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Abstract — Using an isomorphism between the mul-

tiuser detection problem and transmission of informa-

tion over MIMO channels coupled to recent results on

optimal signature waveform construction, we provide

a new approach to information transfer in multiple

antenna systems. The approach is based on a multi-

carrier modulation scheme at each transmit antenna

with sinusoids as carriers, which leads to a matrix

model of the MIMO channel. A set of bits is transmit-

ted over the MIMO channel in parallel by assigning

different codewords to each bit in the set similar to

the way codewords are assigned to different users in a

CDMA system. Optimal codewords can be obtained

by application of interference avoidance methods, and

the corresponding optimal linear receiver structure is

a set of matched filters. An analysis of the MIMO

channel is performed using singular value decomposi-

tion and the dimensionality of the problem is reduced

only to those dimensions of the signal space that ac-

tually carry information.

I. Introduction

The increasing demand for high data rate wireless communi-
cations has motivated a strong research effort in the area of
multiple-input multiple-output (MIMO) channels. This type
of channel is associated primarily with communication sys-
tems that have multiple antennas at the receiver and/or trans-
mitter.

The use of multiple antennas in wireless communication
systems provides spatial diversity to improve system perfor-
mance by mitigating the effects of multipath fading. While
traditionally spatial diversity was implemented at only one
side of the communication system (mainly at the receiver)
recent research indicates that one could significantly improve
performance by using spatial diversity both at the transmitter
and at the receiver.

Performance of multiple antenna systems in fading environ-
ments has been analyzed in several papers which have shown
a potentially large increase in capacity. Since standard ap-
proaches are not close in performance to the theoretical lim-
its [2, 4], new modulation schemes have been proposed and
analyzed for multiple antenna systems [1,3]. It has also been
shown that presence of multipath can improve performance
with an appropriate multiple antenna structure [6].

Our approach is based on the equivalence between the
problems of multiuser detection and transmission of infor-
mation over dispersive channels, and uses recent results on
construction of optimal signature waveforms through interfer-
ence avoidance methods. The theoretical framework described
in [5] for representation of signals as vectors in signal space and

for modeling of dispersive communication channels is used.
The communication channel between one transmitter and the
corresponding receiver is described by a diagonal matrix con-
taining the channel eigenvalues. Under the assumption that
the communication interval is large relative the durations of
all the channel impulse responses, the channel eigenfunctions
will all be approximately sinusoidal “tonebursts”, which im-
plies that a form of multicarrier modulation is used for trans-
mitting information. This approach leads to a matrix repre-
sentation for the MIMO channel which can be decomposed in
terms of subblocks corresponding to each receiver/transmitter
pair, which is similar to the matrix channel model presented
in [6]. However, while in our approach elements of a subblock
correspond to orthogonal partitions of a dispersive channel
in terms of its eigenfunctions, in the spatio-temporal model
in [6] subblocks correspond to convolution matrices of distinct
channels.

A set of bits is transmitted over the MIMO channel in par-
allel by assigning codewords to each bit in a way similar to
the way codewords are assigned to different users in a CDMA
system. Formulation of the MIMO channel problem in this
framework allows direct application of interference avoidance
techniques [5, 8] to determine optimal codewords correspond-
ing to each bit of the input set. Codewords are optimal in
the sense that the shared signal-to-interference plus nois-ratio
(SINR) for all bits is maximized, as well as in the information
theoretic sense of maximizing the mutual information between
received signal vector and transmitted bit set (sum capac-
ity) [8,11].

II. Problem Statement

Let us consider the MIMO system consisting of L transmit an-
tennas and K receive antennas depicted in figure 1. The com-
munication channel between transmit antenna l and receive
antenna k of this MIMO system is characterized by the causal
impulse response hkl(t) assumed stable (time-invariant) over
the duration of the communication interval T . The duration of
the communication interval T is assumed much larger than the
duration of all hkl(t). This assumption implies that eigenfunc-
tions for all channels will be approximately sinusoidal “toneb-
ursts” which leads to the same eigen-decomposition for all
channels. Let us denote by N the dimension of the signal
space induced by this eigen-decomposition.

Decomposition of each channel into orthogonal sub-
channels implies that a form of multicarrier modulation [5]
is used to send information on each pair of transmit/receive
antennas. Specifically, N-dimensional input/output vectors
corresponding to transmit antenna l and receive antenna k

are related by

rk = Λ
1/2

lk xl + nk l = 1, . . . , L, k = 1, . . . , K (1)
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Figure 1: MIMO channel consisting of multiple transmit and receive antennas

where nk is the additive noise vector that corrupts the received
signal at antenna k assumed colored with uncorrelated com-
ponents with diagonal covariance matrix E[nkn

⊤

k ] = Wk, and
Λlk is the N × N matrix containing the channel eigenvalues.

