML might be enhanced. Furthermore, the advantages and benefits of proposed

methods are described by their side to side comparison with preexisting frameworks in the literature.

1. Introduction

Uncertainty is the main thing found in each decision of
humans. An increasing sense of uncertainty reflects a chang-
ing environment that will impact the choices we make. Rec-
ognizing and accommodating these changes provide the
opportunity to increase decision-making effectiveness. To
reduce these uncertainties and ambiguities, in 1965, a new
invention by Zadeh [1] is introduced which is capable of
modeling uncertainty and ambiguity easily named as fuzzy
set (ES). The characteristic of fuzzy sets is that the range of
truth value of the membership is the closed interval [0, 1]
of real numbers and membership grades explain the effec-
tiveness of any element. Fuzzy set theory deals with the
statement of less or greater form. But crisp set theory only
deals with yes or no statement. Klir and Folger [2] intro-

duced the crisp relation which only explains the yes or no
situation of any object. This structure gives us limited infor-
mation and does not help in human decision-making. Appli-
cation of fuzzy set is found in artificial intelligence [3], social
sciences [4], control decisioning [5], expert systems [6], and
management sciences [7]. Mendel [8] introduced the fuzzy
relations (FRs) for the first time which describe the quality
level of any object. Torra [9] presented the hesitant FSs,
Zadeh [10] proposed the FSs as a basis for possibility theory,
Negoitd and Ralescu [11] applied the FSs to system analysis,
and Laengle et al. [12] proposed a bibliometric analysis of
FSs. Atanassov [13] introduced a new concept of intuitionis-
tic fuzzy sets (IFSs) which deals with membership grades as
well as nonmembership grades. Both of the grades attain the
values from the unit interval [0, 1]. Membership and non-
membership grades show effectiveness and ineffectiveness
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of any object. Burillo and Bustince [14] introduced the con-
cepts of intuitionistic fuzzy relations (IFRs) for IFSs. These
sets discuss the relationship in the environment of intuitio-
nistic fuzzy set theory through the membership and non-
membership grades. De et al. [15] applied IFSs in medical
diagnosis, Szmidt and Kacprzyk [16] found the distances
between IFSs, De et al. [17] defined some operations on IFSs,
Gerstenkorn and Manko [18] gave the correlation of IFSs,
and Xue et al. [19] proposed an application of uncertain
database retrieval with measure-based belief function attri-
bute values under IFS.

After this, a more advanced form of FS was introduced
by Ramot et al. [20] known as complex fuzzy set (CFS) that
deals with a multivariable problem and periodicity. It con-
sists of an amplitude term and phase term, i.e., m(x) = a(x
)e?i9%) where m(x) is the complex membership function
and a(x) €[0,1] is the amplitude term and g(x) € [0, 1]
shows the phase term. They also introduced the complex
fuzzy relations (CFRs) which explain the relations between
CFSs. Zhang et al. [21] explained the §-equlities of the com-
plex fuzzy set. Ramot et al. [22] introduced the complex
tuzzy logic. Alkouri and Salleh [23] proposed a new concept
of complex intuitionistic fuzzy set (CIFS) which consists of
membership and nonmembership in a complex form and
both attains the values from the unit interval [0,1]. Jan
et al. [24] came up with an innovated idea of complex intui-
tionistic fuzzy relations (CIFRs). It is an extended form of
CFRs. Rani and Garg [25] proposed an application of dis-
tance measures between CFSs. Ngan et al. [26] represented
CIFSs by quaternion numbers. Nasir et al. [27] gave an
application of cybersecurity against the loopholes in an
industrial control system by using interval valued complex
intuitionistic fuzzy relations.

An innovation in fuzzy algebra was brought up by Zhang
[28] who developed the bipolar fuzzy set (BES) and bipolar
fuzzy relation (BFR). BESs are more extended form of fuzzy
set. In this membership taken in the form of mappings, one is
positive mapping that attains values from the interval [0, 1]
and second is negative mapping that attains values from the
interval [-1, 0]. Positive mapping shows possibility, and nega-
tive mapping shows the impossibility of any element. Recently,
Lee and Hur [29] also described the bipolar fuzzy relations
(BFRs). Dudziak and Pe [30] explain the equivalent bipolar
fuzzy relations. Lee et al. [31] defined a comparison between
interval valued fuzzy sets, intuitionistic fuzzy sets, and bipolar
fuzzy sets. Bosc and Pivert [32] worked on the division of bipo-
lar fuzzy relations. Alkouri et al. [33] introduced the concept of
complex bipolar fuzzy set (CBFS) which is capable of solving
problems with periodicity. Singh [34] introduced bipolar &
-equal complex fuzzy lattice with its application. Ezhilmaran
and Sankar [35] introduced the concept of intuitionistic bipolar
fuzzy set and relations which explain the possibility and impos-
sibility of membership and nonmembership.

In this article, a new structure based on FSs, named as
complex bipolar intuitionistic fuzzy set (CBIFS) and Carte-
sian product of two CBIFSs, is introduced. Additionally, it
defines the complex bipolar intuitionistic fuzzy relation
(CBIFR) and its several types such as reflexive, symmetric,
transitive, equivalence, partial order, linear order, strict
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order, inverse, and equivalence classes and many more with
suitable examples. Some authentic results have also been
proven. The innovative structure of CBIESs is superior to
all preexisting structure, i.e., FS, CFS, IFS, CIFS, BFS, and
BIFS. The benefit of this newly introduced structure is that
it explains the membership and nonmembership with the
properties of possibility and impossibility. It covers all the
predefined structures in a way that if nonmembership is
equal to zero, it converted into CFBRs. If the phase term
and nonmembership are simultaneously removed, it changes
into BFRs. If only the phase term is removed, then we get a
structure with only amplitude terms, i.e., BIFRs. This article
also proposes an application of effective working of ML,
which is an important part of a digital system. Every now
and then, each organization, institute, industry, and business
changes their working setup into a digital system. ML is used
to make machines work like humans. The application ana-
lyzed the impacts of factors of ML on each other with the
help of CBIFRs. In future, this innovative structure of
CBIFRs would be used in various fields of sciences like eco-
nomics, statistics, technology, chemistry, geology, computer
science, and physics.

The arrangement of the remaining sections is as follows:
Section 2 presents the basic concepts used in this article. Sec-
tion 3 consists of the newly defined framework of fuzzy alge-
bra with suitable examples, i.e., CBIFRs. Some results also
have been proved. Section 4 explains an application of effec-
tive working of ML by using CBIFRs. Section 5 compares the
CBIFRs with preexisting frameworks to show the superiority
of CBIFRs. Section 6 concludes the paper.

2. Preliminaries

In this section, we discussed the preexisting structures of
fuzzy algebra like fuzzy set (FS), complex fuzzy set (CFS),
intuitionistic fuzzy set (IFS), complex intuitionistic fuzzy
set (CIFS), bipolar fuzzy set (BFS), complex bipolar fuzzy
set (CBFS), and intuitionistic bipolar fuzzy set (IBFS).

Definition 1 (see [1]). On a nonempty set P, a fuzzy set (FS)
G on P with mappings ¢ : P— [0, 1] can be defined as

G={g.u(9); g €P}. (1)
And p(g) is the membership degree of g.
Definition 2 (see [20]). On a nonempty set P, a complex

fuzzy set (CFS) G with a mapping a, 0 : P— [0, 1] can be
expressed as

G={g.a(g)e®") ;g P}, 2)

where «a(g), d(g) are the amplitude and phase terms of
the membership degree of g and 27 is just a notion which
represents the cycle of a circle.

