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Abstract: We discuss the application of beamforming techniques to the field of magnetoencephalography
(MEG). We argue that beamformers have given us an insight into the dynamics of oscillatory changes
across the cortex not explored previously with traditional analysis techniques that rely on averaged
evoked responses. We review several experiments that have used beamformers, with special emphasis on
those in which the results have been compared to those observed in functional magnetic resonance
imaging (fMRI) and on those studying induced phenomena. We suggest that the success of the beam-
former technique, despite the assumption that there are no linear interactions between the mesoscopic
local field potentials across distinct cortical areas, may tell us something of the balance between functional
integration and segregation in the human brain. What is more, MEG beamformer analysis facilitates the
study of these complex interactions within cortical networks that are involved in both sensory-motor and
cognitive processes. Hum Brain Mapp 25:199–211, 2005. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

In recent years, functional magnetic resonance imaging
(fMRI) has become the preeminent technique for functional
neuroimaging of sensory and cognitive function [Berns,
1999; Stern and Silbersweig, 2001]. Despite the advantage of
its much higher temporal resolution, magnetoencephalogra-
phy (MEG) has not yet been widely adopted as a cognitive
neuroimaging technique.

One possible reason why MEG has had relatively limited
application in this context is that most MEG analysis has
relied previously on averaging of brain responses evoked by
a given stimulus. To obtain a detectable average signal, the
temporal pattern of brain activation must be time- and
phase- locked to a stimulus onset. Consequently, MEG has
been most suited to the recording of evoked responses in the
primary sensory and motor domains, where time- and
phase-locked stimulus driven activations predominate.

In the last few years, a computational method using a
linear combination of sensor outputs, namely a beamform-
ing approach developed originally for radar applications
[see van Veen and Buckley, 1988], has been applied success-
fully to the analysis of electroencephalographic (EEG) and
MEG data [e.g., Cheyne et al., 2003; Dziewas et al., 2003;
Fawcett et al., 2004; Furlong et al., 2004; Gaetz and Cheyne,
2003; Hall et al., 2004, 2005; Hashimoto et al., 2001a,b; Herd-
man et al., 2003; Hirata et al., 2002; Huang et al., 2004; Ihara

*Correspondence to: Dr. A. Hillebrand, The Wellcome Trust Labo-
ratory for MEG Studies, Neurosciences Research Institute, Aston
University, Birmingham B4-7ET, United Kingdom.
E-mail: hillebra@aston.ac.uk
Received for publication 9 March 2004; Accepted 15 September 2004
DOI: 10.1002/hbm.20102
Published online in Wiley InterScience (www.interscience.wiley.
com).

� Human Brain Mapping 25:199–211(2005) �

© 2005 Wiley-Liss, Inc.



et al., 2003; Ishii et al., 1999, 2002, 2003; Iwaki et al., 1999;
Kamada et al., 1998; Ploner et al., 2002; Robinson et al., 2002;
Robinson and Vrba, 1999; Sekihara et al., 2001, 2002; Tan-
iguchi et al., 2000; Ukai et al., 2002; van Drongelen et al.,
1996; van Veen et al., 1997; Xiang et al., 2001, 2003]. This
spatial filtering technique does not rely on the brain re-
sponses being phase-locked across trials and therefore ex-
perimental paradigms familiar from fMRI and positron
emission tomography (PET) studies can now be used with
MEG [Singh et al., 2002, 2003]. The aim of this article is to
describe the basic principles of the beamforming technique
and its application to study induced and evoked phenomena
in MEG data, using experimental studies as illustrative ex-
amples.

We first describe the beamformer technique and illustrate
how volumetric beamformer images can be used for group
neuroimaging. This is followed by a comparison of MEG
beamformers to source reconstruction algorithms that are
typically used to analyse average evoked responses. We
then discuss the limitations of averaging with respect to the
study of cognitive processes and induced phenomena, and
suggest that beamformer methods can be exploited to cir-
cumvent these problems. Subsequently, a literature review
of beamformer applications in studies on evoked and in-
duced phenomena is provided to give an overview, rather
than a detailed description, of the breadth of experiments
that can be analysed using the beamformer methodology.
Finally, we discuss how the success of beamformer algo-
rithms may provide a clue as to the nature of electrical
neuronal interactions.

