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AbstractÐWe discuss the problem of online mining of association rules in a large database of sales transactions. The online mining is

performed by preprocessing the data effectively in order to make it suitable for repeated online queries. We store the preprocessed

data in such a way that online processing may be done by applying a graph theoretic search algorithm whose complexity is

proportional to the size of the output. The result is an online algorithm which is independent of the size of the transactional data and the

size of the preprocessed data. The algorithm is almost instantaneous in the size of the output. The algorithm also supports techniques

for quickly discovering association rules from large itemsets. The algorithm is capable of finding rules with specific items in the

antecedent or consequent. These association rules are presented in a compact form, eliminating redundancy. The use of

nonredundant association rules helps significantly in the reduction of irrelevant noise in the data mining process.

Index TermsÐOLAP, association rules, data mining, knowledge discovery.
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1 INTRODUCTION

IN recent years, the problem of finding associations
between large sets of transactional data has been

proposed and studied extensively. An example of such a
problem is that of finding associations between the different
attributes in large sets of sales transactional data. Such
associations have great business value as they may be used
to make business decisions such as shelving, sales promo-
tions, marketing decisions, etc.

Let I � fi1; i2; . . . ; img be a set of literals called items.
The database consists of a set of sales transactions T .
Each transaction T 2 T is a set of items, such that T � I.
In this paper, we consider the 0-1 case only; in other
words, a 0-1 variable indicates whether or not an item
was bought. A transaction T is said to contain the set of
items X if and only if X � T .

An association rule is a condition of the form X ) Y ,
where X � I and Y � I are two sets of items. The intuitive
implication of the association rule is that a presence of the
set of items X in a transaction set also indicates a possibility
of the presence of the itemset Y . Two notions for establish-
ing the strength of a rule are those of minimum support and
minimum confidence, which were first introduced in [2].

The support of a rule X ) Y is the fraction of transactions
which contain both X and Y .

The confidence of a rule X ) Y is the fraction of
transactions containing X which also contain Y . Thus, if
we say that a rule has 90 percent confidence, then it means
that 90 percent of the tuples containing X also contain Y .

Starting with pioneering work in Agrawal et al. [2], a
host of work has been done in this area with a focus on
finding association rules from very large sets of transaction

data. The primary idea proposed in [2] was an itemset
approach in which all first large itemsets are generated, and
then, these large itemsets are used in order to determine
data dependencies. Subsequent work has primarily con-
centrated on this approach.

The itemset approach is as follows: Generate all
combinations of items that have fractional transaction
support above a certain user-defined threshold called
minsupport. We call all such combinations large itemsets.
Given an itemset S satisfying the support constraint, we can
use it to generate rules of the type S ÿX ) X for each
X � S. Once these rules have been generated, only those
rules above a certain user defined threshold called
minconfidence need be retained.

Faster algorithms for mining association rules were
proposed in [3], while a hash-based algorithm was estab-
lished in [17]. Generalized association rules were presented
in [21]. Methods for mining quantitative association rules
were established in [22]. Other related work may be found
in [9], [11], [19]. An up-to-date survey on some of the work
done in data mining may be found in [6].

In this paper, we consider the problem of online mining

of association rules. The idea in online mining is that an end

user ought to be able to query the database for association

rules at differing values of support and confidence without

excessive I/O or computation. In the itemset method,

multiple passes have to be made over the database, for

each differing value of minsupport and minconfidence,

starting from scratch. Some sampling techniques exist

which reduce the number of passes over the database to

two [19], [23]. For very large databases, this may involve a

considerable I/O and in some situations it may lead to

unacceptable response times for online queries.
The problem of mining association rules is especially

suitable for an online approach. It is hard for a user to guess

a priori how many rules might satisfy a given level of

support and confidence. Typically, one may be interested in
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only a few rules. This makes the problem all the more

difficult, since a user may need to run the query multiple

times in order to find appropriate levels of minsupport and

minconfidence in order to mine the rules. In other words,

the problem of mining association rules may require

considerable manual parameter tuning by repeated queries

before useful business information can be gleaned from the

transaction database.
Another issue is that while mining association rules, a

large percentage of the rules may be redundant. It is useful

to eliminate redundant rules simply from the point of view

of compactness in representation to an online user. For

example, if the rule X ) Y Z is true at a given value of

minsupport and minconfidence, then rules such as XY ) Z,

XZ ) Y , X ) Y , and X ) Z are redundant. This can be

easily seen from the Table 1 in which one can see that both

the support and confidence values of the rule X ) Y Z are

less than the support and confidence values for the rules

X ) Y , X ) Z, XY ) Z, and XZ ) Y . In fact, in most

cases, the number of redundant rules is significantly larger

than the number of essential rules and having too many

redundant rules defeats the primary purpose of data

mining in the first place. We note that this kind of

redundancy arises when we consider rules which have

more than one item in the consequent.
In recent years, an important application of database

systems has been Online Analytical Processing (OLAP). The

primary idea behind this approach has been the ªprepro-

cess once query manyº paradigm. The idea is that it is time

consuming to compute results from raw transaction data

each time a user makes a query. By preprocessing the data

set just once, a user may be able to query the system

efficiently multiple times at the cost of a single phase of

preprocessing. Considerable work has been done in online

analytical processing, as applied to the data cube [5], [7], [8],

[10], [20]. This paper also discusses an approach for online

mining by using one phase of preprocessing. We have also

extended these techniques to a special kind of quantitative

association rule mining method [1].