Definition 3 (see [13]). On a nonempty set P, an intuitionis-
tic fuzzy set (IFS) G with a real valued mapping y,0 : P
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— [0, 1] can be defined as

G={g.u(9).0(g); g€ P}, (3)

0(g) are the membership and nonmember-
+o(g) <1

where u(g),
ship degrees of g with a condition 0 < u(g)

Definition 4 (see [23]). On a nonempty set P, a complex
intuitionistic fuzzy set (CIFS) G can be defined as

G={g.0,(9)e"%), a,(9)*"™D s ge P}, (4)

where a,, a, are the amplitude terms of membership
and nonmembership degrees, 0,,, 0, are the phase terms of
membership and nonmembership degrees of p, and 0 < «

0y 0,y 0 < 1.

w

Definition 5 (see [28]). On a nonempty set P, a bipolar fuzzy
set (BFS) G on P with mappings y* : P—[0,1] and u~
: P—[-1,0] can be defined as

G={g.u"(9),u (9):9 <P}, (5)

where conditions p*(g) and p(g) are positive member-
ship mapping and negative membership mapping, respectively.

Definition 6 (see [34]). On a nonempty set P, a complex
bipolar fuzzy set (CBFS) G can be defined as

{0 (e a0 g B, (9

where a*(g),a (g): P—[0,1] are the positive and
negative amplitude terms of membership and nonmember-
ship mapping and 0%(g), 0" (g): P — [0, 1] are the positive
and negative phase terms of membership and nonmember-
ship mapping.

Definition 7 (see [35]). On a nonempty set P, a bipolar intui-
tionistic fuzzy set (BIFS) G can be defined as

G={g,(u"(9),u (9))(c"(9),07(9));9€P}, (7)

where y*(g), 0%(g), and u=(g),0 (g) are positive and
negative membership mappings and nonmembership map-
pings with conditions y*(g),o%(g): P—[0,1], u~(g), 0 (
g): P—[-1,0], 0<pu*(g)+0*(g) <1, and -1<pu (g)+
o (g)<0.

Definition 8 (see [35]). Take two BIFSs H = {h, (u*(h), y (

), (0" (), 0~ () sh € P} and I = {i, (u” (i), (1)), (0" (i),
0~ (i)) ;i € P}. Then, their Cartesian product is

HxI={(hi), (" (hs i), (hs i), (0" (hs i)y 0~ (hsi)) s hyi € P},

(8)

min {u* (h), (i)}, g~ (h, i) = max {u~

where y*(h,i) =
i max {o* (h),a+(z)} and o (h,i)=

(), w (i)}, o*(h,i)=
min {o (h),o (i)}

Example 1. The Cartesian product of two BIFSs H = { (b, (
0.54,-0.70), (0.32,-0.11)), (c, (0.32 — 0.09), (0.41 — 0.43))
and  I={(j,(0.11,-0.73), (0.91,-0.03)), (k, (0.42,~0.43), (
0.21,—0.29))} is taken as

i1 g J (57 (0.11,-070), (0.9L,-0.11), (b, k), (0.42,-0.43), (0.32,-0.29)) .
s { ((6 ) (0.11,-0.09), (0.91,-0.43)), ((c, k), (0.32,-0.09), (0.41,-0.43)) } ©)

3. Main Results

In this section, define some advanced structures which
are complex bipolar intuitionistic fuzzy set (CBIFS), Car-

tesian product of two CBIFSs, and CBIF relation and
their types.

Definition 9. On a nonempty set P, a complex bipolar intui-
tionistic fuzzy set (CBIFS) G can be expressed as

= { g ( +(g)eCM2(9), a;(g)ean)fa;@), (a;(g)e@mfa;(m, a;(g)e@n)fa;(g)) (g€ p}_ (10)
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Here, o(g),9,(g) and 0,(g),9,(g) are the amplitude 1, —1<0,(g),9,(9)9;(9),9,(g) <0, 0= a(g) +a;(g) <
and phase terms of positive and negative membership map- 1, 0<0,(g) +9,(g9) <1, -1<a,(g) +a,(g) <0, and -1 <
pings. & (g), @, (g) and 9,(g), 9, (g) are the amplitude and  5~(g) + d,(g) <0.
phase terms of positive and negative nonmembership map- g

pings with conditions that 0 <« (g),9,,(g), & (g), o, (g) < Example 2. The set

0.210-322m)i 0.670-512m)i 0.11¢027(2n)i 0.81¢071(2n)i
I= il > > i2> > (11)
"\ 0.55¢009(2m)i _0.37¢°0-6202m)i _0.44¢~0012m)i _0.11¢ 0900
Definition 10. Take two CBIFSs on P as

is a CBIFS.

G= { ( », ((X; (p)e®2u®), «, (p)enzn)a;@), (a; (p)e@)%s(), o (p)eun)ia;(p)) ) pe p},

. ) (12)
H= {(q, (a;(q)e@ﬂ)laﬂ@, a;(q)e@ﬂ)la,l(q)} (a;(q)e(zmia;(q)’ a;(q)e(zn)iaa(q)) ) sq € p}.
Then, their Cartesian product is defined as follows:
o (0 q) e(zn)ia;(p,q)) ot (p, e(zn)ia;(p,q)’
GxH={(pq), | " ~ , o (P 4) N ip-q€eP Y, (13)
«, (ps q)e@”)la# (Pa) a (p, q)e(zﬂ)’ao(}’ﬂ)

where a; (p,q) = min {a(p), (@)}, 3}(p. ) = min {3}, {35(p). () bty 4) = min {a, (p). 0 (@)}, and 0;(p.)
(p). 9@}t (pr ) = max (o ) i, (@)}, 0, (po) =max { = min {9 (¢). 3, (@)}
u0) 00y ) = max (e Py @h Oy p) =max e

0.04¢"5102m)i 0.25042(m)i 0.1505(2m)i 0,640
m, 0.00e-020mi |7\ _g 37,0500 | | ek _0.63¢-0612mi |7\ g 35,0100 | )’

0.2103202m)i 0.550-41(2m)i 0.380-43(2m)i 0.490-51(2m)i
M=< | my ) ) ] ) (14)
’ _0.016—0.09(271)1 _0.696—0.32(271)1 > _0.476—0.39(271')1 _0.316—0.44(271')1
0.4660.33(27'[)1' 0.3760.42(27'[)1'
<m5, ( _0.47¢-078m)i > ’ ( _0.43¢-0190m)i > )
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Then, its self-Cartesian product is

