
A New Approach to Pipeline FFT Processor

Shousheng He and Mats Torkelson
Department of Applied Electronics, Lund University, S-22100 Lund, SWEDEN

email: he@tde.lth.se; torkel@tde.lth.se

Abstract- A new VLSI architecture for real-
time pipeline FFT processor is proposed. A
hardware oriented radix-2’ algorithm is derived
by integrating a twiddle factor decomposition
technique in the divide and conquer approach.
R a d i ~ - 2 ~ algorithm has the same multiplicative
complexity as radix-4 algorithm, but retains the
butterfly structure of radix-2 algorithm. The
single-path delay-feedback architecture is used
to exploit the spatial regularity in signal flow
graph of the algorithm. For length-N DFT com-
putation, the hardware requirement of the pro-
posed architecture is minimal on both dominant
components: log, N - 1 complex multipliers and
N - 1 complex data memory. The validity and
efficiency of the architecture have been verified
by simulation in hardware description language
VHDL.

I . INTRODUCTION

Pipeline FFT processor is a specified class of proces-
sors for DFT computation utilizing fast algorithms. It
is characterized with real-time, non-stopping processing
as the data sequence passing the processor. It is an AT2
non-optimal approach with AT2 = O (N 3) , since the
area lower bound is O (N) . However, as it has been spec-
ulated [l] that for real-time processing whether a new
metric should be introduced since it is necessarily non-
optimal given the time complexity of O (N) . Although
asymptotically almost all the feasible architectures have
reached the area lower bound [2], the class of pipeline
FFT processors has probably the smallest “constant fac-
tor” among the approaches that meet the time require-
ment, due to its least number, O(logN), of Arithmetic
Elements (AE). The difference comes from the fact that
an AE, especially the multiplier, takes much larger area
than a register in digital VLSI implementation.

It is also interesting to note the at least R(1ogN)
AEs are necessary to meet the real-time processing
requirement due to the computational complexity of
R(N1ogN) for FFT algorithm. Thus it has the na-

1063-7133196 $5.00 0 1996 IEEE
Proceedings of IPPS ’96

ture of “lower bound” €or AE requirement. Any “op-
timal” architecture for real-time processing will likely
have R(1og N) AEs.

Another major area/energy consumption of the FFT
processor comes from the memory requirement to buffer
the input data and the intermediate result for the com-
putation. For large size transform, this turns out to be
dominating [3,4]. Although there is no formal proof, the
area lower bound indicates that the the “lower bound”
for the number of registers is likely to be Q (N) . This is
obviously true for any architecture implementing FFT
based algorithm, since the butterfly at first stage has to
take data elements separated N / r distance away from
the input sequence, where r is a small constant integer,
or the “radix”.

Putting above arguments together, a pipeline FFT
processor has necessarily R(log, N) AEs and R(N) com-
plex word registers. The optimal architecture has to
be the one that reduces the “constant factor”, or the
absolute number of AEs (multipliers and adders) and
memory size, to the minimum.

In this paper a new approach for real-time pipeline
FFT processor, the R a d i ~ - 2 ~ Single-path Delay Feed-
back, or R2’SDF architecture will be presented. We
will begin with a brief review of previous approaches. A
hardware oriented radix-2’ algorithm is then developed
by integrating a twiddle factor decomposition technique
in divide and conquer approach to form a spatially reg-
ular signal flow graph (SFG). Mapping the algorithm to
the cascading delay feedback structure leads to the the
proposed architecture. Finally we conclude with a com-
parison of hardware requirement of R2’SDF and several
other popular pipeline architectures.

11. PIPELINE FFT PROCESSOR ARCHITECTURES

Before going into details of the new approach, it is ben-
eficial to have a brief review of the various architectures
for pipeline FFT processors. To avoid being influenced
by the sequence order, we assume that the real-time pro-
cessing task only requires the input sequence to be in
normal order, and the output is allowed to be in digit-
reversed (radix-2 or radix-4) order, which is permissi-

766

ble in such applications such as IDFT based communi-
cation system [5]. We also stick to the Decimation-In-
Frequency (DIF) type of decomposition throughout the
discussion.

The architecture design for pipeline FFT processor
had been the subject of intensive research as early as in
70’s when real-time processing was demanded in such
application as radar signal processing [SI, well before
the VLSI technology had advanced to the level of sys-
tem integration. Several architectures have been pro-
posed over the last 2 decades since then, along with the
increasing interest and the leap forward of the technol-
ogy. Here different approaches will be put into func-
tional blocks with unified terminology, where the addi-
tive butterfly has been separated from multiplier to show
the hardware requirernent distinctively, as in Fig. 1. The
control and twiddle factor reading mechanism have been
also omitted for clarity. All data and arithmetic opera-
tions are complex, and a constraiint that N is a power
of 4 applies.