By stacking together all received signal vectors from all
receive antennas we can write
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(2)
where we have denoted by H the NK × NL matrix contain-
ing channel eigenvalue matrices of all channels, x the NL-
dimensional channel input vector, and n the NK-dimensional
noise vector that corrupts the received signal at the output
of the channel. Under the assumption that noise vectors at
different antennas are independent we have

E[nn
⊤] = W =







W1

. . .

WK







The NL-dimensional input signal x of the MIMO channel
described by equation (2) is generated by a linear superposi-
tion of codeword column vectors sm for each of the M bits
b = [b1 . . . bM ]⊤ that will be sent during the communication
interval T . That is, we have a dimension NL × M codeword

matrix S

S =

[

| | |
s1 s2 · · · sM

| | |

]

(3)

so that
x = Sb (4)

which implies that equation (2) can be rewritten as

r = HSb + n (5)

This approach of sending the M bits in parallel during the
communication interval T by assigning different codewords to
different bits can be regarded as a form of CDMA, as if each
bit corresponded to a different user.

Equation (5) is similar to the single user dispersive channel
problem formulated in [5], and as will be seen, interference
avoidance methods can be applied in a similar way to deter-
mine an optimal codeword matrix.

III. Orthogonal Input/Output Representation
and Interference Avoidance

Because of the different number of transmit and receive an-
tennas one can no longer relate the inputs and the outputs
of the MIMO channel through a one-to-one mapping. For ex-
ample, it could be that some received signals are impossible
through any possible excitation of the transmit antennas or
that an infinite number of transmit signals correspond to a
single received signal. Singular value decomposition (SVD)
of the MIMO channel matrix H provides a means of relating
different subspaces of the input and output signal spaces. The
SVD of the channel matrix H is [9]

H = UDV
⊤ (6)

where matrix U of dimension NK × NK has as columns the
eigenvectors of HH⊤, matrix V of dimension NL × NL has
as columns the eigenvectors of H⊤H, and matrix D of dimen-
sion NK ×NL contains the singular values of H on the main
diagonal and zero elsewhere.



Any vector in the NL-dimensional input space of the
MIMO channel can then be represented in terms of the or-
thonormal set of vectors {vi} representing the columns of V.
Similarly, any vector in the NK-dimensional output space of
the MIMO channel is representable in terms of the orthonor-
mal set of vectors {ui} representing the columns of U. Fur-
thermore, because these sets of vectors come from the SVD
decomposition (6) we have

v
⊤

i vj = δij ⇒ v
⊤

i H
⊤
Hvj = d

2

i δij (7)

Therefore, energy at the input of the MIMO channel should
only be put into those vectors vi that correspond to non-zero
singular values di 6= 0.

Let us denote the rank of the MIMO channel matrix, equal
to the number of non-zero singular values, by ρ. It is obvious
that

ρ = rank(H) ≤ min(NK, NL) (8)

Then, the dimension of the column space of matrix H will
be equal to ρ. Also, the dimension of the null space of H is
NL − ρ and the dimension of the left null space is NK − ρ.
Because there are only ρ non-zero singular values and we are
interested only in their corresponding eigenvectors, we can
partition matrix D containing the singular values as

D =

[

D̄ 0

0 0

]

(9)

with a ρ × ρ diagonal matrix D̄ which contains the nonzero
singular values and zero matrices of appropriate dimensions.

Returning to equation (5) in which we apply the SVD for
matrix H we obtain

r = UDV
⊤
Sb + n (10)

We can premultiply by U⊤

r̃ = U
⊤
r = DV

⊤
Sb + U

⊤
n (11)

By defining S̃ = V⊤S and ñ = U⊤n we have

r̃ = DS̃b + ñ (12)

Note that because both U and V are orthogonal matrices
they preserve norms of vectors. Thus, columns of S̃ are also
unit norm as were the columns of S. Also, if the noise vector
n is white, then ñ will remain white. However, when noise
is colored with uncorrelated components, the transformation
induced by multiplication with U⊤ will correlate its compo-
nents. This is not of too much concern because the resulting
noise covariance matrix is already in diagonal decomposition
with U⊤ as eigenvectors W̃ = E[ññ⊤] = U⊤WU.