BEAMFORMER ANALYSIS OF MEG DATA

Beamforming techniques were developed for radar appli-
cations [see van Veen and Buckley, 1988] to modify the
sensitivity profile of fixed array radars, such that signals
coming from a location of interest were received whereas
signals coming from other locations were attenuated. This
focusing, or “beam forming,” is achieved by selectively
weighting the contribution that each sensor makes to the
overall beamformer output. Increasing the sensitivity to sig-
nals coming from a location of interest, for example a region
in the brain, can obviously be exploited for reconstruction of
the neuronal sources generating EEG and MEG data. How-
ever, the beamformer approach has been introduced only
recently to this field [Robinson and Vrba, 1999; Sekihara et
al., 2001; van Drongelen et al., 1996; van Veen et al., 1997].
Source reconstruction is achieved by first defining a source
space formed by a volumetric grid of target locations. For
each target location, a set of beamformer weights is then
determined, forming an optimum spatial filter for that loca-
tion (see Appendix). Computation of these beamformer
weights involves the data covariance matrix [see Barnes and
Hillebrand, 2003; Robinson and Vrba, 1999; van Drongelen
et al., 1996; van Veen et al., 1997], hence beamformer anal-
ysis can localise activity that is time-locked but not neces-
sarily phase-locked to stimulus presentation. The output of
the beamformer is subsequently obtained by applying the

spatial filter to the recorded MEG data, simply by multiply-
ing the signal in each MEG sensor with its associated beam-
former weight and summing the weighted sensor signals.
Computing the beamformer output for each location inde-
pendently allows for the reconstruction of multiple (uncor-
related) sources without making prior assumptions about
the total number of active sources [Robinson and Vrba,
1999]. Various parameters can be computed based on the
beamformer output for a target location, for example, the
Neural Activity Index (see Appendix). Such an index of neu-
ronal activity can be computed sequentially for a set of
voxels in the brain, forming a volumetric spatial image of
brain activity. In simulations, these volumetric images typ-
ically show a peak centred around the electrical source
location with a width that depends on the signal-to-noise
ratio (SNR) of the data [Barnes and Hillebrand, 2003; Gross
et al., 2001; van Drongelen et al., 1996; van Veen et al., 1997]
and on the specific beamformer implementation that was
used to form the image. A description of beamformer design
strategies is given in van Veen and Buckley [1988], and
Huang et al. [2004] discuss the theoretical and practical
commonalities, differences, and relative performance of dif-
ferent beamformer implementations. It has been shown in
simulations that the spatial resolution of the volumetric
beamformer images is inhomogeneous across the brain [Bar-
nes and Hillebrand, 2003; Gross et al., 2001, 2003; van Veen
et al., 1997; Vrba and Robinson, 2001a], with the highest
spatial resolution being at the locations of active sources.
Using a retinotopic mapping MEG experiment, Barnes et al.
[2004] have shown recently that the spatial resolution in the
visual cortex varies between 2 and 15–20 mm, and that 80%
of the voxels had a full-width half-maximum (FWHM) of
less than 10 mm.

When a boxcar experimental design is used, one can sta-
tistically compare the active and passive experimental states
for each target voxel in the beamformer images, forming
so-called statistical parametric maps, or SPMs, to highlight
brain regions that were activated to a different extent in the
active and passive states. Barnes and Hillebrand [2003] have
shown recently that corrected significance levels can be as-
signed to the SPMs that are obtained with the beamformer
analysis, based on spatial smoothness [see also Gross et al.,
2003]. Additionally, Singh et al. [2003] described how non-
parametric methods [Nichols and Holmes, 2001] can be
utilised to assign voxel and cluster significance to group
averaged beamformer SPMs. Such statistical methods are
essential if quantitative comparisons are to be made between
the SPMs for different cohorts of subjects, experimental con-
ditions, or modalities. In particular, one attribute of cogni-
tive processes is the large intersubject variability [McGonigle
et al., 2000; Miller et al., 2002; although see Xiong et al., 2000]
and a statistical analysis on the group data is therefore
necessary to reveal the most prominent responses across the
group. This approach was first used in PET studies and
subsequently applied to fMRI [Friston et al., 1990, 1991;
Lueck et al., 1989]. The same statistical analysis methods can
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now also be applied to MEG/EEG data [Park et al., 2002;
Singh et al., 2002, 2003].

COMPARING MEG BEAMFORMERS TO
OTHER SOURCE RECONSTRUCTION

ALGORITHMS

Successful localisation of neuronal activity from measured
MEG data relies on solving the inverse problem, which has
an infinite number of possible solutions. It is therefore nec-
essary to seek an assumption set that is both realistic and
renders the problem soluble [see Baillet et al., 2001 for an
excellent review]. The most common initial assumption is
that a small area of active cortex can be modelled as an
equivalent current dipole. Generally, this assumption is rea-
sonable given that the active area is small relative to the
distance from which it is observed [Snyder, 1991].

Dipole-fitting algorithms minimise the difference between
measured and estimated fields and make the assumption
that only a small number of sources are concurrently active
over a short period. The shorter the time used in the analy-
sis, the more plausible the assumption, and typically one
attempts to explain subsequent short (�10–100 ms) blocks
of time with models that each consist of a few dipoles
[Mosher et al., 1992; Scherg and Berg, 1991; Scherg and von
Cramon, 1985, 1986; see also Michel et al., 2001]. Typically
this assumption holds well for primary sensory experiments
[e.g., Jousmaki and Forss, 1998; Snyder, 1991; Torquati et al.,
2002] in which averaging is used to increase SNR and extract
only those cortical areas that respond in a causal and phase-
locked manner to the stimulus. The results obtained with
dipole fitting become less stable as the number of active
sources increases and are highly dependent on the correct
estimation of model order [Supek and Aine, 1993].

