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1 Introduction

Hydrodynamics has been an efficient approach for the description of strongly interacting

state of matter. This boosted the research and application of hydrodynamics models, such

as transport phenomena or hydrodynamic instabilities. One aspect in hydrodynamics that
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has not been explored in detail yet is the dynamics of a colored fluid charged under non-

Abelian Yang-Mills gauge fields, where the constituents of the fluid carry non-Abelian color

charges and interact with non-Abelian vectors. Due to its non-Abelian nature, we expect

that this system gives rise to a variety of physical phenomena richer than its Abelian coun-

terpart, viz. Maxwell plasma. Nevertheless, the level of rigor in formulating the theoretical

foundations of this model and the understanding of its ensuing physical properties are far

lesser.

A robust description will contribute to the characterization of some important phys-

ical systems. For example, the quark-gluon plasma behaves as an almost perfect dense

fluid carrying SU(3) color charge. However, the detailed microscopic understanding of the

equilibration mechanisms after the heavy-ion collisions is still left to be an outstanding

problem. A transient phase in the equilibration process is reached when the system is at

local thermal equilibrium with yet non-equilibrated colored quark and gluon degrees of

freedom (DOFs). Most of the analysis done so far is based on kinetic theory [1–8] and

on the single-particle approach [9]. Integrating out momentum, one obtains a covariant

color continuity equation which, together with the mechanical conservation laws of the

fluid, constitute the main equations of the system. Still, the construction of the required

collision terms which enter the Boltzmann equation is highly non-trivial and, except at

weak coupling regime, there is no first-principles derivation. In addition, the applicability

of kinetic theory is valid for not-so-far from equilibration situations. Consequently, we

conclude that kinetic theory is a useful complementary tool, requiring prior knowledge of

the structure of the hydrodynamic equations.

Alternative approaches include the Poisson bracket formulation [10] and the action

principle [11, 12] of ideal fluid dynamics. In contrast, the study of dissipative effects, which

constitute an integral part of hydrodynamics is well understood only at the level of the

equations of motion (EOMs). The description of these effects at the level of an action

requires placing the fluid on the Schwinger-Keldysh contour [13], which leads to certain

additional supersymmetric DOFs [14, 15].

Another aspect that sheds light on the understanding of hydrodynamic structure is

the duality between fluids and black holes [16–19]. This allowed us to discover previously

neglected parity-breaking terms that were originated by quantum anomalies [20–22]. To

study non-Abelian DOFs coupled to fluids, we need a new background of black hole with

non-Abelian Yang-Mills hair [23–25]. However, in AdS/CFT correspondence, local symme-

try in the bulk gravity is mapped to global symmetry in the boundary theory. Therefore, as

the background field in the boundary theory is usually external and non-dynamical, we have

no way of promoting non-Abelian global symmetries to gauge symmetries in the boundary

theory. We note that some proposals have been put forward to modify the boundary con-

ditions in such a way the the resulting boundary has dynamical fields [26]. However, these

ideas have not been consistently embedded into the fluid/gravity duality and may present

additional difficulties in the hydrodynamic formulation of non-Abelian fluids.

For these reasons, we view this state of affair at odds: self-gravitating hydrodynamics,

whose gravitational interaction is also intrinsically nonlinear, has been rigorously investi-

gated in various contexts of relativistic astrophysics of compact objects [27] and cosmology
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of large-scale structures [28, 29]. We thus expect that non-Abelian hydrodynamics, at least

at classical level, can also be rigorously formulated and investigated as much as the self-

gravitating hydrodynamics. Such study would have a direct application to wider phenom-

ena featuring non-Abelian DOFs such as the quark-gluon plasma [30] and the spintronics

with strong spin-orbit coupling [31, 32].

In this work we propose a completely new approach to bypass all the above conceptual

and technical difficulties. We start from a neutral and dissipative fluid coupled to Einstein

gravity in D dimensions, which we assume is completely characterized. The idea is to

perform a Kaluza-Klein (KK) compactification [33, 34] of this system and obtain a fluid in

d = D−n dimensions whose constituents are charged under non-Abelian Yang-Mills fields,

where n is the dimension of the internal manifold. That is to say, we use KK dimensional

reduction as a method to construct an ab initio description of non-Abelian hydrodynamics.

The KK compactification mechanism endows the lower-dimensional system with a set of

gauge fields, the so-called KK gauge fields. The compactification ansatz of internal manifold

elucidate the resulting gauge symmetry of d-dimensional system. As we are interested in

non-Abelian hydrodynamics, we will compactify on an SU(2) group manifold [35, 36].

Therefore, we will take n = dim(G) = 3, where G is the gauge group. We will perform

this procedure on the EOMs of the starting higher-dimensional neutral fluid, which include

dissipative terms.1

Our approach is based on the non-Abelian Kaluza-Klein compactification on a SU(2)

group manifold, which we interpret as an internal manifold whose isometries generate the

non-Abelian color symmetry in the physical system. Since we start with a fluid from the

outset, the resulting theory is valid in the long-wavelength limit, coupled to new non-

Abelian DOFs that the compactification generates.

KK compactification provided a robust tool for the understanding of the (hidden)

structure and the dynamics of gravity-matter systems, which descends from a more fun-

damental theory such as string/M-theories. If we start with a fundamental theory in D

dimensions defined on a manifold MD, we can find a stable solution of its equations of

motion of the form MD = Md × Xn, where d = (D − n), Md is non-compact, reduced

spacetime, and Xn is a compact manifold of characteristic size R. At low energies, the

compact space Xn is not accessible by direct observations: it would take excitations of

energy E ∼ 1/R to probe spacetime structures of a scale of order R. If R is sufficiently

small, this energy scale is gapped from the low-energy dynamics on Md. Nevertheless, the

properties of Xn will have important effects on the reduced theory. As emphasized, if Xn

is a manifold with isometry group G, then metric fluctuations along the Killing directions

of Xn generate Yang-Mills gauge fields with gauge group G, which will be present in the

dynamics of the lower-dimensional theory.

From the viewpoint of KK theory, a novelty of our work is that we include energy-

momentum tensor of dissipative fluid, sourcing the Einstein field equations. The procedure,

however, must be self-consistent. A KK compactification is said to be consistent if all the

1Heavy-ion collisions and other phenomenologically relevant phenomena occur off the equilibrium and

consequently, dissipative effects are very important in their descriptions.

– 3 –



J
H
E
P
0
2
(
2
0
1
7
)
1
2
2

Figure 1. Our starting system is a D-dimensional dissipative fluid coupled to gravity (left). After

KK compactification on a n-dimensional internal manifold with non-Abelian isometries, we obtain a

d-dimensional dissipative fluid that, apart from being coupled to gravity, is charged under dynamic

non-Abelian Yang-Mills gauge fields (right).

solutions of the d-dimensional theory satisfy the D-dimensional EOMs. In this work, we

also present the necessary conditions to achieve a consistent reduction of fluid energy-

momentum tensor.

Summarizing, the salient features of our approach are the following:

• We apply the KK method to a neutral fluid at the outset coupled to gravity, thus

bypassing kinetic theory.

• The approach applies to dissipative fluids, for the compactification is at the level of

equations of motion rather than action.

• The proposed KK method “generates” dynamical (non-)Abelian gauge fields which

are self-consistently coupled to a charged/colored fluid.

• This mechanism provides an ab initio approach to (non-)Abelian hydrodynamics,

distinct from gauge-gravity duality or fluid/gravity duality.

This paper is organized as follows. In section 2 we present the main results of our work:

the dynamics of the system, its symmetries and its properties. In the following sections we

explain the KK dimensional reduction and the method for obtaining our results. In partic-

ular, section 3 reviews the basics of relativistic hydrodynamics and provides the necessary

set-up and notations for our calculations. In section 4, we review the dimensional reduction

of the system Einstein-perfect fluid on a circle. This results in a fluid charged under a U(1)

gauge field. In section 5 we do the KK compactification on an SU(2) group manifold of the

Einstein-dissipative fluid system and study the conservation laws of the system. In section
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6 we evaluate our energy-momentum tensor and identify all the dissipative coefficients of

the d-dimensional fluid. In section 7 we explain the main properties of our system and

discuss future directions we are currently investigating. Appendices provide the details of

our computations.

2 Dissipative fluid dynamics with Yang-Mills charge

In this section, we recapitulate the dynamics and the main properties of a d-dimensional

dissipative fluid that carries charges of non-Abelian Yang-Mills gauge group G.

We denote space-time indices by µ, ν, ρ = 1, . . . , d, and the adjoint representation of

the Yang-Mills group G indices by α, β, . . . = 1, . . . , dim(G).2

The energy-momentum tensor consists of two contributions by dissipative fluid and

non-Abelian Yang-Mills gauge fields:

T total
µν =T fluid

µν +
1

2
Q−2
c (x)

(
Fα

µ
ρFα

ρν −
1

2
ηµν(Fγ)2

)
, (2.1)

where Fα
µν is the non-Abelian field strength of the gauge field Aα

µ, Qc refers to the cou-

pling constant3 and repeated color indices are summed over. The fluid energy-momentum

tensor is further split to perfect fluid and dissipative parts,

T fluid
µν = T perfect

µν + T diss
µν . (2.2)

The perfect fluid contribution is given by

T perfect
µν (x) = [ε(x) + p(x)]uµuν + p(x) ηµν , (2.3)

where p is pressure, ε is energy density, uµ is the velocity field and ηµν is Minkowski metric.

As for the dissipative part T diss
µν , in this description we will not choose any specific

frame and will consider a generic energy-momentum tensor. Though we will make further

explicit assumptions in section 6.4, we can generalize our results to any frame independent

prescription.