The partition of (9) on D induces the following partition
of S̃

S̃ =

[

S̃1

S̃2

]

(13)

with S̃1 of dimension ρ×M and S̃2 of dimension (NL−ρ)×M .
In light of the partitions in equations (9) and (13) we can

ignore the NK − ρ dimensions which are not going to be ob-
served at the output and reduce dimensionality of the problem
to the rank of the channel matrix ρ. This is equivalent to re-
moving the ρ non-zero components of the received vector

r̄ = [Iρ 0]r̃ = D̄S̄b + n̄ (14)

with S̄ = S̃1 and n̄ = [Iρ 0]ñ. The covariance matrix of the
“new” noise vector is W̄ = E[n̄n̄⊤] = [Iρ 0]W̃[Iρ 0]⊤.

Equation (14) is identical to the single user dispersive chan-
nel equation [5] and the eigen-algorithm for interference avoid-
ance can be applied to determine optimal codeword matrix S̄

as follows:

• Define the equivalent “clear space” problem [5] by pre-
multiplying with D̄−1

rclr = D̄
−1

r̄ = S̄b + D̄
−1

n̄ (15)

• For each bit m calculate the covariance matrix of the
corresponding interference (from the other bits) plus
noise

Rm = S̄S̄
⊤ − s̄ms̄

⊤

m + D̄
−1

W̄D̄
−1 (16)

• Replace s̄m by the minimum eigenvalue eigenvector of
Rm

• Iterate until convergence

We note that the existence of such codeword sets {sk} is guar-
anteed by the convergence to the minimum TSC of greedy
interference avoidance [7] as well as by constructive algo-
rithms [10,11].

With the matrix S̄ yielded by the eigen-algorithm for inter-
ference avoidance one can obtain the full dimension codeword
matrix

S = V

[

S̄

0

]

(17)

so that each input codeword vector is a linear combination of
only those vi which actually appear at the channel output.

IV. The Sum Capacity of the MIMO Channel
The sum capacity of the MIMO channel defined as the maxi-
mum mutual information between the received vector and the
transmitted bit set is [5]

C =
1

2
log[det(HSS

⊤
H

⊤ + W)] −
1

2
log(detW) (18)

By applying the SVD (6) the expression in equation (18) is
completely equivalent to

C =
1

2
log[det(DS̃S̃

⊤
D

⊤ + W̃)] −
1

2
log(detW̃) (19)

Taking into account the partition of matrix D in equation
(9) and the fact that only the first ρ elements of r̃ in equa-
tion (12) carry information, reducing the dimensionality of the
received vector from NK to ρ does not affect mutual infor-
mation. Thus, sum capacity remains unchanged and can be
written in terms of the reduced order problem in equation (14)
as

C =
1

2
log[det(D̄S̄S̄

⊤
D̄ + W̄)] −

1

2
log(detW̄) (20)

It is known that interference avoidance monotonically de-
creases the total square correlation (TSC) [8] defined as

TSC = Trace
[

(S̄S̄
⊤ + W̄)2

]

(21)

and that minimization of TSC is equivalent to maximizing
the (sum) capacity [7] defined in equation (20). Also, from
[8] we know that in a colored noise background the eigen-
algorithm for interference avoidance water fills those dimen-
sions with minimum background noise energy. Hence, the
eigen-algorithm for interference avoidance yields an optimal
codeword matrix that maximizes the capacity of the MIMO
channel.



V. Conclusions

A new approach to multiple antenna systems has been pro-
posed in the paper. Each transmit antenna uses a multicar-
rier modulation scheme with sinusoids as carriers. For suf-
ficiently long transmission intervals sinusoids are (approxi-
mately) eigenfunctions of all channels in the multiple antenna
link. This leads to a matrix model for the MIMO channel
based only on eigenvalues associated with the eigenfunctions
for all channels in the link.

A bit set is transmitted over the MIMO channel by assign-
ing different codewords to each bit in the set analogous to a
CDMA system where each bit corresponded to a different user.
Optimal codewords that maximize the SINR for all bits are
then derived using interference avoidance methods. Resulting
codeword ensembles are also optimal in an information theo-
retic sense since they also maximize the sum capacity of the
system. The receiver structure uses matched filters which are
the optimal linear receivers for such an optimal ensemble of
codewords [11].

The paper also presents a novel analysis of the matrix
model of the MIMO channel. Rather than using the number of
transmit and receive antennas, the analysis is done using the
SVD of the channel matrix. This allows straightforward iden-
tification of those signal space dimensions that actually carry
information, and reduces the dimensionality of the problem to
only those dimensions.
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