For minimum norm algorithms, the assumption is that the
source configuration with the least energy that also mini-
mises the difference between measured and estimated fields
accounts for the measured data [Hämäläinen and Ilmoni-
emi, 1984; Singh et al., 1984]. One problem with this con-
straint is that such a source configuration must always exist
at the most superficial layer of the source space, and hence
some arbitrary depth bias must be factored into the calcula-
tions. In related imaging approaches the location bias can be
based on fMRI data [Dale et al., 2000], Bayesian inference
[Baillet and Garnero, 1997] or empirical estimation through
simulated data [Ioannides et al., 1995].

The main assumption behind beamformer analysis is that
each cortical source has a time course that is not linearly
correlated with any other source. The assumption is implicit
in the minimum power constraint, in combination with the
constraint that there is unity passband for each source ele-
ment of interest (see Appendix). When sources are perfectly
linearly correlated the beamformer will recover very little or
no power. The reason for this is that as the sources are
correlated, the forward solutions (lead field vectors) for the
different correlated sources will add as vectors. The vector
sum will be different from each constituent vector and in
fact may not even correspond to the lead field for any single

source within the brain. Power minimisation subject to the
unity passband from the selected voxel will then reject this
sum vector because it does not match the lead field vector
expected at that voxel. Recently, a new beamformer utilising
a higher-order covariance matrix has been proposed that has
shown promise in localising strongly correlated activity in
simulations and an MEG median-nerve experiment [Huang
et al., 2004].

It should also be emphasised that although all the above
algorithms have a different evolution, and different accepted
best practice, mathematically they are very similar. Mosher
et al. [2003] have shown the beamformer approach to be a
special case of the minimum norm where the a priori infor-
mation of uncorrelated sources is used to constrain the
solution. The work shows that the difference between all
linear inverses lies in the prior assumptions on the shape of
the current covariance matrix (Fig. 1). For beamformers, it is
assumed to be diagonal (sources uncorrelated, see Fig. 2),
and for weighted minimum norm estimates it is weighted
such that current contribution from certain parts (e.g., deep)
of the source volume have more influence. Similarly, the
unfocused beamformer, where the beamformer weights are
based on white sensor noise, has been shown to reproduce
the error surface travelled over when using a single dipole
fit approach [Hillebrand and Barnes, 2003].

To summarise, the main differences in the algorithms
have been in their application: minimum norm estimates
and dipole fits have been used mainly to explain the stim-
ulus-locked average [with a few notable exceptions, e.g.,
David et al., 2002; Ioannides, 2001]. Conversely, beamform-
ers have been most successful in identifying induced
changes in cortical oscillatory power that do not result in a
strong average signal (but see the Evoked responses sec-
tion). In the next section, we discuss some potential pitfalls
in the averaging process.

LIMITATIONS INTRODUCED BY
TIME-DOMAIN AVERAGING

An advantage of MEG is that the magnetic fields recorded
outside the head are related directly to the electrical neuro-
nal activity. The typical time scale of the dynamics of neu-
ronal populations, and therefore the time resolution of the
acquired MEG data, is on the order of milliseconds (only
limited by the sampling rate). MEG has been used with great
success in studies of the relationship between the latency
and amplitude of evoked responses and stimulus parame-
ters in visual, auditory, and somatosensory paradigms [e.g.,
Jousmaki and Forss, 1998; Okada et al., 1982; Roberts et al.,
2000; Torquati et al., 2002]. However, the magnetic fields
produced by the neuronal currents are much weaker than
are the magnetic fields produced by external noise sources
and for successful source reconstruction this has tradition-
ally meant increasing the SNR of MEG data by means of
averaging [Schimmel, 1967]. This requires the recording of
many (�100) individual responses to an internal or external
stimulus and will identify only that part of the signal that
exhibits only a small variability to the repeated presenta-
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tions. That is, the neuronal responses need to be both time-
and phase-locked to the stimulus to be measured reliably in
the averaged evoked response. MEG experiments involving
cognitive paradigms are complicated by this requirement of
phase-locking with traditional analysis methods [see for
example Hari et al., 2000]. Averaging individual responses
with a latency jitter of only 2 ms can reduce the peak
amplitude of an average response by as much as 26% (see
Fig. 3). This jitter is much smaller than the inherent jitter in
the exact timing of cognitive processes [see Michalewski et
al., 1986]. Techniques based on the haemodynamic response,
like PET and fMRI, rely on changes in blood flow and
therefore have an inherently lower time resolution (on the

order of seconds) than MEG has. Consequently, these tech-
niques are less sensitive to variability in the latency of indi-
vidual responses (see Fig. 3, tolerating jitter of the order of
seconds) and have been used in cognitive paradigms with
great success [Cabeza and Nyberg, 2000; Nyberg, 2001].