1.1 Contributions of this Paper

In this paper, we present an intuitive framework for
performing online mining of association rules. Past work
has concentrated on a two phase approach:

1. Large Itemset Generation: Controlling parameter
minsupport.

2. Rule Generation: Controll ing parameter
minconfidence.

The bottleneck in this procedure is the first step, since most

algorithms require multiple I/O passes in order to perform

this step. Thus, the natural solution is to prestore as many

itemsets as possible with the greatest support value possible

given the memory available. This approach, however, has

some obvious drawbacks. On the one hand, one might want

to store as many of such itemsets as possible as constrained

by the memory space or preprocessing time available, so

that important information will not be lost. On the other

hand, if too many itemsets are prestored, then the second

phase of rule generation becomes the bottleneck. For

example, while trying to mine rules containing specific sets

of items, the number of relevant large itemsets may be a

very small fraction of the total number of itemsets

prestored. Yet, one may need to look at each and every

prestored itemset in order to find the relevant large

itemsets. Consequently, it becomes important to organize

the itemsets along with support information in such a way

that the online time required to mine the rules is small and

is dependent on the number of large itemsets correspond-

ing to a user query, rather than the number of itemsets

prestored. In this paper, we shall discuss such a method.

From now on, we shall refer to the prestored itemsets as

primary itemsets. The primary threshold is the minimum

level of support for any prestored itemset. Thus, the

primary itemsets comprise all itemsets whose support is

at least equal to the value of the primary threshold. At this

stage, we would also like to make a careful distinction

between primary itemsets and large itemsets. A large

itemset corresponds to an itemset for a user query and is

a subset of the primary itemsets. More specifically, the

contributions of this work are as follows:

1. We devise a framework for organizing the primary
itemsets in such a way that online rules can be
generated with very limited I/O on the prestored
data. The online time for mining the rules is
independent of the size of the transaction data as
well as the number of itemsets prestored. In fact, we
shall see that the time required to process a query is
completely dependent upon the size of the output.
This feature is especially suitable for the online case.

2. We give a technique which can quickly predict the
size of the output at a given level of user specified
parameters. For a given level of user-specified
minsupport and minconfidence, both the number of
itemsets as well as the number of rules can be
predicted. A reverse query such as predicting the
level of minsupport for which a particular number of
itemsets exist can also be performed.

3. We discuss the issue of efficiency in the generation
of the rules. Since we include the possibility of
generating rules with more than one item in the
consequent, it may often be cumbersome (at least
from an online perspective) to look at each of the
subsets of the large itemsets as a possibility for the
antecedent. A large number of possibilities can be
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pruned by careful order of examination. It is also
possible to efficiently generate only rules with
exactly one item in the consequent. Such rules are
called single-consequent rules.

4. We discuss the issue of generating rules with specific
of items in them. The items may occur in the
antecedent or consequent.

5. We discuss the issue of redundancy in the rules
generated from large itemsets. We discuss the level to
which essential (nonredundant) rules may often get
buried in hordes of redundant rules. Compactness of
representation to an online user is a very useful
feature. This segment of the paper has both theore-
tical and practical significance.

6. We present an algorithm for finding the primary
itemsets which automatically decides which itemsets
to prestore depending upon available memory
capacity. For the sake of high level discussion, we
shall fix the maximum number of itemsets rather
than the memory space occupied by the itemsets.
This is a slightly different problem from that
discussed in Agrawal et al. [2], where one needs to
find the itemsets with support above a particular
value. The value of the primary threshold at which
the best fit to this maximum number of itemsets may
be found is not known in advance. One may perform
a binary search on the support value in order to find
the value of the primary threshold. We propose
techniques for improving the efficiency beyond
simply performing a simple binary search.

We should note that it is not possible to perform online
mining of association rules at support levels less than the
primary threshold. This is not necessarily a severe restric-
tion since the primary itemsets are obtained within the
preprocessing time constraints, which are significantly
more liberal than online time constraints. Thus, most useful
itemsets are typically prestored.

1.2 Kinds of Online Queries

Assume that the kinds of online queries that such a system
can support are as follows:

1. Find all association rules above a certain level of
minsupport and minconfidence.

2. At a certain level of minsupport and minconfidence,
find all association rules concerned with the set of
items X.

3. Find the number of association rules/itemsets in any
of the Cases 1 and 2 above.

4. At what level of minsupport do exactly k itemsets
exist containing the set of items Z.

5. For a particular level of minconfidence c, at what level
of minsupport do exactly k single-consequent rules
exist, which involve the set of items Z.