Figure 1: Various schemes for pipeline FFT processor

R2MDC: Radix-2 Multi-path Delay Commutator [6]
was probably the most straightforward approach for
pipeline implementation of radix-2 FFT algorithm.
The input sequence has been broken into two par-
allel data stream flowing forwatrd, with correct “dis-
tance” between data elements entering the butterfly

scheduled by proper delays. Both butterflies and mul-
tipliers are in 50% utilization. log, N - 2 multipliers,
log, N radix-2 butterflies and 3 / 2 N - 2 registers (de-
lay elements) are required.

R2SDF: Radix-2 Single-path Delay Feedback 1171 uses
the registers more efficiently by storing the butter-
fly output in feedback shift registers. A single data
stream goes through the multiplier at every stage. It
has same number of butterfly units and multipliers as
in R2MDC approach, but with much reduced memory
requirement: N - 1 registers. Its memory requirement
is minimal.

R4SDF: Radix-4 Single-path Delay Feedback [8] was
proposed as a radix-4 version of R2SDF, employing
CORDIC1 iterations. The utilization of multipliers
has been increased to 75% due to the storage of 3 out
of radix-4 butterfly outputs. However, the utilization
of the radix-4 butterfly, which is fairly complicated
and contains at least 8 complex adders, is dropped to
only 25%. It requires log, N - 1 multipliers, log, N
full radix-4 butterflies and storage of size N - 1.

R4LMDC: Radix-4 Multi-path Delay Commutator IS]
is a radix-4 version of R2MDC. It has been used as
the architecture for the initial VLSI implementation
of pipeline FFT processor [3] and massive wafer scale
integrattion [9]. However, it suffers from low, 25%,
utilization of all components, which can be compen-
sated only in some special applications where four
FFTs are being processed simultaneously. It requires
3 log, N multipliers, log4 N full radix-4 butterflies and
5/2N -- 4 registers.

R4SDC: Radix-4 Single-path Delay Commutator [IO]
uses a modified radix-4 algorithm with programable
1/4 radix-4 butterflies to achieve higher, 75% utiliza-
tion of multipliers. A combined Delay-Commutator
also reduces the memory requirement to 2N - 2
from 5 / 2 N - 1, that of R4MDC. The butterfly and
delay-commutator become relatively complicated due
to programmability requirement. R4SDC has been
used recently in building the largest ever single chip
pipeline FFT processor for HDTV application [4].

A swift skimming through of the architectures listed
above reveals the distinctive merits of the differ-
ent approaches: First, the delay-feedback approaches
are always more efficient than corresponding delay-
commutator approaches in terms of memory utilization
since the stored butterfly output can be directly used
by the multipliers. Second, radix-4 algorithm based

‘The Coordinate Rotational Digital Computer

767

single-path architectures have higher multiplier utiliza-
tion, however, radix-2 algorithm based ar zhitectures
have simpler butterflies which are better utilized. The
new approach developed in following sections is highly
motivated by these observations.

111. RADIX-2' DIF FFT ALGORITHM

By the observations made in last section the most de-
sirable hardware oriented algorithm will be that it has
the same number of non-trivial multiplications at the
same positions in the SFG as of radix-4 algorithms, but
has the same butterfly structure as that of radix-2 al-
gorithms. Strictly speaking, algorithms with this fea-
ture i s not completely new. An SFG with a complex
"bias" factor had been obtained implicitly as the result
of constant-rotation/compensation procedure using re-
stricted CORDIC operations [ll]. Another algorithm
combining radix-4 and radix-'4 + 2' in DIT form has
been used to decrease the scaling error in R2MDC ar-
chitecture, without altering the multiplier requirement
[12]. The clear derivation of the algorithm in DIF form
with perception of reducing the hardware requirement
in the context pipeline FFT processor is, however, yet
to be developed.

To avoid confusing with the well known radix-2/4 split
radix algorithm and the mixed radix-'4 + 2' algorithm,
the notion of 1-adix-2~ algorithm is used to clearly reflect
the structural relation with radix-2 algorithm and the
identical computational requirement with radix-4 algo-
rithm.