0. 0420 51(271)1 0. 2520 .42(2m) x 0. 0480 05(271)1 0. 6460 90(271)1
(1, ), 0.00¢-0422n)i _0.37¢ 0520 (11, m3), 0.00¢-04220)i _0.37¢0-520m)i
e e e e
0.04¢%3207)i, 0.55¢042(2m)i, 0.04¢%430m)i 0.49¢%51(2m)i,
(11, m3), 0.09(2 0.52(2 (11, my), 0.39(2 0.52(2
0.00e” )i —0.69¢™ ) 0.00e™ mi -0.37¢” i
0.04¢"33Cm) 0.376420m)i 0.04¢"95Cm) 0.6490Cm)
(1, ms), 0.42(2 0.52(2 (1o 1) 0.42(2 0.52(2
0.00¢ 042027 —0.43¢ 05207 0.00¢ 042027 —0.37¢ 0520201
0156005(27!1 0646090(27!1 OISeUOSZITx 06460902711
(113, 113), 0.61(2 0.10(2 (113, 713), 0.09(2 0.32(2
—0.63¢ 0012 —0.32¢70-1002m)1 —0.01¢7 0000 —0.69¢70-32(27)1
0.1560952m)i 0.64¢%%02)i 0.1560052m) 0.64¢09002)
(12> ma), 047603900 _0.326-0440m)i (13, ms), _0.47¢-061020)i _0.43¢-01902)i
e e e e
0.04¢°32Cm) 0.55"42Cm)i 0.15695Cm) 0.64¢"%0Cm)
(3, 1), 0.09(2 0.52(2 (113, m2), 0.09(2 0.32(2
0.00¢~0-09Cm)i ~0.69¢ 0522 ~0.01¢™0Cm)i ~0.69¢~0-32m)i
0.2160320i 0.55¢0412) 021603202 0.55¢0512)
MxM= (ms, mj3), (m3, my), (15)
OOIer()QZn’ —0.69¢ ~0.32(2m)i 0016009211 0696044271
021032671 0.55¢042Cm)i 0.04¢243Cm)1 0.49°51Cm)
(m3, ms), (my, my),
0,01~ _0.69¢-0322m)i 0.00¢-0-39Cn)i _0.37¢-0520m)i
015800527r1 064809027r1 02160322711 055605127{1
(my, m,), (my, my),
047@7039 (2m)i 032@7044 (2m)i 0016009 (2m)i —0.69¢~ 0.44(2m)i
0. 3820 43(2711 0. 4920 .51(2m) 1 0. 3860 33(2m) x 0. 4960 51(2m) 1
(14> mg), 0,477 0390 0,31 040 (114, ms), _0.47¢ 0390 _0.43¢-0-440m)i
e e e e
0.0433Cm)i 0.37>420m)i 0.15695Gm)1 0.64¢°%0Cm1
(s, ), 0.42(2 0.52(2 (ms, m), 0.61(2 0.19(2
0.00¢7042(2m) —0.43¢7052(2m)1 —0.47¢70612m) —0.43¢70190m)
02130322711 0.55¢42Cm)i 0.386033Cm)1 0.49¢051Cm)1
(ms, m3), 00902 ~ (ms, my), ~ >
-0.01¢70PEM7 J\ —0.69¢022C7)1 ~0.47¢ P! |\ —0.43¢7 040!
0.46633Cm)i 0.3742m)i
(115, m15), _0.47¢- 07801 |\ _o 43,0190

Definition 11. Any subset of the Cartesian product of two
CBIFSs is called complex bipolar intuitionistic fuzzy relation
(CBIFR) and denoted by R.

Example 4. The relation from (15)

Definition 12. A relation R is said to be complex bipolar
intuitionistic reflexive fuzzy relation (CBI-reflexive-FR) on
CBIFS G, if

V(p,(ocﬂ(p) FENP) o ~(p)e Zﬂa(p) ( *(p)e 1em3;(p) ~(p)é ZnB(p))EG‘

00460512111 02560422111
() ()
0.00¢™042(2m)i 0.37¢70520mi
0046005 (2m)i 0646090211
(my, my), ~
0.00e 0.42(2m)i —0. 3760 .52(2m)i Then’
0046005(271 06460902711
<(m2,m1), <0006—0422n ) < —0.376%52( 2n1>>
R= (16) o (p, )™ b)), o (p, p)e @M% o),
01560052711 0646090 2111 (p,P), (2 ER
m,, m,), . -
(ma,m;) _0.63¢-06127)i _0.32¢-01002m)i H@ P) i(2m)0, (pp) o (p’p)e’(zﬂ)aa(P)P)
02160322711 05560412711 1
((m3,m3), ( -0.09(2 > ( -0.32(2 )) ( 8)
~0.01¢700C) ~0.69¢ 703220
0216032 (2m)i 0552051 2711
<(m3’ " ( -0.01¢" Z”>'> < ~0.69¢ 44 >> Definition 13. A relation R is said to be complex bipolar
intuitionistic symmetric fuzzy relation (CBI-symmetric-FR)
is a CBIFR. on CBIFS G, if
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Then, ( (@) + i(27)03 (9,p)
a.p)e? at(g.pe ,
(3:p), . < i — €R.
o (p, @)D\ 1 ot (p, 4B 0, o, (q, p)ePmutar oy (g, p)e'*m%
(p-9) ~(p, )% P4) ( o (p, q)e % @q)) €K (21)
«,(p.q ¢ u ps

(20)  Definition 14. A relation R is said to be complex bipolar
intuitionistic transitive fuzzy relation (CBI-transitive-FR)

This implies on CBIFS G, if
(P, (“ () i(2)0,, (p) “—(p)e(Zn)a (P)), ((x;(p)e (2m)? (p) (p)e(Zn 9, (p ))’
v (q, ((x;(q)e@nm ),a;(q)ez@n)a;(q)), (a;(q)e @3, (@), o~ ()2 <q>) ) G (22)
(r, (a;@e @3 a;(r>et<2ﬂ)a;<r>), (a;@e (2m)3; (1) a;<r>ez<2n>aa<r>))
Then, implies that
i(27)0,,(ps ) i(27) 0, (por
& (P @) BN (p, g (o), o : (“Z(P’ r)ens >’> eR.
- 9), i(2m)3, (p4) < i(2m)0; (p.q) ) > “;(P’ r)e i(2)0, (pr) o (ps r)e’(2”>aa(1’>r)
o, (p.g)¢" o, (p.q)e"
€R (24)
(q r)e r) (x+(q r)e(er)a*(qr))
@), (4 r)eCm,(an) <¢x‘(q r)ez‘(zn)aﬂ(w)) Definition 15. A relation R is said to be complex bipolar

intuitionistic irreflexive fuzzy relation (CBI-irreflexive-FR)
(23)  on CBIFS G, if

V( ) (a; (p)e/@%u(p), a;(P)ei(Zﬂ)aﬁ(P))) ((x; (p)e/¥%(r), a;(P)ei(Zﬂ)a;(P))) €G. (25)

Then, Definition 16. A relation R is said to be complex bipolar

intuitionistic antisymmetric fuzzy relation (CBI-antisym-
metric-FR) on CBIFS G, if
9,,(p-p) (23 (p.p)
((p,p» ( ((Zp; R ) ( (;‘D) o y ))) ¢rR (26)
p)e o (pr p)e P

v - ' €aG. (27)
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Then,
- (p q) i(2m)0,, (p4) | o« (p, ) ™), (Psa) R
T\ G ) agpgecien ) |
(28)
This implies
(q P) (‘ZP) oc;(q,p)ei(zn)a‘:(q‘p), X
5> 5 > e R
*P\ sgtapemnin |\ o peemsion
(29)
Then

( )ez (2m)0;, (pq
e

_ P
< " (p, q)e' @M% pa) ) <oc;(q,p ‘2ﬂ)3$(q’P),>
a (p, q)e’ 9 () o (q)p)ei(Zﬂ)aé(qu)

Definition 17. A relation R is said to be complex bipolar
intuitionistic complete fuzzy relation (CBI-complete-FR)
on CBIFS G, if

(p, (a;(p)ei(zﬂa;(p)’a};(P)ex(Zrt)B;(p))’ <a (p)e@ )20) ~(p)e (272, (p )))
v ) } €eG.
(q) (a;(q)eianm @, ,x;(q)e«zﬂm(w), (a;@ez(zmam), o (q)e % <q>) )