1.3 Overview

We introduce the concept of an adjacency lattice of itemsets.
This adjacency lattice is crucial to performing effective
online data mining. The adjacency lattice could be stored
either in main memory or on secondary memory. We shall
discuss more details about how this lattice is actually

constructed in a later section. The idea of the adjacency
lattice is to prestore a number of large itemsets at a level of
support possible given the available memory. These
itemsets are stored in a special format (called the adjacency
lattice) which reduces the disk I/O required in order to
perform the analysis. In fact, if enough main memory is
available for the entire adjacency lattice, then no I/O may
need to be performed at all.

We shall see that this structure is useful for both finding
the itemsets quickly, and, also using the itemsets in order to
generate the rules. Redundancy in rules is eliminated, so
that an online user may be presented with the most compact
representation possible.

2 THE ADJACENCY LATTICE

Before we consider making a more detailed description, we
shall discuss the concept of an adjacency lattice of itemsets.
For future reference, we shall denote the adjacency lattice
by L.

An itemset X is said to be adjacent to an itemset Y if one
of them can be obtained from the other by adding a single
item. Specifically, an itemset X is said to be a parent of the
itemset Y , if Y can be obtained from X by adding a single
item to the set X. Equivalently, Y may be considered to be a
child of X. Thus, an itemset may possibly have more than
one parent and more than one child. In fact, the number of
parents of an itemset X is exactly equal to the cardinality of
the set X. This observation follows from the fact that for
each element ir in an itemset X, X ÿ firg is a parent of X. It
is easy to see that if a directed path exists from the vertex
corresponding to Z to the vertex corresponding to X in the
adjacency lattice, then X � Z. In such a case, X is said to be
a descendant of Z and Z is said to be an ancestor of X.

The adjacency lattice L is constructed as follows:
Construct a graph with a vertex v�I� for each primary
itemset I. Each vertex I has a label corresponding to the
value of its support. This label is denoted by S�I�. For any
pair of vertices corresponding to itemsets X and Y , a
directed edge exists from v�X� to v�Y � if and only if X is a
parent of Y . We denote the corresponding edge by E�X;Y �.
The vertex v�X� is referred to as the tail of the edge E�X;Y �,
while the vertex v�Y � is referred to as the head.

Consider for example, the group of primary itemsets
illustrated in Table 2. The corresponding adjacency lattice is
illustrated in Fig. 1. Each vertex has a label corresponding to
the value of its support. We make the following simple
observations for the adjacency lattice L:

Remark 2.1. The adjacency lattice L is a directed acyclic
graph.

Remark 2.2. For each vertex v�J� in L which is a descendent
of v�I�, we must have S�J� � S�I�.

The truth of Remark 2.2 follows from the fact that for
each vertex v�J� which is a descendent of v�I�, the
corresponding itemsets must satisfy J � I. Since the
adjacency lattice is the primary structure which is used to
represent the preprocessed data, it is useful to measure the
memory which such a structure might require. We shall
proceed to show that the space required to store the
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adjacency lattice is not the bottleneck and is almost of the
same order as the space required to hold the itemsets
themselves.

Theorem 2.1. The number of edges in the adjacency lattice is equal
to the sum of the number of items in the primary itemsets.

Proof. The number of edges may be obtained by summing
the number of parents of each primary itemset. The
number of parents of a primary itemset is equal to the
number of items in it. The result follows. tu

3 ONLINE GENERATION OF ITEMSETS

In order to find all itemsets which contain a set of items I
and satisfy a level of minsupport s, we need to solve the
following search problem in the adjacency lattice.

Problem 3.1. For a given itemset I (including fg), find all
itemsets J such that v�J� is reachable from v�I� by a directed
path in the lattice L, and satisfies S�J� � s.

It is important to understand that the number of vertices
reachable from a given vertex may be quite large, though
the number of vertices which satisfy the level of minsupport s
may be small. The idea is to use the lattice organization to
restrict the number of vertices examined. Thus, when a user
makes multiple queries to the database, this preprocessed
data helps avoid the reading of the entire database from
scratch. We shall now discuss the search algorithm which,
given the parameters I and s, finds all the itemsets
containing I and having a support level of at least s. This
algorithm is illustrated in Fig. 2. The algorithm FindItemsets
starts at a given itemset I and LIST � fv�I�g. The algorithm
then adds all of its children v�J� with support S�J� � s to
LIST unless the vertex has been visited before. The vertex
v�I� is then deleted from LIST. This process is repeated
until LIST is empty. Thus, all the vertices which are the
unvisited children of a given vertex in LIST are recursively
searched unless their support value is less than s. The
itemsets for every vertex which is visited are also added to
the OutputList. At the same time, a count of the cardinality
of OutputList is maintained in order to handle the feature
where a user may wish to find the cardinality of the
itemsets. At termination of the algorithm, the OutputList
contains all the itemsets J with support S�J� � s and
satisfying J � I.

We shall denote the large itemsets in OutputList by
R�I; s�. Further, let h�I; s� be the average number of items
in a large itemset in R�I; s�. Let N�I; s� be number of
primary itemsets in the R�I; s�. Thus, the size1 of the output
is N�I; s� � h�I; s�. We shall see from the next theorem that
the number of edges of the lattice which are scanned by the
algorithm FindItemsets�I; s� is slightly less than the size of
the output list itself.