That said, MEG and EEG studies have successfully
localised cognitive components of the evoked response,
such as the P300 and N400, using traditional source re-
construction methods based on averaged responses, such
as equivalent current dipole analysis and techniques
based on distributed source models [e.g., Anderer et al.,
2003; Halgren et al., 2002; Pylkkänen and Marantz, 2003;
Tarkka et al., 1996].

Figure 1.
Schematics of source covariance matrices for different source
reconstruction algorithms. Each element represents the covari-
ance between a source and another source, with the distance to
the sensors for each source increasing from top to bottom and
from left to right. All panels have the same arbitrary scaling, with
the blue-yellow-red colour scale representing increasing source
covariance. Top left: The minimum norm approach assumes that
no sources within the brain are linearly correlated, hence the
diagonal source covariance matrix. Additionally, the increased
weighting for deeper sources can be used to correct for the depth
bias of minimum norm approaches. Although no correlation be-
tween sources is specified a priori, the minimum norm approach
does not exclude correlated sources from the solutions. Top

right: LORETA [Pasqual-Marqui et al., 1994] assumes that active
areas have a certain spatial extent that is represented by the
“broad” diagonal of the source covariance matrix. Bottom left:
Dynamic SPM [Dale et al., 2000] is based on the weighted mini-
mum norm approach. Additionally, the source covariance for
elements at fMRI hotspots (three hotspots in this illustration) can
be increased to bring the MEG results in agreement with fMRI
results. Bottom right: SAM [Robinson and Vrba, 1999] assumes
that no sources within the brain are linearly correlated, hence the
diagonal source covariance matrix. The value of the diagonal
elements is determined by the data covariance matrix [Mosher et
al., 2003].
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When studying the evoked response, the ongoing activity
is often ignored or not quantified, whereas it has been dem-
onstrated that ongoing activity plays an important role in
cortical function [Arieli et al., 1996; Karakas et al., 2000;
Kenet et al., 2003; Makeig et al., 2002; Ringach, 2003]. It has
been demonstrated that induced changes in the power of
cortical rhythms that are time-locked but not necessarily
phase-locked to a stimulus, so-called “event-related syn-
chronisation and desynchronisation” (ERS/ERD)
[Pfurtscheller and Lopes da Silva, 1999], covary in a va-
riety of different sensory-motor and cognitive tasks. For
example, the amplitude of �-rhythm (9 –11 Hz) in the
somatosensory cortex reduces when a subject clenches the
fist and the alpha rhythm (8 –13 Hz) in the visual cortex
increases in power when the eyes are closed [e.g., Chap-
man et al., 1984; Niedermeyer, 1993]. Moreover, these
rhythms, their complexity and dynamics, have been in-
voked as the mechanism underlying consciousness [Engel
et al., 2001; Llinás et al., 1998; Singer, 1998; Tononi and
Edelman, 1998]. Additionally, it has been shown that
cognitive tasks induce ERD and ERS [Basar et al., 2001]
and it has been demonstrated that evoked and induced
responses are related differentially to specific components

of cognitive processing [e.g., Eulitz et al., 2000; Foucher et
al., 2003]. These studies, and the growing literature on
ERD and ERS, highlight the importance of these induced
phenomena in the understanding of brain function.

To localise induced phenomena and study cognitive func-
tion with MEG we therefore need an analysis tool that does
not rely on average evoked responses and that can recon-
struct multiple active neuronal sources: beamforming tech-
niques fulfil this requirement.

BEAMFORMER APPLICATIONS

Evoked Responses

One of the problems implicit in estimating the neuronal
origins of the evoked response using beamformers is that of
correlated sources. This is a problem for two reasons. Firstly,
the duration of the evoked response is typically very short
(�100 ms) leading to low degrees of freedom in the mea-
surement and possible spurious correlations. Secondly, all
the source activity picked up through averaging will be
time-locked to the stimulus event and is therefore likely to
have a common driving force, making it more likely that any
two sources will have inherently similar time series. Despite
this, beamformer analysis has been utilised successfully in
many paradigms studying phase-locked responses.

Transient and steady-state auditory evoked responses
have been localised with a beamforming technique known
as synthetic aperture magnetometry (SAM) [Robinson and
Vrba, 1999], and the results showed good agreement, bilat-
erally, in the temporal and spatial domain with the results
obtained from dipole fit analysis and signal space projection,
respectively [Herdman et al., 2003]. The beamformer was
able to reconstruct the bilateral sources successfully, despite
the similarity of the time courses of activation, using the
sensors above each hemisphere separately. In contrast to
dipole fitting [Vrba et al., 1999], using only a subset of
channels does not introduce systematic spatial errors in the
source reconstruction. Only the SNR of the reconstructed
time courses is affected because the beamformer passes only
that part of the recorded signal that corresponds to the
forward solution for a source at a target location. Con-
versely, with dipole fitting, the difference between the mea-
sured data (from all selected channels) and the forward
solution for the model is minimised so that any signal not
accounted for by the forward solution contributes, errone-
ously, to the source reconstruction.