(31)

Then,
» “;(P’ q)ei(zn)am,q)’ o (p, q) Pq) R
o . (p, g% 04) “\ o (pr q)e %P a) ’
(32)
or
: a;(q,p)e( )0, (a:p) a;(q’p)e(zn)a*(qp) A
bl b b E .
(qp (. p)e ) |\ o (g, p)e P00
(33)

Definition 18. A relation R is said to be complex bipolar

intuitionistic equivalence fuzzy relation (CBI-equivalence-
FR) on CBIES G, if

(i) CBI-reflexive-FR
(ii) CBI-symmetric-FR
(iii) CBI-transitive-FR

Example 5. From the Cartesian product in equation (15),
take a relation as

0046031 271)1 0256042 2711
(s ), 0.00¢0-42Cm)i _0.37¢0520mi | |
0.04¢205Cm)1 0.64¢%20Cm)1
(> m3), 0.00¢-0-42Cm)i _0.3700520m)
0.04¢005Cm)i 0.64¢090C)i
(113, 1), 0.00¢-042(2m)i _0.37¢"520m)
0.156095Cm)i 0.64¢"%0Cm)1
(my, my), »
_0.63¢-0612m)i _0.32¢-010Cm)i
0.2162320m)1 0.55641m)1
R= (ms, my), . , (34)
—0.01¢70-99(27) —0.69¢~0-322m)i
0.21¢0320m1 0.55¢051Cm)1
(3, ), _0.01¢"09C) _0.69e- 040 | |7
0.2162320m)1 0.55651Cm1
(4> m3), 0.0120@0) _0.69¢-044Cmi | |
0.38¢043Cm1 0.49¢051Cm)1
(my, my), ,
04760390 _0.31¢-044Cm)i
0460332 0.376422m)i
(5, ms), _0.47¢-078C)i _0.43¢-0192m)

which is an CBI-equivalence-FR.

Definition 19. A relation R is said to be complex bipolar
intuitionistic partial order fuzzy relation (CBI-partial
order-FR) on CBIFS G, if

(i) CBI-reflexive-FR
(if) CBI-antisymmetric-FR
(iii) CBI-transitive-FR

Example 6. Take a relation from (15):
0042051 27‘[1 025@042 Zrt)x
(my, my),
0.00e~0-42(2m)i _0.37¢0-52(2m)i

0.04005Cm)i 0.64¢0-90C7)i
ml, mz
0.00¢e —0.42(2m)i —0. 3720 52(2m)i
0.04¢%33n)i 0.37¢" 42( Zﬂ)x
’ (0006—042(2n)z> _0.43¢70-5202m)i ))’
0. 152005 2m)i 0642090 Zﬂl

—0.32¢" 0.10(27)i

(
(
.
(
{
H

< my, ms),
<m2 ma)s < 0632061(2n)x> ))
0156205271
(my, ms), >
—0. 472—0 61(2m)i -0. 432—0 19(2m)i
02160322711 05580412111
(m3, m3), >
_0.01¢"009(m)i _0.69¢0-322m)i
0. 3880 .43(2m) 1
(my, my), >

_0.47¢-0390n)i

0496051 2n:x
—0.31e ~0.44(2m)i

0.37¢%42(2m)i

0468033 ZTI
(s, ms), _0.47-078027) _0.43¢-01920)

is a CBI-partial order-FR.



Definition 20. A relation R is said to be complex bipolar
intuitionistic strict order fuzzy relation (CBI-strict order-
FR) on CBIFS G, if

(i) CBlI-irreflexive-FR
(ii) CBI-transitive-FR

Example 7. Take a relation R from (15):

(s ()

0. 6480 .90( 2711
—0.37¢70520m)i

0. 04@005 (2m)i
0.00e —0.42(2m)i

0046032 (2m)i 0556042 271)1

<(m1 ms), (0 00e-0-9902)i >>’

) ( ~0.69¢0-520m)i
01560052711 06460902711
R= ((m2 "), < _0.01-0-0902)i _0.69¢-0-320mi | | (36)
0.15605Cm) 0.64¢%20Cm)1
(g, 1), _0.47¢-0390)i _0.32¢- 040 | )’
0.21¢032(2)i 0.55¢%51m)1
(g m3), 0,015 _0.69¢- 04 | |

is a strict order relation.
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Definition 21. A relation R is said to be complex bipolar
intuitionistic linear order fuzzy relation (CBI-linear order-
FR) on CBIFS G, if

(i) CBI-reflexive-FR

(if) CBI-antisymmetric-FR
(iii) CBI-transitive-FR

(iv) CBI-complete-FR

Definition 22. A relation R is said to be complex bipolar
intuitionistic strict order fuzzy relation (CBI-strict order-
FR) on CBIFS G, if

(i) CBI-reflexive-FR
(ii) CBI-transitive-FR

Definition 23. A relation R, o R, is said to be complex bipolar
intuitionistic composite fuzzy relation (CBI-composite-FR)
for CBIFRs R, and R, on CBIFS G, if

(p, (a;(P)ei(Zn)a;@))a;(p)ei(Zn)a;(P))’ (%(p) i(2m)35(p) o (p)e@m0) ))

Then,

o (p q) i(2m)3,(pa) ot (p> q)e 27 (pa) A
>q)> €Ky,
1 & (p, @)@ o (p, q)¢ P2 !

(g, r)eZmoulan) ot (g, r)e @M%, A
\7)s €
(@) @ (q )20 o (g 1)@ @) 2

(38)

<q)ei<2n>a,:<q>), (a;(q)eian)aft@, a;(q)emn)a;(q)) ) cG.

(37)

imply that

aF (P> r)ei(er)B;(p,r)’
Ry oR,={ (1), ( 7 -

o (p, r)e’( )0, (por)

Definition 24. A relation R is said to be complex bipolar
intuitionistic converse fuzzy relation (CBI-converse-FR) on
CBIFS G, if

0, (ps 1) "),

a,(ps r)e 3u(pr)

)}

(39)

€G. (40)
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Then,

(, ) 0,(paq
V(M’( (0! “’))<

@ (p g N
@ (p,q)é i(271)9, (pq) .

e ( ) a;(q, p)ei(ZTr)D;(q,p), (x;(q,p)ei(Z”)a;(%P),
= q:p) ‘x; (q’p)ei(Zn)a; (a:p) ’ 06; (q) p)ei(Zn)B; (a:p) ’

(42)

(41)

This implies

(P q),
o, (p, )€’

for (p, (at; (p)e %), ot (p) PP P)), (a (p)e @m0
o (p)e?™% (1’ )) and a CBI- equ1valence-FR R

0.04¢%5127)i
m e
? 0.006—0.42(271)1
M:
<m3)<

Take an equivalence relation from the Cartesian product
of M x M which is

0.2160.32<2ﬂ’)i
—0.01¢"0-09(2n)i

0046051 27r)x 025e042 (2m)i

0.00e™ 0.42(2m)i

> < —0.37¢" 0.52(2m)i ))
004600527r)1 0.64¢ 09027rz
0. Ooe—O .42(2m)i > ( —0. 376_0 52(2m)i >>
0046005 271)1 064e090 (2m)i
—0.37¢" 0.52(2m)i

0.00e™ 0.42(2m)i
015600527r1 0646090(27”
_0.63¢-0612n)i )