Theorem 3.1. The number of edges scanned by the algorithm
FindItemsets(I, s) is at most N�I; s� � �h�I; s� ÿ jIj � 1�.

Proof. The search algorithm examines the adjacency list of
each vertex for which the support of the corresponding
itemset is at least s. There are two types of entries in the
adjacency list:

. Type (I): Those that have support less than s.

. Type (II): Those that have support at least s.

For each vertex v�R� added to LIST, the algorithm
examines its children in decreasing order of support and
adds all unvisited entries with support at least s. As soon
as an entry with support less than s is encountered, no
further vertex adjacent to v�R� needs to be examined.
Thus, for each entry added to LIST (and, hence,
OutputList) at most one vertex with support less than s
is examined. Consequently, the number of examinations
of type (I) is at most N�I; s�.

Now, we shall analyze the number of examinations of
type (II). The primary point to note here is that a vertex is
examined once for each incoming arc with tail in R�I; s�.
The number of parents for each itemset J in R�I; s� is
�jJ j ÿ jIj�. This is because each parent of v�J� which also
happens to be a descendent of v�I� can be obtained by
removing an item of J which is not present in I. Thus, any
itemset J in R�I; s� can be examined at most �jJ j ÿ jIj�
times. It follows that the total number of examinations of
type (II) is

P
J2R�I;s��jJ j ÿ jIj� � N�I; s� � �h�I; s� ÿ jIj�. By
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scanning the edges can be no larger than the time spent in just constructing
the output list itself!



adding the number of examinations of type (I) and
type (II), the result follows. tu

3.1 Finding the Level of Support for a Fixed Number
of Itemsets

A useful online feature is to find the level of support at

which exactly k itemsets (each of which contains the items

Z � fi1 . . . irg) exist. This can be accomplished by making a

few changes to the search algorithm of Fig. 2. The resulting

algorithm is illustrated in Fig. 3. The primary idea is that

while selecting a vertex v�R� on LIST which is to be

examined in the current iteration, we always pick the vertex

with the highest value of support. At that time, we add this

vertex to OutputList. The algorithm terminates when k

vertices have been found. It can be proved that at each stage

of this algorithm, OutputList maintains r � k itemsets

containing Z with the highest support value.

Theorem 3.2. The algorithm FindSupport �Z; k� finds the

k itemsets containing Z and having the highest value of

support. If less than k such itemsets are represented in the

adjacency lattice, then the algorithm finds all the itemsets

containing Z.

Proof. The proof of this theorem is by induction. The

induction hypothesis is that the r � k items maintained

in the OutputList are the r itemsets containing Z with the

highest value of support. The induction hypothesis is

trivially true when OutputList � �. Each time an itemset

is added to OutputList, we pick the itemset on LIST with

the highest support value. Any other itemset which we

add to OutputList in the future, is either already, on LIST,

or is a descendent of some itemset currently in LIST.

From Remark 2.2, the result immediately follows. tu
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3.2 Finding the Level of Support for a Fixed Number
of Single-Consequent Rules

A single consequent rule is one in which the consequent
contains only one item. It is also possible to use the
algorithm described above to find the level of support at
which a particular number (say, k) of single-consequent
rules exist for a prespecified level of confidence c. This can
be achieved by making a minor modification to the
procedure FindSupport of Fig. 3. In this case, each time a
vertex v�X� is selected from LIST, all the single-consequent
rules which can be generated from v�X� at confidence level
c are added to OutputList. The count of the number of rules
is maintained. The first time the count exceeds k, the
procedure is terminated. The proof of correctness of this
method is exactly analogous to the proof of Theorem 3.2.

4 ONLINE GENERATION OF RULES FROM ITEMSETS

In the previous section, we discussed how large itemsets
may be generated from the adjacency lattice. In this section,
we discuss how rules may be generated from these itemsets.
To generate the rules, we utilize the following observation:
For each ruleA) B at confidence level c, the label (support)
on the vertex v�A� is at most 1=c times the label (support) on
the vertex v�A [B�. Thus, the confidence of a rule may be
obtained by comparing the labels on two vertices which
satisfy an ancestor-descendant relationship in the adjacency
lattice.

Conversely, let X � fX1; . . .Xkg be the itemsets gener-
ated in the first phase of the online processing algorithm. Let
c be the level of minconfidence at which it is desired to mine
the association rules. For each Xi 2 X , rules may be
generated by applying a reverse search algorithm starting
from v�Xi� and finding all ancestors of v�Xi� which have
support at most S�Xi�=c. For each such ancestor v�Y � of
v�Xi�, it is possible to generate rules of the form Y ) Xi ÿ Y .
Thus, the problem of finding all rules generated from a large
itemset X is reduced to the following graph search problem
in the adjacency lattice:

Problem 4.1. Find all ancestor vertices of v�X� which have
support at least S�X�=c.

Unfortunately, many of the generated rules will turn
out to be redundant. For example, if a rule X ) Y Z is
included in the output, then the rule XY ) Z can be
regarded as redundant.