The thermodynamic relation for the SU(2) charged perfect fluid after the KK com-

pactification accounts for the chemical potentials µcolor
α associated to the color charges Qα,

ε+ p = T s+ Qαµcolor
α . (2.4)

T is the temperature and s is the entropy density.

Let us specify the dynamics of the system. The first EOM corresponds to the fluid

dynamics evolution. Inspired by the KK compactification of a fluid coupled to gravity (in

particular Bianchi identities of Einstein equations, cf. section 5), we obtain the conservation

of the total energy-momentum tensor,

∇µT total
µν = 0 . (2.5)

2dim(G) will correspond to the dimension of the internal group manifold in the KK compactification.
3From the KK perspective Qc = Qc(x) is a scalar quantity that corresponds to the dilaton-dependent

gauge coupling, Qc(x) ∝ eφ(x). When we set φ constant-valued, then Qc plays the role of a Yang-Mills

coupling constant and it disappears from the EOMs of the gauge fields.
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The second EOM describes the dynamics of the non-Abelian Yang-Mills gauge fields and

introduces a non-Abelian colored current.

(DνFµν)α(x) = Jαµ(x) . (2.6)

The quantity Jcolor
µα (x)

Jα,color
µ (x) = Qc Q

α(x)uµ(x) + Jα,diss
µ (x) , (2.7)

allows us to define a covariantly conserved current4

J αµ = Q2
c

[
Jαµ −Dν

(
Q−2
c

)
Fα

µν

]
, (DνJν)m = 0 , (2.8)

where Qα(x) is the color charge density attached to the fluid.

Although the dissipative part contribution in Jdiss
µα (x) is frame-dependent, the color

current Jcolor
µα (x) is always covariantly conserved independent of the choice of frame. Further

details for specific frame choices can be found in section 6.4.

The colored fluid must interact with the Yang-Mills gauge fields through the Lorentz

force. In our formulation, for a the fluid characterized by the energy-momentum tensor

T fluid
µν , the Lorentz force naturally arises from the conservation of energy-momentum tensor

current,

∇νT fluid
νµ (x) = Qc Fαν

µ(x) Jcolor
ν α (x) . (2.9)

As the expression of energy-momentum tensor current is frame-dependent, departure

from the Landau frame does not permit to read the transport coefficients associated with

the dissipative effects from T diss
µν . To correctly identify these coefficients, we need a frame-

invariant formulation of the dissipative terms which is in agreement with the second law of

thermodynamics, ∇µJsµ ≥ 0, where Jsµ refers to the covariant entropy current. We adopt

the following generalizations:(
Pµ

ρ(x)Pν
λ(x)− 1

d− n
Pµν(x)P ρλ(x)

)
T diss
ρλ (x) = −2η(x)σµν(x) ,

∂p(x)

∂Qm
uµ(x)Jdiss

µm(x) +

(
1

d− n
P ab − ∂p

∂ε
uµuν

)
(x)T diss

µν (x) = −ζ(x)θ(x) ,

Pµ
ν(x)

(
Jdiss

νm+
Qm

ε+p
uρT diss

ρν

)
−κmn(x)

(
−PµνDν

(µn
T

)
+

1

T
Fn

µνu
ν

)
= 0 , (2.10)

where Pµν = ηµν + uµuν is the projector to the hypersurface orthogonal to the fluid, κmn
is the non-Abelian conductivity tensor, and θ ≡ ∇µuµ, η, ζ, σµν are various dissipative

coefficients. Covariant derivatives are defined in section 5.

This completes the summary of the equations that govern our system. It now remains

to establish this set of EOMs and conservation laws. In this paper, we established them

by starting from a higher-dimensional neutral fluid and then making a KK dimensional

reduction. The idea was that we used the KK compactification as a guiding principle to

4If Qc plays the role of a coupling constant, then the second term vanishes. We will explore the details

of non-constant Qc and in section 5.
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obtain expressions that preserve SU(2) covariance and the conservation laws, which arise

upon recasting the higher-dimensional ones.

In the following sections, we explicitly show the calculations that lead to these equa-

tions.

3 Kaluza-Klein approach

Our goal is to construct non-Abelian hydrodynamics. It consists of two components: the

colored matter fluid and the Yang-Mills gauge field. Constructing its hydrodynamics start-

ing from a microscopic Yang-Mills-matter theory (such as QCD) is just a theoretical idea: it

is not feasible nor shedding light on physics. As such, we look for a mesoscopic approach.

The idea is to utilize the Kaluza-Klein compactification to construct both components

of non-Abelian hydrodynamics simultaneously. Our starting point is a self-gravitating,

dissipative and neutral fluid in a dynamic D-dimensional spacetime MD(ĝMN ), viz. a

dissipative and neutral fluid coupled to the Einstein gravity, all in D dimensions.5 Our

working assumption is that the D-dimensional matter is strongly interacting at the outset.

While gravity is fundamentally weak, effective strength for the fluid depends on macro-

scopic conditions such as density and temperature.

3.1 Self-gravitating dissipative fluid

We will first characterize strongly interacting dissipative, neutral fluid in curved D-

dimensional spacetime MD(ĝMN ). The hydrodynamic field variables of fluid consist of

the velocity vector field ûM (x̂) and various other scalar fields. The velocity field is time-

like, normalized6

ûM (x̂)ûN (x̂) ĝMN (x̂) = −1 , (3.1)

such that it carries (D − 1) independent components. On the other hand, the number of

independent scalar fields is set by the number of equations of state that we consider. For

a perfect fluid, we will consider temperature T̂ (x̂), pressure p̂(x̂), and energy density ε̂(x̂)

to be independent scalar variables. Likewise, for the dissipative coefficients, we take shear

viscosity η̂, bulk viscosity ζ̂, shear tensor σ̂AB, and expansion scalar θ̂ as the independent

response variables associated with the D-dimensional neutral fluid.

The conservation laws and EOMs of the D-dimensional dissipative, neutral fluid follow

from the conservation of energy-momentum tensor

∇̂N T̂ fluid
NM (x̂) = 0. (3.2)

In the long-wavelength limit, the energy-momentum tensor is given by a derivative ex-

pansion of hydrodynamic fields, which in our case consists of parity-even terms up to the

first-order in gradients. It is given by two terms:

T̂ fluid
MN (x̂) = T̂ perfect

MN (x̂) + T̂ diss
MN (x̂) , (3.3)

5We denote all D-dimensional variables as hatted quantities.
6We use the mostly plus signature.
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where T̂ perfect
MN is the perfect fluid part and T̂ diss

MN contains the dissipative effects. In this work,

we do not assume a priori an equation of state for the fluid, so we treat all hydrodynamic

fields as being independent. For later treatment, we find it convenient to use the vielbein

formalism. The vielbein EM
A is related to the metric as7

ĝMN (x̂) = EM
A(x̂)EN

B(x̂)ηAB , ηAB = (−+ . . .+) . (3.4)

Thus,

T̂ fluid
MN (x̂) = EM

A(x̂)EN
B(x̂)

(
T̂ perfect
AB (x̂) + T̂ diss

AB (x̂)
)
. (3.5)

At zeroth-order in the gradient expansion, the fluid is perfect, so

T̂ perfect
MN (x̂) = [ε̂(x̂) + p̂(x̂)]ûM (x̂)ûN (x̂) + p̂(x̂)ĝMN (x̂) . (3.6)

To study the dissipative part of energy-momentum tensor, it is necessary to specify the

hydrodynamic frame. This dependence on the hydrodynamic frame arises as a consequence

that the macroscopic variables that characterize the fluid do not have unique microscopic

definitions. This permits us to have some freedom to select a convenient frame and therefore

redefine them in a simple manner. A convenient choice to fix this arbitrariness utilizes

the projection of the dissipative part in the energy-momentum tensor to the hypersurface

orthogonal to the velocity vector,

ûM T̂ diss
MN = 0 . (3.7)

This is referred to as the Landau frame. In this frame, the most general form of dissipative

part of energy-momentum tensor is given by

T̂ diss
AB (x̂) = −2η̂(x̂) σ̂AB(x̂)− ζ̂(x̂) P̂AB(x̂) θ̂(x̂) , (3.8)

where η̂ is the shear viscosity and ζ̂ is the bulk viscosity of the D-dimensional neutral fluid.

We also denote the projection tensor to the hypersurface orthogonal to the velocity vector

as P̂AB, the shear tensor as σ̂AB, and the expansion scalar as θ̂. They are defined as follows:

P̂AB(x̂) = η̂AB + ûA(x̂)ûB(x̂) ,

σ̂AB(x̂) = P̂(A
C(x̂)P̂B)

D(x̂)D̂C ûD(x̂)− 1

p̂(x)
θ̂(x̂) P̂AB(x̂) , (3.9)

θ̂(x̂) = D̂Aû
A(x̂) ,

where DA = EA
M∂M + ω̂A(x̂) is the Lorentz covariant derivative, and ω̂A is the spin

connection acting on the tangent frame.

We minimally couple this D-dimensional neutral, dissipative fluid to the D-dimensional

gravity, whose metric field is given by ĝMN . The system is described by the D-dimensional

Einstein field equations sourced by the fluid,

R̂MN (x̂)− 1

2
ĝMN (x̂)R̂(x̂) = 8πGD

[
T̂ perfect
MN (x̂) + T̂ diss

MN (x̂)
]
. (3.10)

7We can straightforwardly incorporate fermionic DOFs, such as a supersymmetric fluid interacting with

supergravity, as our scheme utilizes the vielbein formalism approach.
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Two remarks are in order. First, it is important to stress that the energy-momentum tensor

sourcing the Einstein’s equation includes both ideal and dissipative parts. Second, our

approach admits straightforward extension to any higher orders in the gradient expansion.

This is an interesting program we leave for future development.

Before we dwell into details of computations, in the next section, we overview the main

aspects of the KK compactification of this system.