0.2103207)i

_0.32¢-0-1002m)i

0.55¢0-412m)i

3

v

3
/—\/—\/—\/\/\

0.01¢-0:09(n)i —0.69¢0-32(2m)i

Then, modulo classes of each element are defined as
0.04¢>3127)1 0.25¢%42(2m)i
Rimy] = [ m, ). ).
0.00~0-422m)i _0.37¢70-62(2m)i
0.040052m)i 0.64¢%902m)i
° my, > >
0.00¢-0-42Cm)i _0.63e>6102m)i

(45)

9, (pa)

0.2560-42m)1
_0.37¢0520mi | ) o>

Definition 25. The complex bipolar intuitionistic fuzzy
equivalence class of p modulo R is defined as

& (p, q)e ¢ 2m)9; (pa) )
€R
o, (p, q)¢'% P

Example 8. Take a CBIFS:

_0.63¢0-61C2m)i ) ’ (

( 4 (a; (q)e @%@, «, (q)ei<2n>aﬂ<q>), (a+ (@) @%@, o ()@ (q)) ):

H(p q) i(2m)0, (p4)

(43)

0.15¢0-052m)i 0.640-202m)i

_0.32¢-0-10Cm)i > ) ’

44
0.55¢0-41(2n)i (44)

—0.69¢70-32(2n)i

0.25¢0-42(2m)

0.040-512n)i ) i
R[m,] = my, e ) >
0.00e~0-42(2m)i —0.37¢70-62(2m)i
0.04¢%05Cm)i 0.64¢%90Cm)i
° m2) > >
0.00e0-42(2m)i _0.63e"61@m)i
0.15¢%05Cm)i 0.64¢°9°C)i
R[m;] = ms, oo | B i .
—0.01e™ (2m)i —0.69¢ 0.32(2m)i

(46)
Theorem 26. A CBIFR R on G is a CBI-symmetric-FR <
R=R"

Proof. Necessity condition:
Assume that R = R™!. Then,

o (p, )i pa),
(p’q)’ > U(P q) . ER,
o (pr g% 04)
(2m)id], it
ol @p (q,p) u(ap), o (g, p)e?Pa(ap), .
w (q P) (27)i0,,(q.p) ’ IX; (q’p)e(ln)iag(q,p) ’

a;@ q)e (2m) IB

a;(p q)e (2m)id,, (p.q)
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Since R=R!, thus,
(q p) (2m) 18 ‘IP), a;(q,p)e(Zn)ia; (q,p),
| (@p) , N R
(X;(q, ple (2m)id,, (q:p) @ (g p)e(2n)xag (4p)

(48)
Therefore, R is a complex bipolar intuitionistic symmet-
ric fuzzy relation on G.
Sufficient condition:
Assume that R is a complex bipolar intuitionistic sym-
metric fuzzy relation on G; then,

oo ( ) ) (Cm)id(pg) <oc:; (s q)e(Zﬂ)iBZ (P’CI),> R
>q)> 4 i €5
a; (p» q)e (2m)id,, (p.q) o (p, q)e(Zn)taa(p,q)

a4, p)eduar) o (g, p)e¥m0a(ar),
(=4 (q;P)» _ (2n)id; (q:p) > — (2m)id, (q,p) <R
o, (g p)e®2ule oy (g, p)et e

(49)
But
( ) (q p) (2m)id;, (CIP)) 0(; (q’P)e(Zn)iag(q,p), R71
b > , E )
9P “; (q,p)e (2m)id,, (4:p) o (q’p)e(zn)ia;(q,p)
(50)
Thus, R=R"" and the theorem is proven.[J O

Theorem 27. A CBIFR R on G is a CBI transitive FR &R
oRCR.

Proof. Necessity condition:

Assume that R is a complex bipolar intuitionistic transi-
tive fuzzy relation on a CBIFS G.

Let

( r) M(P ) (2m) la ) (X; (P; r)e(Zn)ia;(p,r)’ CRoR
7 & (p, )o@, 6r) ’ o (p, 1)@ P '
(51)

For any

( ) ( )e (2m)id lX; (P» q)e(Zn)ia;(p,q)’ R
»q)> €K,
P-4 (x_(P q)e (2m)io, (Pq a; (p) q) e(Zﬂ)ia;(P,q)
(q’ r)e (2m) za+ (g:1) 06:; (q) r)e(zn)ia;'(q,r)) <
(q) 7'), (2m)io, ( ’ - (2m)io (q.r) e
o, (g, 7)e %, (g r)e

Journal of Function Spaces

This implies that

( ) (X; (p, T') e(2n)ia; (P,r), (X:; (P’ r)e(Zn)ia;(p,r)) X
> 1)y > €K,
P (p’ r)e (2m)io, (p r) 0(; (p’ r)e(er)iB;(p,r)
(53)
since Ro RCR.
Sufficient condition:
Conversely suppose that R R C R; then,
“;(P q)e (2m)io;, <pq oc;(p, q)e(Zn)ia;(p,q)’ X
(- ), (amyid( - (2m)id; (pq) €
o, (p, q)e! a;(pq)e
( )e (2m)io},( a;(q’ r)e(Zn)ia;(q,r)’ X
(q’ T), (2m)io, ( ’ — (2m)io, (q.r) €K
o, (g 1)e %, (g, r)e
(54)

This implies
(P ) (2m)io, ( ) o (p’ r)e(Zﬂ)ia;(p,r))
P’ o
( > f'), (@n)idy, (pr) ? - (2m)io, (p,r) €ReR.
24 (P ) Ay (P’ r)e
(55)

But it is assumed that Ro R C R. Thus,

& (ps r)e(lﬂ)iaZ o),
- 2)i; () R
o, (p, r)el 02

(p 1’) 27113(p)

(. 7)s
H(P ) (2m) la psr)

(56)

Hence, R is a complex bipolar intuitionistic transitive
fuzzy relation on a CBFS G.(J O

Theorem 28. A CBIFR R on G is a CBIl-equivalence-FR
& RoR=R.

Proof. Necessity condition:
Assume that

oo «(p, q)e®0ipa), <(x; (p, q)e®% (P’Ci),>
2.q)s g

( ) ) (2m)i0,, (pq) a (ps q)e(Z”)ia;(P>Q)

Then, by the definition of symmetric relation,

oc;(q,p)e(Z”)ia; (@p),
N\ o 2)i0, (¢.0) €k
o, (q, p)el0a @

(q P) (2m)id,, u(@p)

(@),
o, (q, p) e 0u(@P)
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Now, by the definition of transitivity,

‘x; (-p) M0, (pp) ( o’ (p) e(2n)ia;(p),> o

(P, p)> .
o (P P) (2m)io, @p a;(p)e(znyag(p)

(59)
Also, by the definition of the composition,
+ (2m)id,, (pp) + 00\ (2m)id} (p)
o »p)e > (24 e 5
(P> p)s gt . ) o(P) ) €RoR.
& (p, p)e 2 00) o (p) 2% P)
(60)

Therefore,

Sufficient condition:
Suppose that

(P: ) (2m)id,,(p.q)
()
o (p, q)e™"

& (p, q)e(Zﬂ)ii’Z(Pﬂ),
€RoR,
o, (p, q)e>m% )

(62)
then there exists r € P such that
NI (e,
(p) r)’ 2 a b _ 2 a e R)
o, (p, r)e 1 0upT) o, (p, r)el % (P7)
M( )e 2ﬂ>za+<rq (ocf,(r, q)e(Zn)iag(r,q))>
(r,9) , N €R.
_( )e(2n )i, (r:q) 06;(7', q)e(ZH)zag(r,q)
(63)
Hence, this implies that
(p q) (2m)ioy, (P‘I a (2m)id}( )
( ’q), 27118( (Pq) (2m)io ( GR’
o, (p, q) 0P o, (p q)et
(64)
=RoRCR. (65)
Thus, equations (61) and (62) imply the following
RoR=R. (66)
O O

Theorem 29. The inverse of the CBI-partial order-FR R on F,,
is again a CBI-partial order-FR R on G.