Definition 4.1. Let A) B and C ) D be two association rules.
The rule C ) D is redundant with respect to the rule A) B
if the support and confidence of the former are both always at
least as large as the support and confidence of the latter,
independent of the nature of the transaction data.

We shall first classify the different kinds of redundancy
as follows:

Theorem 4.1 Simple Redundancy. Let A) B and C ) D be
two rules satisfying A [B � C [D � X. The rule C ) D
bears simple redundance with respect to the rule A) B, if
C � A. In other words, if the rule A) B is true at a certain
level of support and confidence, then so is C ) D, indepen-
dent of the nature of the transaction data.

Proof. Since A [B � C [D � X, it follows that both rules

have the same level of support. Further, since C � A, it

follows that S�C� � S�A�. Consequently,

S�X�=S�C� � S�X�=S�A�:
In other words, we have:

confidence�C ) D� � confidence�A) B�
Thus, if A) B is true at a certain level of support and

confidence, then the same must also be true for the rule

C ) D. tu
Thus, in simple redundancy, the support value for the

two rules is the same, but the confidence value for one is

larger than the confidence value for the other. The support

values for the rules are the same since they are generated

from the same itemset. As an example, the rule AB) C

bears simple redundance with respect to the rule A) BC.

We shall now discuss the case when one rule dominates the

other based upon both support and confidence.

Theorem 4.2 Strict Redundancy. We consider two rules

generated from itemsets Xi and Xj, respectively, such that

Xi � Xj. Let A) B and C ) D be rules satisfying

A [B � Xi, C [D � Xj, and C � A. Then, the rule C )
D is redundant with respect to the rule A) B.

Proof. Since Xi � Xj, it follows that

support �A) B� � support �C ) D�:
Further, since C � A, S�C� � S�A�: Also, since

S�Xi� � S�Xj�
it follows that

S�Xi�=S�A� � S�Xj�=S�C�
Thus, it must be the case that

confidence �A) B� � confidence �C ) D�:
The result follows. tu
Thus, in strict redundancy, one rule dominates the other

based upon both support as well as confidence. As an

example, the rule X ) Y bears strict redundancy with

respect to the rule X ) Y Z.
We shall introduce some additional definitions and

notations here for the sake of future discussion.

Definition 4.2. A rule is defined to be essential at support level s

and confidence level c if it does not satisfy simple or strict

redundancy with respect to any other rule which has support

at least s and confidence at least c.

As we shall see, the number of redundant rules may

often be a significant fraction of the total number of rules.

We shall prove a result which quantifies the number of

redundant rules corresponding to a single rule X ) Y . For

ease in notation, we shall denote the number of items in an

itemset X by jXj.
Theorem 4.3. The number of rules bearing simple redundancy

with respect to X ) Y is 2jY j ÿ 2. The number of rules
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bearing either simple or strict redundancy with respect to the
rule X ) Y is 3jY j ÿ 2jY j ÿ 1.

Proof. A simple redundant rule can be generated by picking
any set of items in the consequent and shifting them to
the antecedent. There are 2jY j such sets. Of these, we
must exclude the trivial cases X ) Y and X [ Y ) �.
Thus, the number of rules bearing simple redundancy
with respect to the rule X ) Y is 2jY j ÿ 2.

A redundant rule (either simple or strict) can be
generated from the rule X ) Y by removing one or more
items from the consequent, and/or moving one or more
items from the consequent to the antecedent. Thus, for
each item in the consequent, there are three possibilities;
it can remain the consequent, be moved to the
antecedent, or be completely removed from the rule.
There are 3jY j such possibilities. Of these, we must not
consider any rules of the form X [W ) �, for some
W � Y . There are 2jY j such, possibilities. We must also
exclude the rule X ) Y itself. Thus, the number of rules
bearing either simple or strict redundancy with respect
to the rule X ) Y is 3jY j ÿ 2jY j ÿ 1. tu

As an example, consider the rule A) BC. There are
22 ÿ 2 simple redundant rules, namely, AC ) B and
AB) C. The strict redundant rules are A) B and
A) C. Thus, the total number of redundant rules is
32 ÿ 22 ÿ 1 � 4. Clearly, as the number of items in the
consequent increases, the number of redundant rules
explodes exponentially.

Definition 4.3. A vertex v�Y � is a maximal ancestor of v�X� at
confidence level c if and only if S�Y �=S�X� � 1=c and no
strict ancestor v�Z� of v�Y � satisfies S�Z�=S�X� � 1=c.

Maximal ancestors are very relevant to the process of
finding rules which avoid simple redundancy.

Theorem 4.4. Let v�Y � be a maximal ancestor of v�X� at a level
of confidence c. Then, the rule Y ) X ÿ Y cannot exhibit
simple redundancy with respect to any other rule at confidence
level c and any support level s � S�X�. Conversely, if the rule
Y ) Z does not exhibit simple redundancy with respect to any
other rule at confidence level c, then v�Y � must be a maximal
ancestor of v�Y [ Z�.