The beamformer implementation developed by Sekihara
et al. [2001] has been used to analyse the initial peak of the
somatosensory evoked field (SEF) after median nerve
[Hashimoto et al., 2001a] and posterior tibial nerve [Hashi-
moto et al., 2001b] stimulation. They reported two spatially
distinct sources underlying the single peaked tibial nerve
response: one in the anterior part of the foot area of the
primary somatosensory cortex (SI) and one in the posterior
part of SI. Median nerve stimulation revealed two spatially
distinct sources in areas 3b and 1 of SI. The source in area 3b
moved toward the mediolateral direction during its active

Figure 2.
Diagonal elements of the SAM source covariance matrix for a set
of target locations along a line. MEG data was simulated for two
sources with different amounts of correlation between the re-
spective time courses. This figure does not show actual source
reconstructions, but simply the elements of the source covariance
matrix that SAM assumes. It is clear that the assumption of
uncorrelated sources, in combination with the fact that the source
covariance matrix is determined by the data covariance [Mosher
et al., 2003], modifies the source covariance matrix in such a way
that perfectly correlated sources cannot be detected with SAM.
However, it is also clear from this figure that partially correlated
sources are not excluded from detection. [Color figure can be
viewed in the online issue, which is available at www.inter-
science.wiley.com.]
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phase, whereas the source in area 1 was stationary.
Frequency-specific responses of the somatosensory cortex to
median nerve stimulation have also been investigated by
means of SAM analysis of single trial responses and the
locations of the reconstructed sources have been compared
to the dipole location fitted to the averaged evoked response
(N20m) [Gaetz and Cheyne, 2003; Hirata et al., 2002; Ihara et
al., 2003; Xiang et al., 2003]. Both techniques localised a
source to SI, with the source localised with SAM displaying
a short burst of activity in the 60–100 Hz band and a longer
increase in power in the 10–40 Hz band [Gaetz and Cheyne,
2003]. In a similar study, Ihara et al. [2003] reported an
increase in source power in the 60 Hz band in SI as well as
an initial reduction in the 40 Hz band, followed by an
increase in source power in the same area. Moreover, power
increases in the 70–90 Hz band were found for sources in SI
and secondary somatosensory cortex (SII). Xiang et al. [2003]
also demonstrated reproducible source reconstructions for
increases in activity in the 30–60 Hz and 60– 120 Hz band in
SI, but decreases in activity in these frequency bands were
not well localised. Conversely, Hirata et al. [2002] did find
reductions in source power (8–13, 13–25, and 25–50 Hz) in
areas around the central sulcus. They further found reliable
localisation of increases in power in SI (50–200 Hz). SAM
has further been used to localise ERD/ERS in motor tasks,

such as finger extension and hand grasping [Taniguchi et al.,
2000] and the use of chopsticks [Ishii et al., 2002]. Perhaps
the success of the application of beamformers to analysis of
data from the somatosensory cortex is due to the rather high
frequencies intrinsic to these areas (�20 Hz), which make
the prospect of spurious correlations less likely. This might
explain why Ihara et al. [2003] were able to localise high
gamma band (70–90 Hz) activity in both contralateral SI and
contralateral SII in the same time window. Additionally, two
active sources may be reconstructed successfully when the
time courses of activation are not correlated perfectly
[Hashimoto et al., 2001a,b].

Other beamformer applications include a mental rotation
task [Iwaki et al., 1999], resolution of visual cortical areas
with moving random dot stimuli [Toyama et al., 1999], and
in silent reading and silent naming tasks [Kamada et al.,
1998; Kober et al., 2001].

Induced Responses

Several experiments have now been reported that demon-
strate the localisation of induced activity that is inherently
poorly time-locked to the stimulus presentation.

Recent studies [Singh et al., 2002, 2003] demonstrate that the
SPMs obtained with a beamformer analysis can be spatially