3.2 Non-Abelian Kaluza-Klein reduction

Our goal is to construct self-consistent non-Abelian hydrodynamics using the approach of

the dimensional reduction in KK theory. In this section, we sketch the main aspects of the

KK compactification approach and the guidelines of our developments.

We start with the D-dimensional Einstein-neutral fluid system given by eq. (3.10)

and dimensionally reduce it on n-dimensional compact space Xn. We can effectively split

the gravitational DOFs in D dimensions into gravitational and additional DOFs in the

d = (D − n)-dimensional reduced spacetime. The additional DOFs are scalar fields that

characterize the size and shape of Xn and, if the manifold admits Killing symmetries, vector

fields with gauge symmetries. Likewise, we can split the fluid energy-momentum tensor in D

dimension into fluid’s energy-momentum tensor and some vector currents in d-dimensional,

reduced spacetime. Depending on the properties of Killing vectors on Xn, these vector

currents can be either Abelian or non-Abelian. In this treatment, one must only keep

a consistent truncation of light modes, setting the massive modes to zero. Consistency

requires that heavy modes that are dropped are not sourced by the light modes one keeps.

Note that we are performing the KK dimensional reduction for both the gravity in

the left-hand side of (3.10) and the fluid in the right-hand side. As for the gravity, it is

known that the KK dimensional reductions that involve Abelian isometries are always

guaranteed to be consistent, as the heavy and light modes do not mix each other. It

is also known that, for some internal spaces (maximally symmetric spaces and group

manifolds), dimensional reductions that involve non-Abelian isometries are consistent

as well. As for the matter, KK compactification of a fluid without gravity (and hence,

without dynamical gauge fields coupled to the fluid) on n-dimensional torus Xn = Tn is

straightforward, as was recently studied in [37]. The reduction leads to a fluid carrying

U(1)n “global” charges, and to relations between D-dimensional heat transport coefficients

and d-dimensional, reduced charge transport coefficients. The results are in agreement

with results known independently, so it suggests that the KK reduction that involves

Abelian isometries is consistent for the fluid as well.

Consider next the KK dimensional reduction of Einstein-fluid system on a group mani-

fold Xn = G [35] of dimension n = dim(G) and of curvature scale R. The group manifold G

is describable in terms of the Maurer-Cartan one-forms σm. These one-forms are invariant

under left multiplications by a group element g ∈ G. Thus, this left multiplication is an

isometry of metric g(G) of the n-dimensional internal space. So, in d-dimensional reduced

spacetime, the gauge symmetries include the diffeomorphisms of spacetime and the massless

fields of the d-dimensional, system will be the metric gµν and the non-Abelian Yang-Mills

gauge fields with gauge group G. Likewise, in d-dimensional reduced spacetime, the neu-
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tral fluid we started with becomes a fluid carrying G ‘global’ charges. The Einstein-fluid

equation then gauges this global charges to G ‘color’ charges so that the fluid is mini-

mally coupled to the non-Abelian gauge field. This is the main reason why we reduce the

higher-dimensional Einstein-fluid system on group manifolds: the reduction naturally lead

to ‘color’ charges and couples the G-colored fluid to dynamical G-color Yang-Mills fields.

The reduction will translate the D-dimensional conservation laws into the d-dimensional,

reduced conservation of both energy-momentum tensor and non-Abelian vector currents.

From the KK compactification, we obtain the system of colored fluid interacting with

Yang-Mills theory. Nevertheless, the reduction also will bring in additional DOFs. De-

pending on the physical situations we are interested in, one may keep them as part of the

system or truncate them out. For the formulation of non-Abelian hydrodynamics, we will

only keep the non-Abelian gauge field dynamics but none others such as the gravitational

dynamics. That is, we will decouple the gravitational DOFs and consider non-Abelian

hydrodynamics on d-dimensional Ricci-flat spacetime. Such decoupling can be achieved if,

for instance, one takes in D dimensions nontrivial cosmological constant and n-form field

strength and the Freund-Rubin ansatz. With fine-tuning of the cosmological constant and

taking GD to zero while keeping Rn+2/GD held fixed, one can decouple the gravity while

keeping nontrivial Yang-Mills gauge dynamics in Ricci-flat d-dimensional spacetime. We

will also need to truncate the dilaton (that parametrizes the volume of G) and other scalar

fields that emerge by setting them to be constant-valued. Varying them, however, would

result in change of the d-dimensional equations of state.

Let us stress that the above approach we propose relies on neither kinetic theory nor

Lagrangian formulations. In this regard, our approach offers an ab initio derivation of

the non-Abelian hydrodynamics modulo well-motivated assumption that a neutral fluid

coupled to Einstein field equations is self-consistent in D dimensions.

Finally, let us comment on a technical caveat related to the Yang-Mills gauge group.

In our approach, the KK dimensional reduction is done on the EOMs. This bears some

consequences in the possible choices of the group manifold Xn = G. In particular, di-

mensional reduction of the EOMs allows for gauge groups whose structure constants are

traceful, i.e., fmn
n 6= 0 (cf. [38]).

4 Charged fluid coupled to Maxwell theory

As a step to introduce the technicalities that KK theory requires and build intu-

itions therein, we first consider the KK reduction of Einstein-fluid system on a group

manifold with Abelian isometries. Thus, we choose the internal manifold to be a

n-torus, Xn = U(1)n. For simplicity, we will take the internal manifold isotropic,

R1 = R2 = · · · = Rn = R, and we will restrict ourselves to a perfect fluid, leaving

incorporation of the dissipative effects to next section.

Consider the KK reduction of a perfect fluid given by eq. (3.10) on a S1 internal circle

of radius R, where T̂ fluid
MN = T̂ perfect

MN . We will show that the KK reduction gives rise to a

charged perfect fluid interacting with Maxwell electromagnetism.
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4.1 Reduction on Abelian group manifold

For the KK reduction on a circle, let us assume the following ansatz for the vielbein EM
A(x̂)

in eq. (3.4) as

EM
A(x̂) =

(
eαφ(x)eµ

a(x) eβφ(x)Aµ(x)

0 eβφ(x)

)
. (4.1)

Curved indices of the D-dimensional spacetime will be split as M = {µ, z} whereas we

will denote flat indices as A = {a, z}. We will also assume that all the fields that appear

in the ansatz only depend on the d-dimensional coordinates xµ of Md.
8 The dilaton φ(x),

which measures the size of Xn, is weighed by the reduction-specific coefficients

α2 =
n

2(d+ n− 2)(d− 2)
and β = −(d− 2)α

n
. (4.2)

Though in this section we evaluate n = 1, we will keep n generic.

Let us start by substituting the compactification ansatz into the D = (d + 1)-

dimensional Einstein field equations

ĜMN (x) ≡ R̂MN (x)− 1

2
ĝMN (x)R̂(x) = T̂ fluid

MN (x) , (4.3)

and recast the differential equations. The components Ĝµν , Ĝµz, and Ĝzz give the d-

dimensional gravitational, gauge, and dilaton field equations, respectively. Though we do

not specify the structure of fluid energy-momentum tensor T̂ fluid
MN , we will return to it after

analyzing the component equations.

The Ĝµz components imply the Maxwell equations coupled to a current.

∇ν
(
Q−2
e (x)Fµν

)
= Q−2

e (x)Je
µ(x) , (4.4)

where Qe is the dilaton-dependent gauge coupling,

Qe(x) ≡ e(d−1)αφ(x), (4.5)

and the current is given by

Je
µ(x) ≡ 2e(β+2α)φ(x)Qe(x) eµ

a(x)T̂ fluid
az (x) . (4.6)

Hence, the Ĝµz components of Einstein equations automatically define the electromagnetic

dynamics of the system, including the current Je
µ(x) of the fluid. Thus, the fluid becomes

charged whenever it has non-vanishing flow around S1. Being proportional to T fluid
az (x),

the electric current Je
µ(x) will be proportional to the reduced velocity field uµ(x). The

dilaton field that measures the size of S1 has the effect of spacetime-dependent unit of

electric charge, Qe(x). As discussed in the previous section, we take the KK reduction as

an ab initio approach for deriving consistent hydrodynamic equations. As such, we will

eventually set the dilaton to be constant-valued.

8In section 5, we will assume some dependence on the internal coordinates, which will yield to non-

Abelian gauge symmetry upon reduction.
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This same pattern to the other components of (3.10). From the Ĝµν components, we

obtain the d-dimensional Einstein equations sourced by the charged fluid, the U(1) gauge

field and the dilaton:

Gµν(x) ≡ Rµν(x)− 1

2
gµν(x)R(x) = T total

µν (x) , (4.7)

where the right-hand side defines the total energy-momentum tensor of the d-dimensional

system

T total
µν (x) = T fluid

µν (x) +

(
1

2
∂µφ∂νφ−

1

4
gµν(∂φ)2

)
(x) +

1

2
Q−2
e (x)

(
F 2
µν −

1

4
F 2gµν

)
(x) .

(4.8)

The last two terms are contributions of dilaton field and Maxwell field, while the first term

is the energy-momentum tensor of charged fluid, defined by

T fluid
µν (x) ≡ e2αφ(x)eµ

a(x)eν
b(x)T̂ fluid

ab (x) . (4.9)

Finally, let us consider the Ĝzz component. We obtain the d-dimensional dilation field

equation, sourced by both the fluid and the Maxwell gauge field,

�φ(x) = 2αD(x) , (4.10)

Again, the right-hand side of the equation defines the dilatation current,

D(x) ≡ −d− 1

4
Q−2
e (x)F 2

µν(x) + (d− 1) e2αφ(x) T̂ fluid
zz (x)− e2αφ(x) T̂ fluid(x) . (4.11)

where T̂ fluid := T̂ fluid
M
M is the trace of the D = (d + 1)-dimensional energy-momentum

tensor.