Proof. Let there be a rule C ) D at confidence level c and

support s such that the rule Y ) X ÿ Y bears simple

redundancy with respect to it. This implies thatC [D � X
and C � Y . Thus, v�C� is a strict ancestor of v�Y � and

satisfies S�C�=S�X� � 1=c. This is a direct contradiction

with the definition of maximality of v�Y � in Definition 4.3.
In order to prove the converse result, let us assume that

v�Y � is not a maximal ancestor of v�Y [ Z� at confidence
level c. We shall use this to derive a contradiction. Then,
for some vertex v�W � which is a strict ancestor of v�Y �, it
must be the case that S�W �=S�Y [ Z� � 1=c. However,
since W � Y , the rule Y ) Z exhibits simple redundancy
with respect to the rule W ) Y [ Z ÿW which has
confidence level at least c. Thus, we have a contradiction.tu
Thus, finding maximal ancestors of large itemsets is

necessary and sufficient to generate rules which avoid

simple redundancy. As an illustration, consider the exam-
ple in Fig. 4. Only the relevant segment of the adjacency
lattice is illustrated in the figure. Suppose that we would
like to generate all the rules at a particular confidence level c
from an itemset DEFG. Also, assume that the itemsets
which have support at most S�DEFG�=c are DEF , EFG,
DFG, DEG, DF , DE, EF , EG, FG, and E. Thus, a total of
10 rules (corresponding to these 10 itemsets) can be
generated, each of which satisfy the confidence level c.
However, as we see from Fig. 4, only three of these rules are
essential, while the rest bear simple redundancy to one or
more of these rules. These three rules are generated by
picking the three maximal ancestors of DEFG from these
10 itemsets and generating the corresponding rules. Thus,
the problem of generating nonredundant rules with con-
fidence level c from a large itemset X reduces to the
following graph search problem.

Problem 4.2. Find all maximal ancestors of v�X� with support at
most S�X�=c.

We shall refer to all the maximal ancestors of a vertex as

the boundary itemsets for the corresponding itemset at the

given level of confidence.

Definition 4.4. The boundary for an itemset X at confidence
level c is the set of all maximal ancestors of X at confidence
level c, and is denoted by F�X; c�.

Finding the boundary for a given itemset X is simple
enough by using a reverse search algorithm on the
corresponding adjacency lattice starting at v�X�, as illu-
strated in Fig. 5. This algorithm does not incorporate the
constraints on having particular items in the antecedent or
consequent. We shall discuss this issue in a later section.

In order to actually generate rules from the itemsets

X � fX1; X2; . . .Xkg, we apply the following method. For
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each itemset Xi 2 X , we find the boundary itemset

F�Xi; c� and for each Y 2 F�Xi; c�, we generate the rule

Y ) Xi ÿ Y . Unfortunately, this may result in strict

redundancy while generating rules from two different

itemsets Xi and Xj which satisfy Xi � Xj. First, we will

discuss some simple results.

Theorem 4.5. Let X be an itemset, and let X1; X2; . . .Xk be the

children ofX. Let Y be any itemset inF�X; c� ÿ [ki�1F�Xi; c�.
Then, the rule Y ) X ÿ Y cannot bear strict redundancy with

respect to any other rule. Conversely, letXi be a child ofX such

that Y lies in both F�X; c� and F�Xi; c�. Then the rule Y )
X ÿ Y is strictly redundant with respect to one or more rules.

Proof. If possible, let there be a rule C ) D, such that the

rule Y ) X ÿ Y bears strict redundancy with respect to

the rule C ) D for some Y 2 F�X; c� ÿ [ki�1F�Xi; c�.
This implies that C [D � X and C � Y . Thus, v�C� is

an ancestor of v�Y � and v�C [D� is a strict descendent

of v�X�. But, v�C� cannot be a strict ancestor of v�Y �
since we know that v�Y � is a maximal ancestor for v�X�
at confidence level c, and, consequently, no strict

ancestor of v�Y � (that is, v�C�) can have support within

a factor 1=c of the support level of some descendant of

v�X�, (that is, v�C [D�). This means that C � Y . In

other words, S�Y �=S�C [D� � 1=c. But we know that

for any child Xi of X, Y 62 F�Xi; c�, and, consequently,

S�Y �=S�Xi� > 1=c. If this relationship is true of any

child Xi of X, it must be true for the strict descendant

C [D of X. Thus, we have S�Y �=S�C [D� > 1=c. But

we just proved that S�Y �=S�C [D� � 1=c. This is a

contradiction.
Conversely, let Xi be a child of X such that Y , lies in

both F�X; c� and F�Xi; c�. Then, the rule Y ) X ÿ Y , is
strictly redundant with respect the rule Y ) Xi ÿ Y . tu

Thus, we have effectively shown in the above theorem that
in order to avoid strict redundancy, it is necessary and
sufficient to prune the boundary of an itemsetX so that it does
not share any itemsets with the boundary of any itemsetXk 2
X which is a child ofX. In other words, for each childXk 2 X
of X, we remove from F�X; c�, all member itemsets in
F�Xk; c�:Then these pruned boundaries may be used in order

to generate the rules. The resulting algorithm is illustrated in
Fig. 6. This algorithm uses as input the itemsets X which are
generated in the first phase of the algorithm at the appropriate
level of minsupport. The algorithm FindBoundary of Fig. 5 may
be used as a subroutine in order to generate all the boundary
itemsets. These boundary itemsets are then pruned and the
rules are generated by using each of the itemsets correspond-
ing to the boundary in the antecedent.