Figure 3.
Responses obtained from averaging 100 simulated, noise-free ep-
ochs. The latency of each epoch was jittered by an amount taken
from a Gaussian distribution (� � 2, 5, or 10 samples) with zero
mean. The inset shows the original epoch and the jittered epochs
for the � � 2 case. The effect of jitter depends on the width of the
peak, and was chosen here to be representative for a typical, early
latency, evoked response peak. Note the rapid decrease in the

evoked response peak when the latency jitter increases. Accept-
able levels of jittering are one or two samples, causing a reduction
of 6–26% of the peak amplitude. This means that for MEG a jitter
of 1–2 ms is acceptable and for BOLD fMRI the acceptable jitter is
on the order of 1–2 s, assuming that the BOLD response is
sampled at about 1 Hz. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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normalised and subsequently averaged across subjects to form
an SPM for the group as a whole. Two cognitive paradigms
were used in this study: a language task involving covert letter
fluency and a biological motion direction discrimination task.
The same experimental boxcar design was used in both the
MEG and blood oxygenation level-dependent (BOLD) fMRI
recordings. Both experiments revealed striking similarities be-
tween the location of the BOLD response, and the location of
frequency-specific decreases in cortical power obtained with
the MEG beamformer (Fig. 4). These results not only give
weight to the assumptions behind the beamformer technology,
but also show that both increases and decreases in electrical
oscillatory power can give rise to a positive BOLD response.
Similarly, Hall et al. [2005] recently used SAM to investigate
the cortical response to contrast in primary visual cortex. They
reported a striking similarity between the contrast response
function in humans (ERS in the gamma band) and the local
field potential as measured in primates [Logothetis et al., 2001].

Xiang et al. [2001] studied silent processing of words
using SAM. Cortical power changes related to implicit word
processing were localised to the occipital cortex (15–30 Hz
ERD), parietal/occipital cortex (30–60 Hz and 60–125 Hz
ERS) and Broca’s/Wernicke’s areas (60–125 Hz ERD). Sim-
ilar activations were found for displays of non-words, al-
though the activation of Broca’s and Wernicke’s area was
much weaker.

It has also been demonstrated that beamformers can be used
to localise theta rhythms to the medial prefrontal cortex when
subjects carry out a task with high attentional demands, such
as mental calculation [Ishii et al., 1999] and, frequency-specific
responses of a cortical network activated by a Stroop task can
be localised successfully [Ukai et al., 2002]. Additionally, sleep
spindles (10–15 Hz) could be localised to the frontal and pari-
etal cortices [Ishii et al., 2003] and responses to painful stimu-
lation have been studied successfully with beamformer analy-
sis [Ploner et al., 2002]. Cheyne et al. [2003] reported differential
effects on cortical rhythms for tactile sensation during a finger-
brushing task, as compared to the observation of finger brush-
ing, or object movement itself.

The work by Fawcett et al. [2004] investigated both
evoked and induced phenomena using a reversing checker-
board stimulus of varying temporal frequency. The magni-
tude of the phase-locked (stimulus-driven) response in pri-
mary visual cortex was found to vary parametrically with
frequency and no event-related responses were found in
these regions. However, ERD was found in extrastriate areas
(V5/MT), which also varied parametrically with the tempo-
ral frequency of the stimulus.

In a single case study on a subject experiencing migraine-
induced visual aura, Hall et al. [2004] showed ERD in the
alpha band in both extrastriate and temporal cortex that
persisted for the duration of the reported visual illusions.
Also noted were changes in the gamma band in the left
temporal lobe that returned to baseline some 8–10 min after
the reported end of the visual aura.

A final example of an experiment that is very difficult to
carry out as an evoked response paradigm is the study of the

cortical network involved in swallowing [Dziewas et al.,
2003; Furlong et al., 2004]. The study by Furlong et al. [2004]
not only localised the cortical regions involved but, more
importantly, also determined the sequence of cortical acti-
vation from the receipt of a water bolus into the mouth to the
swallow and post-swallow phases, as well as the response to
a simple tongue movement (Fig. 5). Volitional swallowing
and tongue movement both induced similar responses in the
superior sensorimotor cortex. However, significantly differ-

Figure 4.
Results of group-averaged MEG (top) and fMRI (middle) exper-
iments for a covert letter fluency task, superimposed on a tem-
plate brain and thresholded at P � 0.05 (corrected) [for details,
see Singh et al., 2002]. The top panel displays the group SAM
analysis of the MEG data, showing the peak power increase or
decrease at each voxel in the brain, irrespective of which fre-
quency band the power change occurred in. The blue-purple-
white colour scale depicts decreases in signal power in the active
phase, compared to the passive baseline. The middle panel shows
group fMRI data. The red-orange-yellow colour scale depicts in-
creasing BOLD amplitude. The bottom panel shows the peak
group SAM (left) and fMRI (right) data superimposed on a slice
through the template brain from the Montreal Neurological Insti-
tute (MNI) at a z coordinate of �35. Note the close spatial
correspondence between the group MEG and fMRI results, de-
spite the fact that two different imaging modalities were used and
two different cohorts of subjects participated in the experiments.
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ent activation was observed, most notably in the caudola-
teral sensorimotor cortex during water infusion, demon-
strating that sensory input from the tongue activates
caudolateral sensorimotor cortex, which strongly modulates
superior sensory-motor cortical areas involved in the voli-
tional phase of swallowing. From a methodological view-
point, this work is exciting as it was possible to localise
electrical activity due to the tongue muscles. The resultant
group statistical image [see Furlong et al., 2004] of an acti-
vation site just below the SPM glass brain [SPM99; Friston et
al., 1995] gives confidence in not only the beamformer meth-
odology and statistical methods used, but also shows that,
given sufficient signal strength, MEG can accurately localise
very distant sources.