The Einstein tensor in the defining equation eq. (4.3) obeys the Bianchi identity, from

which conservation laws of various currents we identified above are derived. The conserva-

tion laws on current Jel
µ and total energy-momentum tensor T total

µν result relevant for the

Maxwell-plasma system. For the charge current, covariant divergence of eq. (4.4) gives

∇µ
[
∇ν
(
Q−2
e Fµν

)]
= ∇[µ∇ν]

(
Q−2
e (x)

)
Fµν = 0 , (4.12)

where we have used the torsion-free condition for d-dimensional spacetime. This implies

∇µ(e(β−(d−3)α)φeµ
aT̂az)(x) = 0 → ∇µ(Qe(x)Je

µ(x)) = 0 , (4.13)

which results the to the conservation law of electric current Je
µ, generalized by the dilaton

field.

From the Bianchi identity of Einstein tensor in eq. (4.7) we obtain

∇µT total
µν (x) = 0 . (4.14)

This implies that variations in the fluid energy-momentum tensor are balanced by the

change of the Maxwell energy-momentum tensor and the dilaton.

∇µT fluid
µν (x) = −∇µ

(
Q−2
e

[
F 2
µν −

1

4
F 2gµν

])
(x). (4.15)
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On-shell, this conservation is equivalent to

∇µT fluid
µν + (e[β−(d−3)α]φeµ

aT̂ fluid
az )Fν

µ + e2αφ[(d− 1)αT̂ fluid
zz − αT̂ fluid]∇νφ = 0 . (4.16)

We interpret this as the generalization of the Lorentz force equation of Maxwell-plasma

under the presence of the dilaton field. Once again, the role of the KK approach is just a

tool to facilitate the ab initio derivation of charged fluid interacting with Maxwell theory.

Therefore, setting the dilaton to be constant-valued we obtain the standard form of the

Lorentz force equation:

∇µT fluid
µν (x) = Qe(x)Fµν(x)Jel

µ (x) . (4.17)

4.2 Abelian reduction of energy-momentum tensor

So far, we have not made any assumption on the energy-momentum tensor T̂ fluid
MN of the

neutral fluid we started from. We now study T̂ fluid
MN under a well-motivated ansatz for

the higher-dimensional velocity field û(x̂) and the other scalar quantities. To gain better

intuition about physics, we will restrict the D-dimensional neutral fluid to a perfect fluid.

In section 5, we will consider the dissipative contributions.

The D-dimensional velocity field ûM has (D − 1) independent components, as it is

conveniently normalized by eq. (3.1):

ûM (x̂)ûN (x̂)ĝMN (x̂) = −1 . (4.18)

The ansatz that we will assume for the velocity field is:

ûa = ua(x) coshϕ(x) ,

ûz = sinhϕ(x) ,
(4.19)

where ua(x) is the velocity field of charged fluid in d dimensions, which is normalized as

ua(x)ub(x)ηab = −1. The scalar field ϕ(x) parametrizes the degree of freedom associated

with the internal component of the velocity, ûz. Substituting the ansatze for the vielbein

eq. (4.1) and the velocity fields eq. (4.19) into the energy-momentum tensor, we will obtain

the defining variables of the d-dimensional fluid in terms of the D-dimensional ones. That

is to say, we find that the energy-momentum tensor in d dimensions is

T perfect
µν (x) = eµ

a(x)eν
b(x)T̂ab(x)

= (ε+ p)uµ(x)uν(x) + p gµν(x) , (4.20)

where the energy density ε(x) and the pressure p(x) are given by

ε(x) = e2αφ(x)
(
ε̂(x) cosh2 ϕ(x) + p̂(x) sinh2 ϕ(x)

)
, p(x) = e2αφ(x)p̂(x) . (4.21)

By substituting the velocity ansatz eq. (4.19) into eq. (4.6) we obtain the electric

current

Je
µ(x) ≡ 2 (ε(x) + p(x)) e[β+(d+1)α]φ(x) tanhϕ(x)uµ(x) . (4.22)
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As anticipated, the charge current is proportional to the velocity field uµ. Again, let us

analyze the case for which the dilaton field is constant. Then, the energy-momentum

conservation, eq. (4.20) leads to

∇µT perfect
µν (x) = Qe(x)Fµν(x)Je

µ(x) . (4.23)

This is precisely the Lorentz force equation we have directly derived from the reduction of

the Einstein-fluid system in the last section.

One can straightforwardly generalize the above construction by taking the internal

space Xn to be an n-torus Tn. It will give rise to a fluid charged under n independent

Abelian electromagnetic fields with U(1)n gauge symmetry.

After analyzing the system of a fluid charged under Abelian gauge fields, we will

address the case for which the gauge symmetry is non-Abelian. To carry out this problem,

the internal manifold will be a group manifold whose isometry group is non-Abelian. We

will choose SU(2) for simplicity but the procedure applies to any other gauge group.

5 Colored fluid coupled to Yang-Mills theory

We now construct non-Abelian hydrodynamics of Yang-Mills plasma. Here, our goal is to

derive ab initio the EOMs of a dissipative fluid carrying non-Abelian SU(2) charges and

interacting with Yang-Mills theory. To do so, our idea is again to start with an Einstein-

fluid system in D dimensions eq. (3.10) and perform a KK dimensional reduction on a

SU(2) group manifold [35] (for a review, cf. [38–40]). After the reduction, we will find an

SU(2) colored fluid interacting with SU(2) Yang-Mills theory in d dimensions. As SU(2)

group manifold is three-dimensional, our setup corresponds to n = 3 and hence D = d+ 3.

Nevertheless, this method can be applied to any group manifold G, having thus a colored

fluid interacting with Yang-Mills theory of gauge group G.

5.1 Compactification on SU(2) group manifold

Let us consider the following KK ansatz for the D-dimensional vielbein:

EM
A =

(
eαφêµ

a eβφÂµ
pêp

α

0 g−1eβφêm
α

)
, (5.1)

where

êµ
a(x̂) = eµ

a(x) ,

êm
α(x̂) = um

n(y)Vnα(x) , (5.2)

Âµ
m(x̂) = (u−1)n

m(y)Aµ
n(x) .

and g is a coupling constant g. As in the Abelian reduction, we split the curved manifold

indices as M = (µ,m) where µ = 1 . . . d and m = 1 . . . n, tangent space indices as A =

{a, α}, where a = 1 . . . d and α = 1 . . . n, and local coordinates as x̂M = (xµ, ym). For the

SU(2) case, n = 3. These algebra-valued indices can be freely lowered and raised without

loss of generality.
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In various Weyl factors, the dilaton field φ(x) is weighed with the coefficients

α2 =
n

2(d+ n− 2)(d− 2)
and β = −(d− 2)α

n
. (5.3)

The matrix um
n(y) in eq. (5.2) is a twist field that carries the information of the SU(2)

group manifold. After the reduction, this information is encoded in the d-dimensional

system through the structure constants,

fmn
p := −2(u−1)m

s(y)(u−1)n
t(y)∂[sut]

p(y) . (5.4)

Though the twist matrix field um
n(y) varies over the group manifold (hence depends on the

internal coordinates y), the combination on the r.h.s. of this equation needs to be constant-

valued in order for them to be the structure constants of the Lie algebra associated with

the group manifold.

The ansatz can be explicitly expressed in terms of the Maurer-Cartan one-forms σm

of the SU(2) group manifold by combining the fields as

Êa(x) = eαφ(x)ea(x) ,

Êα(x) = g−1eβφ(x)Vmα(x)(σm − gAm(x)) , (5.5)

where σm ≡ un
mdxn is the left-invariant one-form of G, satisfying the Maurer-Cartan

equation

dσm +
1

2
fnp

mσn ∧ σp = 0 , (5.6)

and thus fnp
m are the structure constants of the isometry group G of the internal manifold.

Before carrying out the non-Abelian reduction on the group manifold G, we introduce

new notations for the physical variables in d dimensions. We shall build from the scalar

vielbein V two scalar metrics

Mmn = VmαVnβδαβ and Mαβ ≡ VmαVnβδmn, (5.7)

which are SU(2) invariant and SU(2) covariant, respectively. We denote the trace as

M ≡Mα
α. We define the covariant derivatives Dµ(A) and Dµ(V) as

DµVmα ≡ ∂µVmα − gAµm
nVnα ,

DµVmα ≡ DµVmα + Qµ
α
βVmβ ,

(5.8)

where the elementary gauge field used in Dµ is given by

Aµm
n(x) ≡ Apµ(x)fpm

n (5.9)

and the composite gauge fields used in Dµ are built from the scalar vielbein as

Paαβ(x) ≡ eaµPµαβ =
1

2

(
VαmDa(A)Vmβ + VβmDa(A)Vmα

)
,

Qaαβ(x) ≡ eaµQµαβ =
1

2

(
VαmDa(A)Vmβ − VβmDa(A)Vmα

)
.

(5.10)
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The distinction is that, while Dµ is the ordinary gauge covariant derivative, Dµ accounts

for quantities that are adjoined by the scalar vielbein Vmα. Finally, the Yang-Mills field

strength two-form Fm of Am is defined as

Fm ≡ dAm +
1

2
g fnp

m An ∧Ap . (5.11)

This field strength typically appears dressed up by the scalar fields, so we also denote

the tangent space (both in internal and spacetime manifolds) field strength two-form as

Fα
ab ≡ VmαFm

ab.