4.1 Rules with Constraints in the Antecedent and
Consequent

It is easy enough to adapt the above rule generation method
so that particular items occur in the antecedent and/or
consequent. Consider for example, the case when we are
generating rules from a large itemset X. Suppose that we
desire the antecedent to contain the set of items P and the
consequent to contain the set of items Q. (We assume that
P [Q � X.) We shall refer to P as the antecedent inclusion
set, and Q as the consequent inclusion set. In this case, we
need to redefine the notion of maximality and boundary
itemsets. A vertex v�Y � is defined to be a maximal ancestor
of v�X� at confidence level c, antecedent inclusion set P , and
consequent inclusion set Q if and only if P � Y , Q � X ÿ Y ,
S�Y �=S�X� � 1=c, and no strict ancestor of Y satisfies all of
these constraints. Equivalently, the boundary set contains
all the itemsets corresponding to maximal ancestors of X. It
is easy to modify the algorithm discussed in Fig. 5, so that it
takes the antecedent and consequent constraints into
account. The only difference is that we add an unvisited
vertex v�T � to LIST if and only if S�T � � S�X�=c, and
T � P . Also, a vertex v�R� is added to BoundaryList, only if
it satisfies the modified definition of maximality.

5 GENERATION OF THE ADJACENCY LATTICE

In this section we discuss the construction of the adjacency

lattice. The process of constructing the adjacency lattice

requires us to first find the primary itemsets. There are two

main constraints involved in choosing the number of

itemsets to prestore:

1. Memory Limits. In order to avoid I/O one may wish
to store the primary itemsets and corresponding
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adjacency lattice in main memory.2 Recall that
Theorem 2.1 characterizes the size required by the
adjacency lattice for this purpose. Assume that we
desire to find N itemsets. Note that because of ties in
the support values of the primary itemsets, support
values may not exist for which there are exactly N

itemsets. Thus, we assume that for some slack value
Ns, we would like to find a primary threshold value
for which the number of itemsets is between N ÿNs

and N .
2. Preprocessing Time. There may be some practical

limits as to how much time one is willing to spend in
preprocessing. Consequently, even if it is not
possible to find N itemsets within the preprocessing
time, it ought to be able to terminate the algorithm
with some value of the primary threshold for which
all itemsets with support above that value have been
found.

A simple way of finding the primary itemsets is by using a

binary search algorithm on the value of the primary thresh-

old, using the DHP method discussed in Chen et al. [17] as a

subroutine. We assume that the DHP method returns all

itemsets at user-specified support. This method is somewhat

naive and simplistic, and is not necessarily efficient, since it

requires multiple executions of the DHP method. This

method of finding the primary threshold is discussed in the

algorithm NaiveFindThreshold of Fig. 7. The time complexity

of the procedure can be improved considerably by utilizing a

few simple ideas:

1. It is not necessary to execute the DHP subroutine to

completion in each and every iteration. For estimates

which are lower bounds on the correct value(s) of

the primary threshold, it is sufficient to terminate the

procedure as soon as N or more large itemsets have

been generated at the level of support being

considered.
2. It is not necessary to start the DHP procedure from

scratch in each iteration of the binary search
procedure. It is possible to reuse information
between iterations. Let I�s� denote the itemsets
which have support at least s. It is possible to
speed up the preprocessing algorithm by reusing
the information available in I�Low�. Generating
k-itemsets in I�Mid� is only a matter of picking
those k-itemsets in I�Low� which have support at
least Low. This does not mean that every itemset in
I�Mid� can be immediately generated using this
method. Recall (from 1 above) that the DHP

algorithm is often terminated before completion,
if more than N itemsets have been generated in
that iteration. Consequently, not all itemsets in
I�Low� may be available, but only those k-itemsets

for which k � k0, for some k0 are available. Thus,
we have all those k-itemsets in I�Mid� available
for which k � k0. These itemsets need not be
generated again.

6 EMPIRICAL RESULTS

We ran the simulation on an IBM RS/6000 530H work-

station with a CPU clock rate of 33MHz, 64MB of main

memory and running AIX 4.1.4. We tested the algorithm

empirically for the following objectives:
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Fig. 7. Constructing the adjacency lattice.

2. Storing the adjacency lattice on disk is not such a bad option after all.
The total I/O is still proportional to the size of the output, rather than the
number of itemsets prestored. Recall that the graph search algorithms used
in order to find the large itemsets and association rules visit only a small
fraction of the vertices in the adjacency lattice.



1. Preprocessing sensitivity. The preprocessing tech-

nique is sensitive to the available storage space. The

larger the available space, the lower the value of the

primary threshold. We tested how the primary

threshold value varied with the storage space

availability. We also tested how the running time

of the preprocessing algorithm scaled with the

storage space.
2. Online processing time. We tested how the online

processing times scaled with the size of the output.
We also made an order of magnitude comparison
between using an online approach and a more direct
approach.