USING THE HIGH TEMPORAL RESOLUTION

So far we have shown how beamformer analysis can be
used to study evoked and induced responses in individuals

and across cohorts of subjects. An attractive feature of MEG
is its high temporal resolution. At first it seems that beam-
former analysis does little to exploit this, as it is based
typically on comparison of relatively long (�1 s) time win-
dows. It should not be overlooked that window length is
traded directly against accurate spectral estimates. Similarly,
because at each target location the output of the beamformer
is formed as a weighted sum of the sensor signals (see
Appendix), an estimate of neuronal activity at millisecond
resolution is directly available. This should enable the study
of the dynamics of neuronal populations and complex inter-
actions between regions. The fact that beamformer analysis
has been applied successfully to MEG data may be a clue to
the nature of such interactions. The beamformer analysis
would fail if corticocortical interactions on a macroscopic
scale were perfectly linear and coherent (see Appendix).
Either such interactions must be nonlinear, short-lived, or
transient over the analysis time window. Recent work [Had-

Figure 5.
Time–frequency wavelet plots (three panels on the left) computed
for an active area (left caudolateral precentral gyrus, marked in the
right panels) identified with the beamformer in two representative
subjects. MRI-SAM images (right panels) were computed for the
water versus rest phase (25–40 Hz band) in a swallowing exper-
iment [see Furlong et al., 2004 for details], with the blue-purple-
white colour scale depicting decreases in signal power in the water
phase compared to that in the rest phase. The central dividing line
in the time–frequency plots indicates the end of the 5 s of the

passive period and 0 s for the commencement of the 5 s of the
active phase. Colours represent significant ERD/ERS, with blues/
purples indicating a decrease in power (ERD) and reds/yellows an
increase in power (ERS). ERD/ERS that was not significant (P
� 0.05) was set to zero [Graimann et al., 2002]. This demon-
strates that it is possible to localise non-phase-locked responses
and get timing (and spectral) information. Note also that the
time–frequency resolution can be optimised using wavelet analysis
[see Fawcett et al., 2004].
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jipapas et al., 2005] has shown that as long as a linear
correlation exists over less than 30% of a typical analysis
time window the beamformer output will be minimally
degraded. Theories of the brain as a metastable dynamical
system suggest that changes in state, for example corre-
sponding to changes in cognition or perception, are brought
about through nonlinear coupling between areas [Kelso,
1995]. An interesting analogy is with neural nets comprised
of nonlinearly connected elements. These nonlinear connec-
tions bestow a complexity on the system that gives it mem-
ory and adaptability [Maass et al., 2002].

Concluding Remarks

The application of beamformer analysis to EEG and MEG
data has already proven successful in many experimental
paradigms. We consider the main advance in beamformer
imaging to be that it has lead indirectly to renewed interest
in electrical phenomena of induced oscillatory change. These
changes covary with BOLD fMRI signal change. This is
interesting for two reasons: firstly, it gives weight to the
assumptions behind beamformer analysis; secondly, it sug-
gests that a number of electrical phenomena (not just the
evoked response) covary with haemodynamic changes in
the cortex. If beamformers are successful in a large range of
experimental designs, what does this tell us about how the
brain works? Any long-range linear interactions across the
cortex would violate the assumption of uncorrelated sources
behind the beamformer technique. That is, the success of the
beamformer assumption lends weight to theoretical argu-
ments [Bressler and Kelso, 2001; Friston 2000; Sporns et al.,
2000] that communication between brain areas must be non-
linear, as a linear brain would lack complexity.

Paradoxically, to use MEG to find out what is going on in
the brain, it seems that we must first speculate about how
the brain operates. The studies reported above demonstrate
that the assumption that remote corticocortical interactions
are uncorrelated results in plausible physiologic solutions,
and perhaps indicates that nonlinearity, or transient linear-
ity, is the rule in such interactions.
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APPENDIX

The Basics of Beamforming

The output of a beamformer at a location of interest can be
defined as the weighted sum of the output of all (N) signal
channels [van Veen et al., 1997], or mathematically:

V � W � B, (1)

where V is the beamformer output (source strength in nAm),
W is the 1 � N weight vector (for a given direction of the
source at the target location), and B the N � T matrix of the
magnetic field at the sensor locations at all (T) latencies.
Note that the beamformer output at a target location has the
same temporal resolution as the recorded MEG signals, and
is therefore often referred to as a virtual electrode.