5.2 Field equations for Yang-Mills plasma

To obtain the EOMs of the d-dimensional system we will substitute the ansatz eq. (5.1)

into Einstein equations and recast the resulting expressions.9

Let us start with the EOMs for the SU(2) gauge fields. They descend from the Ĝµn
components in eq. (3.10). Working in the tangent space we obtain

Db(Q−2
c (x)Fβ

ab(x)) +Q−2
c (x)Pbβγ(x) Fγ

ab(x) = Q−2
d (x)Jβa(x) , (5.12)

where

Qc(x) := e
1
3
α(d+1)φ(x) (5.13)

is the dilaton-dependent gauge coupling, and

(5.14)Jaβ(x) = 2
[
g Q2

c(x) εβγδPaγλ(x)Mδλ(x)− Qc(x)
(
e2αφ(x) T̂ fluid

aβ (x)
)]

.

is the color current. For covariantly constant scalars, eq. (5.12) is reduced to

Db(Fβ
ab)(x) = Jβa(x) , (5.15)

which is the standard form of the Yang-Mills field equations coupled to color current.

The Einstein field equations descend from the Ĝµν components:

Gµν(x) = Rµν(x)− 1

2
gµν(x)R(x) = T total

µν (x) , (5.16)

where T total
µν := eµ

aeν
bT total
ab is the total energy-momentum tensor, with

T total
ab (x) = e2αφ(x)T̂ fluid

ab (x) +
1

2
Q−2
c (x)

(
ηcdFα

ac(x)Fα
bd(x)− 1

2
ηab(F

γ)2(x)

)
+

1

2

(
∂aφ(x)∂bφ(x)− 1

2
ηab(∂φ)2(x)

)
+

(
Paβγ(x)Pbβγ(x)− 1

2
P2(x)ηab

)
− g2Q2

c(x)

(
Mγδ(x)Mγδ(x)− 1

2
M2(x)

)
ηab . (5.17)

From the first line, we read off the energy-momentum tensor T fluid
ab of the colored fluid:

T fluid
ab (x) = e2αφ(x)T̂ fluid

ab (x) . (5.18)

9Details of the calculations for extracting the equations of motion are relegated to appendix A.
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Other field equations also yield relevant information on currents and their conservation

laws. The equation of motion for dilaton field is obtained from the trace of eq. (3.10), Ĝm
m:

�φ(x) =
1

2α
D(x) , (5.19)

where D(x) is the dilation current

(5.20)
D(x) = − 1

2(d− 2)
Q−2
c (x)(Fα)2(x) +

2g2

d− 2
Q2
c(x)

(
Mαβ(x)Mαβ(x)− 1

2
M2(x)

)
− 2

d− 2
e2αφ(x)

(
3

d+ 1
T̂ fluid(x)− T̂ fluid

αβ (x)δαβ
)
.

The first line is the contribution of SU(2) gauge fields and scalar fields, whereas the second

one is the contribution of colored fluid. As we can check, there is no non-linear contribution

of the dilaton field itself apart from the Weyl factors.

The equation of motion for the algebra-valued scalar fields Vmα(x) is given by a linear

combination of the Ĝmn components and the trace Ĝm
m:

Da(Q)Paαβ = Jαβ , (5.21)

where

Jαβ(x) =
1

2
Q−2
c (x)

[
Fα

ab(x)Fβ
cd(x)ηacηbd − 1

3
(Fγ)2δαβ

]
+ 2e2αφ

[
1

3
T̂ fluidδαβ − T̂ fluid

αβ

]
+4g2Q2

c(x)

[
MαγMβγ − 1

2
MαβM− 1

3

(
MγδMγδ − 1

2
M2

)
δαβ

]
. (5.22)

The first line of this expression is the contribution of SU(2) gauge fields and colored fluid,

while the last line corresponds to the contribution of algebra-valued scalar fields.

5.3 Conservation laws

The non-Abelian reduction of the Einstein-fluid system has led to a Yang-Mills plasma,

consisting of colored fluid interacting with non-Abelian gauge fields (and also coupled to

gravity, dilaton and algebra-valued scalar fields). In this section, we will further investigate

the conservation laws of the system.

Likewise in section 4 for Maxwell plasma, we have not made any assumption on gravity

and scalar fields so far. Nevertheless, in order to study the conservation of the simplest

model for Yang-Mills plasma, we will truncate the system so that the d-dimensional metric

is flat and scalar fields are covariantly constant. Such truncations will impose some con-

straints on the corresponding field equations of φ and Vmα, namely, eqs. (5.20) and (5.22).

For this truncation to be consistent, we would need to solve these constraints. They will

in turn impose some conditions on the d-dimensional Einstein equations10 and the Yang-

Mills field equations through Weyl factors and scalar potentials. In this section, we will

10As for gravity, we can decouple the DOFs associated to the metric by taking the limit GD → 0 for the

Einstein equations.
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simply consider the simplest consistent solution of these scalar fields, but will not explore

the arena of possible non-trivial solutions. Nevertheless, it should be interesting to look

into the implications of such nontrivial solutions (and their stability) in the context of

fluid/gravity duality. It will also be important to understand to what extent these solu-

tions constrain the values of the transport coefficients and other quantities that characterize

the lower-dimensional fluid.

Firstly, let us analyze the color currents of the system and their conservation laws.

The SU(2) Yang-Mills field equation eq. (5.12) can be recast:

Db
(
Q−2
c MmnF

n
ab

)
= Jma , (5.23)

where

Jma = 2gεσγδMδλPaγλVmσ − 2e−
1
3
α(d−5)φT̂ fluid

aγ Vmγ . (5.24)

This allows to define a current Jm which is covariantly conserved, DµJmµ = 0. Its

expression is given by eq. (5.14) (see appendices for calculation):

Jma = Q2
c Mmn

[
Jna −Db

(
Q−2
c Mnp

)
F pab

]
. (5.25)

The interpretation is clear: the first term is the color current sourced by the algebra-

valued scalar fields, while the second term is the color current sourced by the colored fluid

itself. Being the non-Abelian counterpart of the U(1) charged current, the second term is

proportional to the off-diagonal block of the energy-momentum tensor, T̂ fluid
aβ . This block

is non-zero if the D-dimensional fluid flows on the group manifold, so Jcolor
ma is proportional

to the internal velocity fields ua.

Secondly, let us analyze the heat current of the Yang-Mills plasma and their conserva-

tion laws. We already discussed that the Bianchi identity ∇µGµν = 0 of the d-dimensional

Einstein equation, eq. (5.16) leads to the conservation of the total energy-momentum tensor

∇µT total
µν = 0 . (5.26)

We would like to obtain the relations that this condition imposes among the d-dimensional

degrees of freedom. Applying a covariant divergence on the total energy-momentum tensor

eq. (5.17) and substituting the field equations of the Yang-Mills fields and scalar fields, we

are left with an expression that involves first derivatives of the scalar fields and components

of the energy-momentum tensor T̂ fluid
MN .11 This expression is the non-Abelian generalization

of the Lorentz force, which involves not only the Yang-Mills field strength but also the

algebra-valued scalar fields. Nevertheless, if we set these scalar fields to be covariantly

constant, DaVmα = Daϕ = 0, we obtain

DaT fluid
ab + 2Q−1

c (x)e2αφ(x)T̂cαVnαFn
bc = e2αφ

(
DaT̂ fluid

ab + 2Q−1
c (x)T̂cαFα

bc

)
= 0 . (5.27)

I.e., we get the standard expression of Lorentz force for Yang-Mills plasma:

DaT fluid
ab (x) = Qc(x)Fαa

b(x)Jcolor
αa (x). (5.28)

After doing the KK reduction of gravity sourced by a generic fluid T̂ fluid
MN , we are going to

evaluate T̂ fluid
MN = (T̂ perfect + T̂ diss)MN and study in detail the resulting d-dimensional fluid.

11We relegate details of the calculation to appendix A.
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6 Colored fluid from non-Abelian reduction

In this section, we will implement the KK compactification of the fluid energy-momentum

tensor to construct the colored fluid and read off its defining variables.

6.1 Non-Abelian reduction of fluid

The energy-momentum tensor and the defining variable of the d-dimensional fluid will be

read off after inserting the compactification ansatze for the vielbein and the rest of the

expressions into the EOMs of the D-dimensional system.

For the non-Abelian reduction of the velocity fields ûA, we will assume an ansatz such

that none of its components depend on the coordinates of the internal group manifold G.

We can parametrize them as follows

ûa = ua(x) coshϕ(x) ,

ûα = nα(x) sinhϕ(x) ,
(6.1)

where

uaubηab = −1 and nαnβδαβ = 1. (6.2)

The d-dimensional velocity has (d − 1) independent components, and the n-dimensional

unit vector n has (n − 1) independent components. In total, along with ϕ, there are

(d− 1) + (n− 1) + 1 = D − 1 independent components. The angular variable ϕ measures

the relative magnitude between the external and “internal” velocity fields. The unit vector

ua is the boost in external spacetime, while the unit vector n is the boost in the internal

group manifold. They all fluctuate in external spacetime.

With this ansatz, we will now study the d-dimensional energy-momentum tensor of

the fluid, eq. (3.3).

6.2 Perfect colored fluid

Firstly, we are going to characterize the colored perfect fluid in d dimensions. This will

allow us to identify its thermodynamic and scalar quantities in terms of quantities in D

dimensions.

The energy-momentum tensor of the d-dimensional perfect colored fluid is given by

T perfect
ab (x) = [ε(x) + p(x)]ua(x)ub(x) + p(x) ηab , (6.3)

where, using eq. (5.18), the quantities are related to the D-dimensional ones as

p(x) = e2αφ(x)p̂(x) ,

ε(x) = e2αφ(x)
[

cosh2 ϕ(x)ε̂(x) + sinh2 ϕ(x)p̂(x)
]
.

(6.4)

From this, we find the speed of sound, cs, in the perfect colored fluid as

c2
s ≡

∂p

∂ε
=

1

cosh2 ϕ(x)(ĉ−2
s − 1) + 1

, where ĉ 2
s =

∂p̂

∂ε̂
. (6.5)
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The faster the fluid is boosted inside the group manifold, the slower the sound speed of the

colored fluid.