Proof. The CBI-partial order-FR R on a CBIFS G, R satisfies
the properties of complex bipolar intuitionistic reflexive,
antisymmetric, and transitive fuzzy relations.

11

Since R is a CBI-partial order-FR, for any p € P,

( ,p) (2m)id, u(PP) (a;(p)e(m)ia;(p)’)
> €R.

=\ @p) o
«, @’P)e (2m)idy, (p-p) a (p)e(Z")'aa(P)

(67)

(%) Rl
o (p) £(2m)i0; (p)

Hence, R7! is also a CBI-reflexive-FR.
Let

- “+(p’ Qe M0 (pa) (oc;(p, q)e(Zn)iB;(p,q)’> .
>q)> . :
o, (p, q) (2m)id, (pq) & (ps q)e@")@a(ﬁ-q)

(q p) (27)id}, (@p) a;(q)p)ean)ia}(q,p)’ -
»P)s ) eR.
@) o, (4 p)e™ 10, () o, (g, p)el?™)i:(4p)

(69)

This implies that

o (p, p)e(Zﬂ)iaﬁ(P,P)’

(2> p)s & (p, p)emi%,(00)

Then, by the definition of inverse,
1.q (am)id,, P‘i) (2m)id} (p.q)
ﬁ((ﬂ%( o )2 N ( @q)za )) R
a6, (p, @)D o, (p, )¢’

(q p) (2m)iod,, k(@) a;(q)p)e(h)ia;(qxp), X

D), , €R.
(g-p) (q p) (2m)id, () ‘x;(q’p)e(Zn)ia;(q,p)

(70)

So, R is a CBI-antisymmetric-FR. Therefore,
“;(P’ q)e(lﬂ)ial(}’ﬂ)’ oc;(q p)e® 0, (ap)
o, (ps q)e<2n)ia;(p,q) Nan o, (4 p)e )iy, (:p)

@ P)
(2m)i0; () + (2m)idg (ap)
o (P q)e! o (4. p)e
U(p q) (2m)id, (p,q9) (x*(q,p)e(zmlaa(‘l!l’)

(71)
Hence, R™! is also a CBI-antisymmetric-FR.
Let

( ) « (P q) (2m)i0, ) (X; (P> q)e(ZH)iB;(p,q)’ gl
P\ aeeon )\ . qenies |

o (4, r)e@iouan) o’ (g r)e@mi%an), B
(g-1)s - R _7 eR.
(g r)e®m 2@ o (g, 1)@

(P q),
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' Data Colection

Journal of Function Spaces

Construct CBIFRs

_______{
— T
=

Interpret the Outcomes

FIGURE 1: Algorithm of the application.

Then,
( ) (f’, q)e (2m)id,, ( ) 0(;(?’, q)e(2n)i8;(r,q)) R
=1 (rq), ’ €5
4 a,(r.q) o(2)id, (ra) (1 q)e(Zﬂ)iaé(nq)
(q P) (2m) 18 qP)’ ot (q p)e(Zﬂ)ia;(q’P)
(q’P)’ (q ) (2n)id, (a:p) ? (q p)e (2m)id, (q.p) <R
’4 ) U

(73)

So, R is a CBI-transitive-FR. Therefore,
7 16 + )id (.
o) 0 (1 p)e e, (NN
p -
(r,p)e (2m) ;a .p) (X; (r)p)e(Zn)taa(r,p)

(2m)id, (p, 7)i0, (por
N 1’) ,M(P ) ) (a;(p,r)e(z )i0 (p. ))) ey
06; (P, T) e(ZH)IaH (psr) 0(; (P’ r)e(Zn)ia; (p.r)
(74)

Hence, R™! is also a CBI-transitive-FR.
Thus, we prove that R is also a CBI-partial order-FR on G.CJ
O

4. Application

In this section, we proposed an application by using a new
concept of CBIFSs and their relations.

4.1. Machine Learning. Machine learning (ML) is a type of
artificial intelligence (AI) that allows software applications to
become more accurate at predicting outcomes without being
explicitly programmed to do so. Machine learning algorithms
use historical data as input to predict new output values.
Machine learning algorithms are used in a wide variety of
applications, such as in medicine, email filtering, speech recog-
nition, and computer vision, where it is difficult or unfeasible
to develop conventional algorithms to perform the needed
tasks. It gives enterprises a view of trends in customer behavior

and business operational patterns and supports the develop-
ment of new products. Many of today’s leading companies,
such as Facebook, Google, and Uber, make machine learning
a central part of their operations. Machine learning has
become a significant competitive differentiator for many com-
panies. The iterative aspect of machine learning is important
because as models are exposed to new data, they are able to
independently adapt. They learn from previous computations
to produce reliable, repeatable decisions and results. It is a sci-
ence that is not new but one that has gained fresh momentum.
Figure 1 explains the algorithm of the application.

Some factors that affect the ML in different ways are dis-
cussed below:

(i) More data: the data always becomes more accurate
when there is more data on the algorithm. You
should avoid subsampling because it will help in
getting the best data. There is an intuitive character-
ization regarding the prediction error when it comes
to machine learning. If the data is limited, it will not
be able to support the complexity of the model
required for solving the problem

(MD, ( 0.88" 30 _() 657027(2)i ), ( 0.39041C7)i _( 61709902 ))
(75)

(ii) Keep the given problem in mind: when you are select-
ing the machine learning method, it is important to
keep the given problem in mind. It plays an impor-
tant role in determining the level of success. Make
sure that you are using the algorithm that is most
suitable for the characteristics of the data. It will help
in getting the most accurate results

(KM, (0‘73e°'67(2")",—0.41e’°'31(2")i ) (0‘2060.17(211)1')_0‘586—0.09(271)1' ))

(76)
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(iii)

(iv)

(v)

(vi)

Parameters: the parameters of the method are not
always easy for the nondata scientists to understand.
When it comes to the modern machine learning
algorithms, there are always some knobs that need
tweaking. Each algorithm has multiple parameter
settings. The experience and intuition can help a
lot in understanding the parameters

(p) ( 0.39270Cm)i _() 23,-041(2m)i )) ( 0.44¢%27C)i g 70705120 )) )

(77)

Data Quality: the quality of the machine learning
depends on the quality of the data. If the collection of
the data is not proper, then it will be difficult to create
machine learning models that are general and predic-
tive. It is essential that the data is reviewed carefully.
The data should allow the experts of the subject matter
to get a proper insight into the data. It will also provide
insight into the data generation process which can help
in identifying data quality issues that are connected to
the features, records, sampling, or values

(DQ, ( 0.49¢5127)i _( 55¢-0-19(m)i )’ ( 0.2562420m)i _ 37¢-0-620m)i )) .