3. Level of redundancy. We tested how the level of
redundancy in the generated output set varied with
user specified levels of support and confidence. We
showed that the level of redundancy in the rules is
quite high. Thus, redundancy elimination is an
important issue for an online user looking for
compactness in representation of the rules.

6.1 Generating the Synthetic Data Sets

The synthetic data sets were generated using a method

similar to that discussed in Agrawal and Srikant [3].

Generating the data sets was a two stage process:

1. Generating maximal potentially large itemsets. The

first step was to generate L � 2; 000 maximal

ªpotentially large itemsets.º These potentially large

itemsets capture the consumer tendencies of buying

certain items together. We first picked the size of a

maximal potentially large itemset as a random

variable from a poisson distribution with mean �L.

Each successive itemset was generated by picking

half of its items from the current itemset and

generating the other half randomly. This method

ensures that large itemsets often have common

items. Each itemset I has a weight wI associated

with it, which is chosen from an exponential

distribution with unit mean.

2. Generating the transaction data. The large itemsets
were then used in order to generate the transaction
data. First, the size ST of a transaction was chosen as
a poisson random variable with mean �T . Each
transaction was generated by assigning maximal
potentially large itemsets to it in succession. The
itemset to be assigned to a transaction was chosen by
rolling an L sided weighted die depending upon the
weight wI assigned to the corresponding itemset I. If
an itemset did not fit exactly, it was assigned to the
current transaction half the time and moved to the
next transaction the rest of the time. In order to
capture the fact that customers may not often buy all
the items in a potentially large itemset together, we
added some noise to the process by corrupting some
of the added itemsets. For each itemset I, we decide
a noise level nI 2 �0; 1�. We generated a geometric
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Fig. 9. Relative computational effort with number of itemsets perstored.

Fig. 10. Online response time variation with number of rules generated.



random variable G with parameter nI . While adding
a potentially large itemset to a transaction, we
dropped minfG; jIjg random items from the transac-
tion. The noise level nI for each itemset I was chosen
from a normal distribution with mean 0.5 and
variance 0.1.

We shall also briefly describe the symbols that we have

used in order to annotate the data. The three primary

factors which vary are the average transaction size �T , the

size of an average maximal potentially large itemset �L, and

the number of transactions being considered. A data set

having �T � 10, �L � 4, and 100K transactions is denoted

by T10.I4.D100K.

We tested the primary variation of the threshold with

the number of itemsets prestored. This result is illustrated

in Fig. 8. The figure shows that the primary threshold

initially drops considerably as the number of primary

itemsets increases, but it bottoms out after a while. We

also illustrate the variation of the computational effort

required with the available storage space in Fig. 9. We

note that for the itemset T10.I4.D100K, the computational

effort required in order to find additional large itemsets

after finding 20,000 itemsets increases considerably with

the number of itemsets prestored. This is because for this

particular data set, the average size of a maximal

potentially large itemset (or basket) is only four. Conse-

quently, the total number of possible large itemsets is

relatively limited. On the other hand, the computational

effort for preprocessing required by the data sets

T20.I6.D100K and T10.I6.D100K is relatively similar. This

shows that the computational effort required to find a

specific number of primary itemsets is more sensitive to

the size of a typical basket in the data, rather than to the

size of a transaction.
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We also tested the variation in the online running time of

the algorithm with the number of rules generated. We ran

the online queries for varying levels of input parameters in

order to test the correlation between the running time and

the number of rules generated. This is illustrated in Fig. 10.

This result is significant in that it shows that the running

time of the algorithm increases linearly with the number of

rules generated for all the data sets used. The absolute

magnitude of time required in order to generate the rules

was an order of magnitude smaller than the time required

using a direct itemset generation approach like DHP. A

brief summary of some sample relative findings is illu-

strated in Table 3.

We also discuss the level of redundancy present in the

rule generation procedure. Fig. 11 and Fig. 12 illustrate that

the number of redundant rules is often much larger than the

number of essential rules. The benchmark for measuring the

level of redundancy is referred to as the redundancy ratio,

and is defined as follows:

Redundancy Ratio � Total Rules Generated

Essential Rules:
�1�

Thus, when the redundancy ratio is K, then the number

of redundant rules is K ÿ 1 times the number of essential

rules. The redundancy ratio has been plotted on the Y-axis

in Fig. 11 and Fig. 12. We see that, in most cases, the number

of redundant rules is significantly larger than the number of

essential rules. This illustrates the level to which useful

rules often get buried in large numbers of redundant rules.

Also, the redundancy level is much more sensitive to the

support rather than the confidence. The lower the level of

support, the higher the redundancy level.

7 CONCLUSIONS AND SUMMARY

In this paper we investigated the issue of online mining

of association rules. The two primary issues involved in

online processing are the running time and compactness

in representation of the rules. We discussed an OLAP-like

approach for online mining association rules which

avoids redundancy.
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