The boost inside the group manifold generates the color current. From the current

Jcolor
ma , eq. (5.25), we have

Jcolor
ma (x) = Qc(x)Qm(x)ua(x) . (6.6)

Here, Qm(x) is the color charge density attached to the fluid, which is defined as

Qm(x) = 2(ε(x) + p(x))Vmα(x)nα(x) tanhϕ(x) . (6.7)

6.3 Entropy current

The D-dimensional neutral fluid has entropy density ŝ, so the entropy current is given by

ĴŝA = ŝûA, (6.8)

In the perfect fluid limit, the entropy current is covariantly conserved

∇̂M ĴŝM = 0 . (6.9)

From the ansatz eq. (4.19), the entropy in d dimensions is given by

s = e2αφ ŝ coshϕ , (6.10)

and the entropy current in d dimensions is given by

Jsα = s(x) nα(x) tanhϕ(x), Jsµ(x) = s(x)uµ(x). (6.11)

The conservation law eq. (6.9) is reduced to

∇µJsµ = 0 . (6.12)

where we have used the spin connection components of appendix A.

The neutral perfect fluid in D dimensions satisfies the thermodynamic relation

ε̂+ p̂ = T̂ ŝ , (6.13)

where T̂ is the temperature. After the reduction, the d-dimensional fluid is colored, so its

thermodynamic relation must account for the chemical potentials µcolor
m associated to the

charges Qm in the form

ε+ p = T s+ Qmµcolor
m . (6.14)

Requiring this Euler relation to hold in d dimensions, we obtain that the d-dimensional

temperature and chemical potentials are given by

T (x) = T̂ (x)
1

coshϕ(x)
,

µcolor
m (x) = nα(x)Vαm(x) tanhϕ(x) . (6.15)

So far, we have described the d-dimensional perfect fluid carrying non-Abelian SU(2)

charges and given all its defining quantities in terms of the D-dimensional neutral fluid

parameters. These results are in full agreement with the ones obtained for the Abelian

case in section 4. Built upon these consistency checks, we are going to consider dissipative

effects of the fluid in the next section.
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6.4 Non-Abelian dissipative fluid

We are going to extend our previous analysis by considering the dissipative part of energy-

momentum tensor, T̂ diss
MN . This piece is given by

T̂ diss
AB = −2η̂σ̂AB − ζ̂P̂AB θ̂ . (6.16)

The correction of first-order in derivatives in T̂ diss
AB will generate terms of first-order deriva-

tives of the components of velocity fields ûA. Being velocity fields, these terms play the

same role as second-order derivative of ordinary fields. Therefore, we will eliminate the

derivatives by using their equations of motions, namely, the conservation laws.

In particular, if we consider eqs. (5.23) and (5.27), we obtain

uµ(x)∇̂µϕ(x) = c2
s(x) θ(x) tanhϕ(x) , (6.17)

where θ(x) ≡ ∇µuµ(x). Moreover, θ(x) is related to θ̂ ≡ ∇̂M ûM (x) by

θ̂(x) = coshϕ(x)
(
θ + nαuµ∇̂µnα

)
(x) , (6.18)

so that when substituting, we have

θ̂(x) = cosh3 ϕ(x)

(
c2
s(x)

ĉ2
s(x)

)
θ(x) . (6.19)

In addition, the d-dimensional acceleration aµ ≡ uν∇̂νuµ is given by

aµ =
sech2ϕ(x)

e2αφ(x)ε̂(x) + p(x)
∇̂µ
(

1

p(x)

)
+ nθ(x)c2

s(x)uµ(x) , (6.20)

where

∇̂µ
(

1

p(x)

)
=
e2αφ(x)ε̂(x) + p(x)

2p2(x)
sinh 2ϕ(x)∇̂µϕ(x) . (6.21)

With these results, we can estimate the d-dimensional coefficients associated with

the dissipative terms. For the D-dimensional neutral fluid, the shear and bulk viscosities

can be read off from T̂ diss
AB . This occurs due to the fact that the fluid is described in the

Landau frame, i.e.,

ûAT̂ diss
AB = 0 . (6.22)

Upon the non-Abelian KK dimensional reduction, the rearrangement of DOFs into

d-dimensional Lorentz covariant representations implies that the reduced ones do not

satisfy the Landau frame condition. In particular, we obtain

ua(x)T̂ diss
ab (x) +

1

coshϕ(x)
ûα(x)T̂ diss

αb (x) = 0 , (6.23)

which straightforwardly leads to uaT diss
ab 6= 0.

On account of the frame-dependent structure of the energy-momentum tensor, depar-

ture from the Landau frame means that we cannot read off the d-dimensional transport

coefficients associated with the dissipative terms from T diss
µν . To correctly identify these
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coefficients, we need a frame-invariant formulation of the dissipative terms. In addition,

according to the second law of thermodynamics, it has to be guaranteed that the entropy

current Jsa satisfies ∇µJsµ ≥ 0. Such frame-invariant description was developed in [41] for

a fluid charged under an Abelian gauge field Aµ. Here, we generalize this result to account

for non-Abelian symmetry.

Using the frame-invariant approach as a guiding principle and also based on the gauge

covariance of SU(2) algebra-valued quantities, we formulate the following expressions for

the transport coefficients in the presence of non-Abelian gauge fields Am
µ:(

Pa
c(x)Pb

d(x)− 1

d− n
Pab(x)P cd(x)

)
T diss
cd (x) = −2η(x)σab(x) ,

∂p(x)

∂Qm
ua(x)Jdiss

am(x) +

(
1

d− n
P ab − ∂p

∂ε
uaub

)
(x)T diss

ab (x) = −ζ(x)θ(x) ,

Pa
b(x)

(
Jdiss

bm+
Qm

ε+ p
ucT diss

cb

)
−κmn(x)

(
−PabDb

(µn
T

)
+

1

T
Fn

abu
b

)
= 0 , (6.24)

where Jdiss
am follows from eq. (5.25) using T̂MN = T̂ diss

MN , κmn is the non-Abelian conduc-

tivity tensor, and η, ζ, σ are the d-dimensional dissipative coefficients.

At this stage, in order to obtain the effective dissipative coefficients, we need to sub-

stitute the expressions that we obtained for Jdiss
am and T̂ diss

ab and work out these three equa-

tions.12 From them, we read off the following expressions:

η(x) = e2αφ η̂(x) coshϕ(x) ,

κmn(x) = e2αφ η̂(x)T (x) coshϕ(x)

(
δmn −

sinh4 ϕ

cosh2 ϕ
VmαnαVnβnβ

)
(x) . (6.25)

ζ(x) = 2e2αφ(x) η̂(x) coshϕ

[
1

d−n
+c4

s

(
1−cosh4 ϕ

1

p

∂p̂

∂ε̂
+e2αφ(x) cosh5 ϕ ζ̂

(
∂p̂

∂ε̂

)2
)]

.

It is important to stress that when getting rid of any dependence on the scalar fields

ϕ, we recover the d-dimensional quantities multiplied by the dilaton factor e2αφ, which

parametrizes the volume of the internal manifold. On the other hand, it is worth to mention

that the non-Abelian behavior of the conductivity matrix arises from the dependence of

the scalar vielbein Vmα.

The analysis in this section demonstrates that the non-Abelian KK dimensional re-

duction is an ab initio and efficient method for deriving the structure and dynamics of

Yang-Mills plasma. Moreover, the construction that leads to eq. (6.25) gives a hydrody-

namic frame-independent transport. We see from eq. (6.25) that, apart from viscosities,

we have the non-Abelian conductivity matrix κmn, which is directly connected to the non-

Abelian degrees of freedom in the system. We remark that a similar quantity was obtained

in the context of the fluid/gravity duality [24].

Now that we have clearly formulated non-Abelian hydrodynamics, we can study various

related issues. Understanding conductivity is a major challenge in recent approaches to

holographic superfluids. One can show that, at the phase transition, a set of SU(2) currents

12In ref. [37], this calculation was performed for a neutral fluid compactified on a torus.
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can be used as an order parameter [42]. Moreover, it was observed in [25] that employing

a non-Abelian gauge transformation allows one to obtain a finite conductivity without

breaking translational symmetry.

On the other hand, this theory results in a very suitable and robust framework where to

study the quark-gluon plasma. In this respect, one important phenomenon of this system is

the study of the relaxation time. This is the time at which the non-Abelian character of the

plasma is relaxed, thus becoming purely Abelian. This is a known property that has not

been theoretically understood neither for quark-gluon plasma nor for spintronics systems.13

Since our construction can describe the dissipative part of non-Abelian hydrodynamics, we

expect it to be useful in elucidating the relaxation mechanism of the color current.

7 Outlooks

In this work, we have proposed a new approach for constructing non-Abelian hydrodynam-

ics, consisting of colored fluid interacting with Yang-Mills theory. Based on non-Abelian

KK dimensional reduction, the geometric systematics of proposed approach enables one to

understand the properties of Yang-Mills plasma even in strongly coupled, non-perturbative

regime.

We presented an ab initio approach for constructing hydrodynamics charged under

both Maxwell and Yang-Mills plasma. With the non-Abelian KK reduction, we compacti-

fied the Einstein-fluid equations on a group manifold. The only working assumption is that

we started with the most general dissipative, neutral fluid coupled to Einstein equation. Af-

ter the reduction, we obtained Yang-Mills plasma equations for a dissipative, colored fluid

interacting non-Abelian gauge fields. Though having done the reduction on S1 and SU(2)

group manifold, this procedure can be applied to any type of group manifold. Our approach

is not restricted by symmetries that are only symmetries of the Lagrangian. Hence, the

KK reduction approach seems to be a robust and covariant method to naturally obtain hy-

drodynamics coupled to (non-)Abelian gauge fields. The method straightforwardly extends

to dissipative hydrodynamics coupled to gravity and a specific form of dilaton scalar field,

which would also bear applications to early universe cosmology, formation of large-scale

structure or compact objects, and colored turbulence.