(78)

Features in the data: the impacts of predictability
depend on understanding the features in the data.
It is crucial for machine learning to consider the
raw data in a rich feature space. Knowing the fea-
tures will help a lot with the learning processes

(FD, (0.7160.51(Zn)f,_0_09e—o.37(2n)i ), ( 0.27>210m)i _0 836012071 ).
(79)

Objective/loss function: the success of the applica-
tion depends a lot on the choice of appropriate
objective/loss function. The machine learning algo-
rithms are mostly formulated as problems that are
optimized. Adjusting the objective function accord-
ing to the nature of the business is essential for
machine learning success. These are some of the
factors that need to be remembered

(OF, ( 0.556%942M)i _ 73702902 ) ( 0.30£%932Mi _0 060362 ))
(80)

Each factor of ML describes the two stages, ie.,
membership which means effectiveness and non-
membership which implies ineffectiveness. The pos-
itive and negative values show possibility and
impossibility of both effectiveness and ineffective-
ness. If the positive value is closer to 1, it shows that
the possibility of effectiveness and ineffectiveness is
higher and the phase term explains the duration of
possibility. If negative value is closer to zero, it

£
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/ Parameters
(P)

| Learning
Factors -~

Data Quality
DQ

Features of
Data

(FD)

Loss
Function

(LF)

FIGURE 2: Summary of factors.

shows higher impossibility of that factor. For exam-
ple, the positive and negative membership of the
element (DQ, ( 0'4960.51(2n)i’_0.556—0.19(2n)i )’
(0,2550-42(2"‘)i,—0_37e‘0~62(27’)" )) indicates that the
possibility of effectiveness of the data quality on
ML is 49% with about half time units and the possi-
bility of ineffectiveness is about 55% for very short
period of time, respectively. Similarly, we can read
off the values for positive and negative nonmember-
ships. Here, we discussed the impact of one factor
on the other.

The summary of all factors of ML is shown in
Figure 2.

Then, the set of all factors with given grades is

<MD’< 0.88¢%33(2m)i )( 0.39%4127)1 >>’
—0.65¢7027(2m)i _0.61¢70390n)i
<KM)< 0.73¢>672m)i >’< 0.2017C7)i ))
_0.41¢70312n)i 0.58¢70-09(2m)i
(P’< 0.39¢7027)i ))( 0.44¢27C7)i >>
_0.23¢ 0412m)i —0.70¢"0-51@m)i

N= . (81)

5 0.49¢7512m)i 0.2500:42027)i
Q _0.55¢-0192mi |7\ _( 37,-0-6202m)i
0.710512m)i 0.276°212m)i

<FD’ (_0.0950.37(271)1' )’ < _0.83¢-0-1202m)i >>
05560942 0,303

<OF’ <_0V73870.29(2n)i ) > ( _0.06¢-036(2m)i ))

Then, its Cartesian product is in Table 1.
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TaBLE 1: Cartesian product.

Ordered pair Membership Nonmembership
(MD, MD) (0.88¢033Cm)i 0 65¢0-272m)1 ) (0.394127)i _( 610391 )
(MD, KM) (0.73¢033Cm),-0.41¢70-72m1 ) (0.39¢041m1, 0,610 )
(MD, P) (0.39¢332mi _0,23¢-027(2m)i ) (0.440412m)i _( 70705127} )
(MD,DQ) (0.49¢0-33(2m)i _( 55¢-0-19(2m) ) (0.39¢0-42(m)_ 61¢-062(2) )
(MD, FD) (0.71e0332mi —0.09¢ 027 (2m) ) (0.39¢741(2m) 0, 83¢-0-39(2m) )
(MD, OF) (0.55¢0-33Cmi 0 65¢027(2m) ) (0.39412m)i _( 610391 )
(KM, MD) (0.73¢033Cmi 0 41¢7027Cm)1 ) (0.39412m)i _( 61¢-039Cm)1 )
(KM, KM) (0.73¢067Cm),-0.41¢70312m1 ) (0.206%17C7), 0.58¢70-09Cm)1 )
(KM, P) (0.39¢%67(2mi _0.23¢7031(27)1 ) (0.44272m)i _ 7005121 )
(KM, DQ) (0.49¢0512m)i 0 41¢-0-192m)1 ) (0.256042(2m)i _( 58¢-062(2m)1 )
(KM, FD) (0716051 (2m)i _() 09¢~0-31 2711) (0278021 (2m)i 083e°122’”)
(KM, OF) (0.55€67(2mi 0. 41¢-029(2m)i ) (0.30%17(2m)i_( 58¢-0-36(2m) )
(P,MD) (0.39¢033Cm)i (. 23¢-0-272m)1 ) (0.44412m)i _( 70705171 )
(P, KM) (0.39¢%67(2mi _0.23¢7031(27)1 ) (0.44°272m)i _( 70051271 )
(P, (0.39¢0702Mi _0.23¢~041(2m)i ) (0.44¢727C)i _0, 7005127 )
(P, DQ) (039e0512”’ 023e°1927”) (044eo4zznz 07060622711)
(P, FD) (0.39¢%512mi —0.09¢~0-37(27)1 ) (0.44¢027Cm)i _0,83¢-0-51(2m)i )
(P, OF) (0.39¢070GMi _0.23¢7022m)i ) (0.44¢727C)i _0, 7005127 )
(DQ,MD) (0 49¢033(2m)i _() 55,-0-19( 2111) (0 39042(2m)i _() 617062 271'1)
(DQ,KM) (0 49¢0-51(2m)i 0416—0192711) (02530422"’ 0588—06227:1)
(DQ,P) (0.39¢0512m)i 0, 23¢-0-19(2m) ) (044604207 _ 70¢-062(2)1 )
(PQ,DQ) (049651271 —0.55¢-019(2m)1 ) (0.25624227)i _ 37¢-062(m) )
(DQ, FD) (0.49¢0512mi _0,09¢0192m)1 ) (0.27¢%422m)1 _0,83¢-0-62(2m)i )
(DQ, OF) (0.49¢0512m)i 0 55¢-0.192m)1 ) (0.30042(2m)i _( 37¢-0-622m) )
(FD, MD) (0.71033(2m)i 0 09¢~027(2m) ) (0.396241(27)i_( 830351 )
(FD, KM) (0.71€"512mi _0,09¢~031(2m)i ) (0.27¢0212m)i _( 83¢=0-12(2m) )
(FD, P) (039605127:; 009603727”) (044602727” 08360512”’)
(FD,DQ) (0496051 (2m)i 00960192711) (027eo4zznz 08360622711)
(ED, FD) (0.71°5137)i—0.09¢~0-37() ) (0.712312mi —0.09¢-07C)1 )
(FD, OF) (0.55¢0512m)i 0 09¢~0-292m)1 ) (0.306242(2m)i _( 37-062(2m)1 )
(OF,MD) (0.55¢033Cmi 0 65¢-027(2m) ) (0.39¢041(2m)i _( 61703902 )
(OF,KM) (0.55¢067Cm)i _( 41¢-0-292m)1 ) (0.306%1727)i _(.58¢036(2m)1 )
(OF, PM) (0.39¢070Cmi 0 23¢-0-2902m)1 ) (0.44¢°270m)i _( 70705171 )
(OF, QD) (0.49¢%51(m)i —0.55¢70192m)1 ) (0.30¢042(m)i —0,37¢70-62(2m)1 )
(OF, D) (0.55¢05127)i,_0 09¢=0-292m)1 ) (0.30624227)i _( 37¢-0627)1 )
(OF, OF) (05569427 _0,73¢"0-29(m)i ) (0.306003Cm) _0,06¢036(2m)1 )
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Lower
Possibility
Higher
6 — Impossibili
Ordered Pair mpossibIity
(QD,FD)
. Lower
Possibility
Lower
Impossibility
F1GURrk 3: Impact of QD on FD.
TasLE 2: Comparative analysis.
Membership Nonmembership 1 .
Structures Possibility Impossibility Possibility Impossibility Multidimensional
CFRs Yes No No No Yes
CIFRs Yes No Yes No Yes
CBFRs Yes Yes No No Yes
CBIFRs Yes Yes Yes Yes Yes