The weights determine the spatial filtering characteristics of
the beamformer and are designed to increase the sensitivity to
signals from a location of interest while reducing the contribu-

Figure A1.
Illustration of the design of a spatial filter for a source at a target
location. The ideal transfer function in general can not be achieved
because there are only a limited number of sensors (typically
�150). However, an optimum transfer function can be obtained
by applying a unity passband constraint in combination with a
minimum output power constraint [van Veen et al., 1997]. The
second constraint would without the first constraint result in a
spatial filter that does not let any signal through, not even from the
target location. The first constraint states that signal from the
target location should be let through completely, so the only way
to minimise the output power is to reduce the contribution from
other sources to the spatial filter output, resulting in a narrowing
of the passband of the spatial filter. The contribution to the
beamformer output from sources away from the target location is
small for the optimum spatial filter, whereas it can be large for a
nonoptimum beamformer. Signal from the target location will be
cancelled if it is correlated with signal from another location [van
Veen et al., 1997; Vrba, 2002], as is explained in the text. The main
assumption underlying beamformer analysis is therefore that there
are no correlated sources within the brain, an assumption that is
not necessarily fulfilled when distinct areas are driven simulta-
neously by an external stimulus or another cortical area. However,
it has been shown [van Veen et al., 1997] that the beamformer
performance is relatively robust to correlated activity and induced
activity is unlikely to be strongly correlated across the brain.
Moreover, the effect of correlated activity at distant locations can
be reduced by selecting only those sensors covering the target
location.
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tion of signals from (noise) sources at different locations (Fig.
A1). The beamformer weights for a source at a location of
interest are determined completely by the data covariance ma-
trix and the forward solution (lead field) for the target source
[see Robinson and Vrba, 1999; van Drongelen et al., 1996; van
Veen et al., 1997]. It is therefore important that an unbiased
estimate of the data covariance matrix is computed by using
enough data samples. In practice, trials with a length of several
seconds are usually recorded, as the induced responses of
interest can take several seconds to return to baseline [e.g.,
Furlong et al., 2004; Neuper and Pfurtscheller, 2001]. The ef-
fects of non-stationarities in the MEG signals on the estimate of
the data covariance matrix, and therefore the beamformer im-
ages, have yet to be studied. In addition, the forward solution
for an equivalent current dipole is typically used for the weight
computation. If the recorded MEG signal originates from an
extended source, then the actual forward solution will deviate
from the dipolar forward solution and the beamformer will
suppress the activity from the extended source [Vrba, 2002].
This effect is worse for data with high SNR, when the resolu-
tion of the beamformer is high enough to discriminate between
the actual and modelled forward solutions [Hillebrand and
Barnes, 2003; Vrba, 2002]. We envisage the incorporation of
more sophisticated forward models [e.g., Jerbi et al., 2002] in
the beamformer formulation so that extended activity can be
localised.

The power of the beamformer output can be computed
for each voxel in a predefined source space independently
and sequentially. This results in a volumetric image (SPM)
of source power with relatively low spatial resolution. A
better parameter to map is the Neural Activity Index [van

Veen et al., 1997] or the pseudo-Z statistic [Robinson and
Vrba, 1999], defined as the projected source power di-
vided by the projected noise power. Moreover, the spatial
resolution of the SPM can be increased further by making
a statistical comparison between the beamformer output
for an active state and the beamformer output for a pas-
sive state, in a specified frequency band [Robinson and
Vrba, 1999; Vrba and Robinson, 2001b]. In our experience
narrow frequency bands are often desirable for the statis-
tical comparisons, but the computation of the data covari-
ance matrix should be carried out with broadband data.
The reason for this is that covariance estimates based on
low degrees of freedom tend to overestimate covariance
between channels, leading to spurious correlations that
will cause the beamformer to suppress the activity of
uncorrelated sources erroneously. Barnes and Hillebrand
[2003] have shown that the beamformer design and sta-
tistical test stages can be decoupled, such that the beam-
former weights are computed using broadband data, and
the statistical comparisons are carried out with narrow-
band data.

Figure A2 demonstrates the ability to localise both stim-
ulus driven (phase-locked) power changes as well as in-
duced (non-phase-locked) changes in power for an experi-
ment where the right index finger was stimulated
electrically using two ring electrodes placed one either side
of the proximal interphalangeal joint. An analysis based on
the average response to the 3 Hz stimulation would only be
able to localise the phase-locked 3 Hz response and not the
induced responses at 12 and 20–25 Hz.

Figure A2.
Left: Power-spectrum of the beamformer output for the peak activ-
ity in the somatosensory cortex to 3 Hz stimulation of the right index
finger, showing a stimulus driven increase in power in the active
period compared to that in the passive period (ERS) at 3 Hz and

harmonics of 3 Hz. There is also an induced reduction in power
around 12 Hz (�-rhythm) at the same location. The beamformer
images (right) computed for the 2.95–3.05 Hz band and the 11.8–
12.2 Hz band both show peaks in the somatosensory cortex.
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