We studied the conservation laws of colored fluid and obtained a non-Abelian covari-

antly conserved current Jam, which is proportional to the fluid velocity field, as predicted

by [30]. In addition, truncating the scalar fields coming from the gravity sector to constant

values, we obtained the equation for non-Abelian Lorentz force.

We showed that the reduction procedure does not preserve the hydrodynamic frames.

As a consequence, the effective transport coefficients could not be straightforwardly read

off from the reduced system. We proposed a frame-independent formulation of dissipative

fluids for the non-Abelian gauge fields that is thermodynamically valid and generalizes

the one given in [41]. With this construction, we identified the d-dimensional dissipative

susceptibilities that characterize the effective fluid in terms of the D-dimensional ones. In

13It is worth to mention that our system can be coupled to additional fermionic degrees of freedom, as

we are using the vielbein formalism.
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particular, we have obtained a conductivity matrix whose non-Abelian nature is given by

the scalar vielbein Vmα.

The Yang-Mills plasma equations we obtained were in complete agreement with the

equations of Maxwell plasma derived in section 4. If we set the structure constants

fmn
p = 0, we could check that these equations were reduced to the equations for charged

fluid coupled to U(1)3 Abelian gauge fields. The results of this section could also be

straightforwardly extended to other, higher-dimensional group manifold G. We claimed

that, for fixed d, the large-D limit should be taken seriously as it corresponds to the limit

for which rank(G) gets large, revealing a new perspective to the planar limit of Yang-Mills

plasma. Results on this aspect will be relegated to a separate publication.

We believe the proposed approach marks significant advances toward the understand-

ing of the evolution of nuclear matter after a heavy-ion collision. Hydrodynamics with

non-Abelian degrees of freedom that have not thermalized is a transient phase and the lack

of a first-principle derivation of the equations that govern its evolution has been a major

obstacle for further developments.

Having now the ab initio construction of fluid and field equations, we can utilize com-

plementary methods such as kinetic theory or gauge/gravity duality to shed more light

of this regime. Gravitational solutions with Abelian gauge fields have recently been stud-

ied [19, 43, 44]. Therefore, we provide a robust formulation of non-Abelian hydrodynamics

where to test fluid/gravity duality beyond Abelian fluids.

In addition to a phenomenological description of quark-gluon plasma, recent formu-

lation of fluid dynamics in terms of fluid/gravity duality has increased the interest in the

analysis of fluids coupled to Yang-Mills fields. In this picture, fluid is a field theory dual

to a black hole in higher-dimensional, asymptotically anti-de Sitter spacetime (see [45]

for a review). It would be interesting to further explore the physics of black holes with

non-Abelian and dilatonic hairs using the non-Abelian Kaluza-Klein reduction [46].
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A Einstein equations on a group manifold

In this appendix, we elaborate technical details of the non-Abelian Kaluza-Klein compact-

ification on a group manifold. We also explain the convention used in this work.

We will consider that our starting system is defined on a D dimensional manifold

MD(ĝ) with coordinates x̂M , for M = 1, . . . , D. For the tangent spacetime description we

introduce a vielbein EM
A, where A = 1, . . . , D, which satisfies

ĝMN (x̂) = EM
A(x̂)EN

B(x̂)ηAB , ηAB = (−+ . . .+) . (A.1)

A.1 General ansatz

We will perform a KK dimensional reduction. To do so, we will assume that MD(ĝ) =

Md(g) ×Xn(M). Md(ĝ) is the d-dimensional external spacetime manifold on which our

resulting system will live whereas Xn(M) is the n-dimensional internal manifold. The

coordinates are split as x̂M = {xµ, ym}, where µ = 1, . . . , d and m = 1, . . . , n. Despite

the scalar matrix Mmn will parametrize the fluctuations of the internal manifold, the final

d-dimensional system cannot have any functional dependence on Xn. The

We start with the reduction ansatz for the vielbein expressed in terms of the Maurer-

Cartan one-forms:

Êa(x, y) = eαφ(x)ea(x) ,

Êα(x, y) = g−1eβφ(x)Vmα(x)(σm − gAm(x)) ,
(A.2)

where σm ≡ un
m(y)dyn are the twist matrices, which will depend on the group manifold

coordinates y. Here, g is a gauge coupling parameter.

We will compute various geometric quantities. The spin-connection is defined as

ω̂C,AB = −Ω̂CA,B + Ω̂AB,C − Ω̂BC,A (A.3)

where

Ω̂AB,C =
1

2

(
EA

MENB − EBMEAN
)
∂NEM

Dη̂DC . (A.4)

Substituting the vielbein ansatz, we obtain the following expressions:

ω̂c,ab = e−αφ
[
ωc,ab + 2αηc[a∂b]φ

]
,

ω̂c,aβ = −1

2
e(−2α+β)φFµν

nec
µea

νVnβ ,

ω̂c,αβ = +
1

2
e−(α+β)φ

[
VαmecµDµ(eβφVmβ)− VβmecµDµ(eβφVmα)

]
,

ω̂γ,ab = +
1

2
e(−2α+β)φFµν

mea
µeb

νVmγ ,

ω̂γ,aβ = −1

2
e−(α+β)φea

µVβmVγnDµ(eβφMmn) ,

ω̂γ,αβ = +
g

2
e−βφfmn

p [VγnVαmVpβ + VαmVβnVpγ − VβmVγnVpα] ,

(A.5)
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where

Mmn = VmαVnβδαβ ,
Fm

µν ≡ ∂µAm
ν − ∂νAm

µ + gfnp
mAn

µA
p
ν ,

DµVmα ≡ ∂µVmα − gfnmpAn
µVpα

(A.6)

and

fmn
p = −(u−1)m

s(u−1)n
t(∂sut

p − ∂tusp) . (A.7)

We will calculate the components of the Ricci tensor R̂AB = R̂ACBDη̂
CD and the scalar

curvature R̂ = R̂AB η̂
AB by substituting the components of the spin connection ω̂MAB into

the expression for the Riemann tensor,

R̂MNAB = ∂M ω̂NAB − ∂N ω̂MAB + ω̂MA
Eω̂NEB − ω̂NAEω̂MEB . (A.8)

A.2 SU(2) group manifold

In what follows, we restrict to the SU(2) group manifold, so that fmn
p will be the SU(2)

structure constants, fmnp = εmnp. In this case, the components of the spin connection are

given by [47]

ω̂ab = ωab + 2αe−αφηc[aDb]φê
c +

1

2
e(−2α+β)φFβ

abê
β ,

ω̂aβ = −e−αφPaβγ êγ − βe−αφDaφê
β +

1

2
e(−2α+β)φFβ

abê
b ,

ω̂αβ = e−αφQaαβ ê
a +

g

2
e−βφ(Mγδεαβδ + Mβδ εαγδ −Mαδεβγδ)ê

γ .

(A.9)

where

Fα
ab ≡ VmαFm

ab , (A.10)

Mαβ is the SU(2) covariant scalar matrix

Mαβ ≡ VmαVnβδmn , (A.11)

and

Paαβ ≡
1

2
[VαmDaVmβ + VβmDaVmα] , Qaαβ ≡

1

2
[VαmDaVmβ − VβmDaVmα] . (A.12)

The Ricci tensor components are

R̂ab = e−2αφ

[
Rab −

1

2
∂aφ∂bφ− PaαβPb αβ − α�φηab −

1

2
e−

2
3
α(n+1)φFα

acF
α
bdη

cd

]
,

R̂aβ = −1

2
e

1
3
α(n−5)φ

[
Db(e−

2
3
α(n+1)φFβ

ab)+e−
2
3
α(n+1)φFγ

abPbβγ−2gεβγδMδλPaγλ
]
,

R̂αβ = −1

2
e−2αφ

[
DaPaαβ −

2

3
α(d− 2)�φδαβ −

1

2
e−

2
3
α(d+1)φFα

abF
β
cdη

acηbd (A.13)

−4g2e
2
3
α(d+1)φ

(
MαγMβγ− 1

2
MαβM

)
+2g2e

2
3
α(d+1)φ

(
MγδMγδ− 1

2
M2

)
δαβ

]
,

where

M ≡Mαα and DaVmα = DaVmα + QaαβVmβ . (A.14)
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A.3 Equations of motion

Our starting point is the D-dimensional Einstein-fluid equation

GMN ≡ R̂MN −
(
T̂MN +

1

D − 2
gMN T̂

)
= 0 . (A.15)

We will analyze the tensor GAB = EA
MEB

NGMN :

GAB ≡ R̂AB −
(
T̂AB +

1

D − 2
ηABT̂

)
= 0 . (A.16)

Here, we analyze each components of the Einstein-fluid equation. We begin with the

internal components, Gmn:

Gmn = g−2e2βφum
pun

qVpαVqβGαβ . (A.17)

On one hand, this equation has to be satisfied for any scalar fields Vmα. As the twist

matrices um
n depend on internal coordinates, we have that Gαβ = 0, where Gαβ is given by

Gαβ = −1

2
e−2αφ

[
DaPaαβ −

2

3
α(d− 2)�φδαβ −

1

2
e−

2
3
α(d+1)φFα

abF
β
cdη

acηbd

− 4g2e
2
3
α(d+1)φ

(
MαγMβγ − 1

2
MαβM

)
+ 2g2e

2
3
α(d+1)φ

(
MγδMγδ − 1

2
M2

)
δαβ

]
+

1

d+ 1
δαβT̂

fluid − T̂ fluid
αβ ,

(A.18)

Solving the trace part, Gαβδαβ = 0, where

Gαβδαβ = e−2αφ(d− 2)