Each ordered pair of Cartesian product N x N expresses
the impact of one factor on the other. Here,

OF MD 0.5560'33(271)1, 0.3960.41(27T)i’
(OF, MD), _0.65¢027mi |7\ g 610390
(82)

explains that the objective function impacts on more
data; i.e., effectiveness has higher possibility with shorter
time duration and lower impossibility with larger time dura-
tion. In the same way, possibility of ineffectiveness is lower
with normal phase time and impossibility is lower with lon-
ger time duration. This means that objective function deals
more data in ML effectively and makes working of machine
learning more developed. Similarly, another ordered pair

0.4960‘51(2ﬂ)i, 0'2760‘42(271)1"
(DQ, FD), B 4
_0.096—0.19(27[)1 _0.836—0.62(27[)1

(83)

is explained with the help of Figure 3.

5. Comparative Analysis

In this section, the omnipotence of the newly proposed
framework of CBIFRs is verified through a comparison of
CBIFRs with preexisting structures such as CFRs, CIFRs,

and CBFRs. Since CFRs tell only membership grades and
lack the nonmembership grades, it describes only possible
values of the membership and does not deal with the impos-
sibility factor of membership. CIFRs tell the membership
and nonmembership grades. It also just explains the positive
mapping of membership and nonmembership and has lack
of negative mapping. Due to complexity, both CFRs and
CIFRs deal with periodicity and the problems with multivar-
iable. CBFRs explain the membership grades with positive
and negative mappings that describe the possibility and
impossibility values of the effectiveness. But the CBIFRs con-
sist of both positive and negative mappings of membership
and nonmembership. It explains the effectiveness and none-
ffectiveness of an ordered pair of the Cartesian product in a
broader way by telling the possibility and impossibility
values. CBFRs are superior to all preexisting frameworks of
fuzzy set. Now, we explain the advantage of CBIFRs with
CBFRs through an already discussed example.
The set of all factors with given grades is

(MD, (0.88" 3™ _0.65¢027(2m) )),
(KM, (0.73¢57Cm)i _0.41¢031271)),
(P, (0.39e0‘70(2ﬂ) —0.23¢70-41(27) z)
(DQ> (O 49@0‘51(2”)’ —0.55¢ 0.19(27)i
(FD, (0.71¢%51%m1 _0.09¢0-37(2m)i
(OF, (0.55¢%42m) _0 7370292

>

(84)

)
)
)
)
"))

Then, its Cartesian product is
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((MD, P), (0.39¢03Cm,-0.23¢ 02720
((MD, FD), ( 0.71¢>33(™i _0.09¢~0%7(27)
((KM, MD), (0.73¢33(mi _0.41¢0-27(m
(KM, P), (0.39¢"67(2m7 0 23¢~0312) )
((KM, FD), (0'71‘30451(271), —0.09¢-03102m)i
((p, MD), (0.3960.33(271)1 _0.23¢°0-272m)i
((P, P), (0.39¢"70),-0.23¢~04(27) )

i

")
9)
)

)
")
")
)
)
")
)
")

NXxN =

((DQ. P), (0.39¢"5120) 0 23¢ 01902
((DQ, FD), (0.49¢"512,-0,09¢*12(
((FD, MD), (0.71¢"3(27)i _( 09027
((ED, P), (0.39¢"31( —0 090727
( (FD, FD), (0.71e°‘51(2”) —0.09¢~037(2m)i
((OF, MD), (0.55¢%32mi _0 65¢ 027 (2

((
((

")
9)
)

)
)

)
")
")
)
")
")
)
)

Each ordered pair of the Cartesian product N x N shows
relation between factors. An ordered pair just shows the
membership of impact of factors and does not explain the
nonmembership, while CBIFRs explain the both. All preex-
isting structures of fuzzy algebra give limited information
about any object. Table 2 gives the comparison of CBIFRs
with other frameworks.

6. Conclusion

This article proposed the novel concept of complex bipolar
intuitionistic fuzzy sets (CBIFSs) and the Cartesian product
between CBIFSs. Additionally, complex bipolar intuitionistic
fuzzy relations (CBIFRs) and their types are also defined,
such as CBl-reflexive-FR, CBI-symmetric-FR, CBI-transi-
tive-FR, CBI-antisymmetric-FR, CBl-irreflexive-FR, CBI-
equivalence-FR, CBI-partial order-FR, CBI-linear order-FR,
and many more. Further, some important results are also
shown. Moreover, in order to contribute to the fields of
machine learning (ML) and artificial intelligence (AI), these
newly proposed concepts and novel modeling techniques are
used to address the impacts of effective factors of machine
learning (ML) on each other. Lastly, the advantages of pro-
posed structures are put together by a comparative analysis,
as (1) CBIFSs and CBIFRs express the effectiveness and inef-
fectiveness with periodicity of any entity and (2) they state
the possibilities or impossibilities of both effectiveness and

((MD, MD), (0.88¢"#(™",~0.65¢ 27" ) ),

>

>

»
((P,FD), (0.39¢%%277 _0.09¢™037()1)), (P, OF), ( 0.39¢"7027) _0.23¢™0-22(m1)),
((DQ, MD), (0.49¢*%37)i _(,55¢70-1°21)), ((DQ, KM) ( 0.49¢%51 ™1 04170191 ),
, ( (DQ,DQ), (0.496051(271)1’_0.556—0.19(27t)i)),
, ((DQ, OF), (0.49¢*°13m1 0 55¢7019C2m1 ) ),

>

>

((
(

, ( MD, DQ), (0.49e0‘33<2”)’ _0.55¢-019(2m)i
, ((MD, OF), (0.55¢3(7)i _ 65027 ()
(

(KM, DQ), (0.49¢"°127,-0.41¢ 01271 ),
» ((KM, OF), (0.5560.67(27[)1,_0.41e—0A29(271)1 ))’

((
(
(P,
(

((
((

» ((FD, DQ), (0.49¢%512mi _0,09¢ 01971 )),
» ((FD, OF), (0_5560.51(Zn)i,_0_09e—0.29(2n)i))’

((
((
(

(OF, P), (0,3960-70(271)1 —0.23¢70-29(2m)i ,( OF,DQ), (0_4960,51(271)1"_0.556—0.19(271)1’))’
(OF, FD), (0.556051(271)1 —0.09¢029(2m)i )( (OF, OF), (0.556094(271)i’_0'73e—0.29(2ﬂ)i))
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MD KM (0.7360.33(2@1 —0.41¢7" 27( 27”))
"))
"))
")

(KM, KM), (0.73¢™67(2m)i _0.41¢70312m)1)),

(P,KM), (0.39e>67(2m1 _0.23¢031271)),
(0 39¢0512m)i _() 3,70-19(2m)i ))’

(FD,KM), (0.71¢%°1*0)i —0.09¢ 031271 )),

(OF,KM), (0.556067(271)1’)_0.41e—0.29(27r)i)))

ineffectiveness. In future, CBIFSs are used in various fields,
i.e., economics, cyber security, physics, and chemistry.
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