[
α�φ+

1

4(d− 2)
e−

2
3
α(d+1)φ(Fα)2

− g2

d− 2
e

2
3
α(d+1)φ

(
MαβMαβ − 1

2
M2

)
+

1

d− 2
e2αφ

(
3

d+ 1
T̂ fluid − T̂ fluid

αβ δαβ
)]

,

(A.19)

we solve for �φ and substitute back to eq. (A.18). We then obtain from Gαβ = 0 that

DaPaαβ =
1

2
e−

2
3
α(d+1)φ

[
Fα

abF
β
cdη

acηbd −
1

3
(Fγ)2δαβ

]
+ 4g2e

2
3
α(d+1)φ

[
MαγMβγ − 1

2
MαβM− 1

3

(
MγδMγδ − 1

2
M2

)
δαβ

]
+ 2e2αφ

[
1

d+ 1
T̂ fluidηαβ − T̂ fluid

αβ − 1

3

(
3

d+ 1
T̂ fluid − T̂ fluid

γδ δγδ
)
δαβ

]
. (A.20)

Let us consider now the field equations Gµn = 0. As

Gµn = Eµ
AEn

βGAβ = Eµ
aEn

βGaβ = g−1e(α+β)φum
peµ

aVpβGaβ , (A.21)

it follows that Gµn = 0 is equivalent to Gaβ = 0.
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We now study the field equations Gaβ = 0. We have

Db(e−
2
3
α(d+1)φFβ

ab) + e−
2
3
α(d+1)φFγ

abPbβγ − 2gεβγδMδλPaγλ + 2e−
1
3
α(d−5)φT̂ fluid

aβ = 0 .

(A.22)

Finally, let us consider the d-dimensional components of the Einstein field equations,

Gµν = 0. Using the equations for other components, this equation implies

Gµν = Eµ
AEν

BGAB = e2αφeµ
aeν

bGab = 0 . (A.23)

Therefore the resulting equation is Gab = 0, where

(A.24)
Gab = Rab−

1

2
∂aφ∂bφ−PaβγPbβγ −

1

2
e−

2
3
α(d+1)φ

[
Fγ

acF
γ
bdη

cd− 1

2(d− 2)
(Fγ)2ηab

]
− g2

d− 2
e

2
3
α(d+1)φ

(
MγδMγδ − 1

2
M2

)
ηab− e2αφ

[
T̂ fluid
ab − 1

d− 2
T̂ fluid
cd ηcdηab

]
.

These are the Einstein equations for the d-dimensional system, which can be equivalently

rewritten as

Rµν −
1

2
gµνR = T total

µν , (A.25)

where T total
µν = eµ

aeν
bT total
ab is

(A.26)

T total
ab =

1

2

(
∂aφ∂bφ−

1

2
(∂φ)2ηab

)
+ PaβγPbβγ −

1

2
P2ηab

+ e−
2
3
α(d+1)φ

[
1

2
Fα

acF
α
bdη

cd − 1

4
(Fγ)2ηab

]
− g2e

2
3
α(d+1)φ

(
MγδMγδ − 1

2
M2

)
ηab + e2αφT̂ fluid

ab .

From this expression, we also see that the energy-momentum tensor of non-Abelian hydro-

dynamics T fluid
ab is given by

T fluid
ab = e2αφT̂ fluid

ab . (A.27)

B Conservation laws

In this section we will calculate the conservation laws of the d-dimensional theory, namely

the current conservation and the Lorentz force. Despite of not making any assumption on

the scalar fields, after obtaining the most general expressions we will study the cases for

which scalar fields are covariantly constant,

DµVma = Dµφ = 0 ,

in order to make contact with the conservation laws considered in hydrodynamics, where

no degrees of freedom associated to scalar fields take place.
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B.1 Current conservation

Current conservation follows from the consistency condition of the EOMs. Before applying

a covariant derivative Da on (A.22), we first rewrite the equation of motion for gauge field as[
Db
(
e−

2
3
α(d+1)φMnmFm

ab

)
− 2gεσγδMδλPaγλVnσ + 2e−

1
3
α(d−5)φT̂ fluid

aγ Vnγ
]
Vβn = 0 .

(B.1)

As Vβn is non-degenerate in general, without loss of generality, we can assume the equation

of motion to be

Db
(
e−

2
3
α(d+1)φMnmFm

ab

)
= Jma , (B.2)

where

Jma = 2gεσγδMδλPaγλVmσ − 2e−
1
3
α(d−5)φT̂ fluid

aγ Vmγ . (B.3)

We can expand the covariant derivative and multiply by (Q2
cM)−1,

DbFmab = e
2
3
α(d+1)φMmn

[
Jna −Db

(
e

2
3
α(d+1)φMnp

)
F pab

]
. (B.4)

Then if we apply another covariant derivative Da, the l.h.s. vanishes and we find that the

current Jm that is covariantly conserved, DaJma = 0, is given by

Jma = e
2
3
α(d+1)φMmn

[
Jna −Db

(
e−

2
3
α(d+1)φMnp

)
F pab

]
. (B.5)

If we set the scalar fields DaVmβ = 0, then Paβγ = 0 and the color current will be purely

associated to the off-diagonal components of the D-dimensional fluid energy-momentum

tensor.

B.2 Lorentz force

To study the Lorentz force, we will make use of the Bianchi identity of the Einstein tensor

∇µ
(
Rµν −

1

2
gµνR

)
= ∇µT total

µν = 0 . (B.6)

Upon vielbein compatibility, this is equivalent to

DaT total
ab = 0 , (B.7)

where Da = ea
µ(∂µ + ωµ), where ω is the d-dimensional spin connection. Explicitly,

DaT total
ab = Da

(
e2αφT̂ fluid

ab

)
+

1

2
(Da∂aφ∂bφ+ ∂aφD

a∂bφ− ∂cφDa∂cφηab) +DaPaβγPbβγ

+PaβγDaPbβγ−DaPcβγPcβγηab+
1

2
Da

(
e

2
3
α(d+1)φ

[
Fα

acF
α
bdη

cd− 1

2
(Fγ)2ηab

])
+

1

2
e

2
3
α(d+1)φDa

[
Fα

acF
α
bdη

cd − 1

2
(Fγ)2ηab

]
− g2Da

[
e

2
3
α(d+1)φ

(
MγδMγδ − 1

2
M2

)
ηab

]
.

(B.8)
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Let us analyze various terms separately.

1

2
(Da∂aφ∂bφ+ ∂aφD

a∂bφ− ∂cφDa∂cφηab) = α∂bφ

[
− 1

8(d− 2)
e−

2
3
α(d+1)φ(Fγ)2

+
1

2(d− 2)
g2e

2
3
α(d+1)φ

− 1

2(d− 2)
e2αφ

(
3

d+ 1
T̂ − T̂λσδλσ

)]
,

(B.9)

and

DaPaβγPbβγ +
1

2
D[aPb]βγPaβγ =

1

2
e−

2
3
α(d+1)φ

[
FβFγ − 1

3
(Fσ)2δβγ

]
Pbβγ

+ 4g2e
2
3
α(d+1)φ

[
MβλMγλ − 1

2
MβγM− 1

3
δβγV (M)

]
Pbβγ

− 2P[a|βλVλmD|b]VmγPaβγ −
g

2
VβmfnmpFn

abVpγPaβγ .

(B.10)

Using the Bianchi identity DFm = 0 and the above equations of motion, we have

1

2
Da
{
e−

2
3
α(d+1)φ

[
Fα

acF
α
bdη

cd − 1

2
(Fγ)2ηab

]}
=

1

2
Da
(
e−

2
3
α(d+1)φMmn

)[
Fm

acF
n
bdη

cd − 1

2
FmFnηab

]
− 1

2
Da
(
e−

2
3
α(d+1)φ

)
Fα

acF
α
bc

+ e−
2
3
α(d+1)φFα

cdFβbcPdαβ − gεαγδMδλPcγλFα
bc + 2e−

1
3
α(d−5)φT̂cαVnαFn

bc .

(B.11)

Summing up all the terms, we have

DaT total
ab = DaT fluid

ab + α∂bφ

[
− 1

8(d− 2)
e−

2
3
α(d+1)φ(Fγ)2 +

1

2(d− 2)
g2e

2
3
α(d+1)φ

− 1

2(d− 2)
e2αφ

(
3

d+ 1
T̂ fluid − T̂ fluid

λσ δλσ
)]

+
1

2
e−

2
3
α(d+1)φ

[
FβFγ − 1

3
(Fσ)2δβγ

]
Pbβγ

+ 4g2e
2
3
α(d+1)φ

[
MβλMγλ − 1

2
MβγM− 1

3
δβγV

]
Pbβγ

− 2P[a|βλVλmD|b]VmγPaβγ −
g

2
VβmfnmpFn

abVpγPaβγ

+
1

2
Da
(
e−

2
3
α(d+1)φMmn

)[
Fm

acF
n
bdη

cd − 1

2
FmFnηab

]
− 1

2
Da
(
e−

2
3
α(d+1)φ

)
Fα

acF
α
bc + e−

2
3
α(d+1)φFα

cdF
β
bcPdαβ

− gεαγδMδλPcγλFα
bc + 2e−

1
3
α(d−5)φT̂cαVnαFnbc − g2Da

[
e

2
3
α(d+1)φV (M)ηab

]
.

(B.12)
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If we assume flat Minkowski in d dimensions and that scalar fields are covariantly

constant,

DaVmα = Daφ = 0 , (B.13)

this expression reduces to

DaT fluid
ab + 2e−

1
3
α(d−5)φT̂cαVnαFn

bc = e2αφ
(
DaT̂ fluid

ab + 2e−
1
3
α(d+1)T̂ fluid

cα Fα
bc

)
= 0 . (B.14)
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