The DFT of size N is defined by

N-1

n=O

where WN denotes the Nth primitive root of unity, with
its exponent evaluated modulo N. To make the deriva-
tion of the new algorithm clearer, consider the first 2
steps of decomposition in the radix-2 DIF FFT together.
Applying a 3-dimensional linear index map,

the Common Factor Algorithm (CFA) has the form of

X(t1 + 2kz + 4k3)

where the butterfly structure

N N N N
B$(T"Z +n3) = z(-nz 4 +n3) + (-l)%(-n2 4 +n3 + -) 2

If the expression within the braces of eqn. (3) is to
be computed before further decomposition, an ordinary
radix-2 DIF FFT results. The key idea of the new algo-
rithm is to proceed the second step decomposition to the
remaining DFT coefficients, including the "twiddle fac-
tor" Wh*n2+n3)k1, to exploit the exceptional values in
multiplication before the next butterfly is constructed.
Decomposing the composite twiddle factor and observe
that

(+ a + n 3) (k 1 + 2 k a + 4 k s)

- - w ; (k i + 2 k a) w F s k s
W N

(4)

- - (_ j) n a (k l + ~ k a) ~ n 3 (L 1 + 2 k a) N wF3k3
Substituting eqn. (4) in eqn. (3) and expand the sum-
mation with index n2. After simplification we have a
set of 4 DFTs of length N/4,

E-1

(5)
where H(k1, k 2 , 723) is expressed in eqn. (6).

Figure 2: Butterfly with decomposed twiddle factors.

eqn. (6) represents the first two stages of butterflies
'with only trivial multiplications in the SFG, as BF I and
BF I1 in Fig. 2. After these two stages, full multipli-
ers are required to compute the product of the decom-
posed twiddle factor W2(k1t2ka) in ' eqn. (5), as shown
in Fig. 2. Note the order of the twiddle factors is differ-
ent from that of radix-4 algorithm.

768

Applying this CFA procedure recursively to the re-
maining DFTs of leng,h N/4 in eqn. (5), the complete
radix-2’ DIF FFT algorithm is obtained. An N = 16
example is shown in Fig. 3 where small diamonds rep-
resent trivial multiplication by W;l4 = - j , which in-
volves only real-imaginary swapping and sign inversion.

BF I BF U BF Ill BF I V

Figure 3: Radix-2’ DlIF FFT flow graph for N = 16

Radix-2’ algorithm has the feature that it has the
same multiplicative ccimplexity as radix-4 algorithms,
but still retains the radix-2 butterfly structures. The
multiplicative operations are in a such an arrangement
that only every other stage has non-trivial multiplica-
tions. This is a great structural advantage over other
algorithms when pipeline/cascade FFT architecture is
under consideration.

I v . R2’SDF ARCHITIECTURE

Mapping radix-2’ DIF FFT algorithm derived in last
section to the R2SDF architecture discussed in section 11,
a new architecture of Radix-2’ Single-path Delay Feed-
back (R2’SDF) approach is obtained.

Fig. 4 outlines an implementation of the R2’SDF ar-
chitecture for N = 256, note the similarity of the data-
path to R2SDF and the reduced number of multipliers.
The implementation uses two types of butterflies, one
identical to that in RSSDF, the other contains also the
logic to implement the trivial twiddle factor multipli-
cation, as shown in Fig. 5-(i)(ii) respectively. Due to
the spatial regularity of Radix-2’ algorithm, the syn-
chronization control of‘ the processor is very simple. A

BF I1

(log, N)-bit binary counter serves two purposes: syn-
chronization controller and address counter for twiddle
factor reading in each stages.

With the help of the butterfly structures shown in
Fig. 5, the scheduled operation of the R2’SDF processor
in Fig. 4 is as follows. On first N/2 cycles, the 2-to-
1 multiplexors in the first butterfly module switch to
position “O”, and the butterfly is idle. The input data
from left is directed to the shift registers until they are
filled. On next N/2 cycles, the multiplexors turn to
position “1” the butterfly computes a 2-point DFT with
incoming data and the data stored in the shift registers.

The butterfly output Zl(n) is sent to apply the twiddle
factor, andl Z l (n + N/2) is sent back to the shift regis-
ters to be “multiplied” in still next N/2 cycles when the
first half of the next frame of time sequence is loaded
in. The operation of the second butterfly is similar to
that of the first one, except the “distance” of butter-
fly input sequence are just N/4 and the trivial twid-
dle factor imultiplication has been implemented by real-
imaginary swapping with a commutator and controlled
add/subtract operations, as in Fig. 5-(ii), which requires
two bit control signal from the synchronizing counter.
The data then goes through a full complex multiplier,
working at 75% utility, accomplishes the result of first
level of radix-4 DFT word by word. Further processing
repeats this pattern with the distance of the input data
decreases lby half at each consecutive butterfly stages.
After N - 1 clock cycles, The complete DFT transform
result streams out to the right, in bit-reversed order.
The next frame of transform can be computed without
pausing due to the pipelined processing of each stages.

In practical implementation, pipeline register should
be inserted between each multiplier and butterfly stage
to improve the performance. Shimming registers are
also needeid for control signals to comply with thus re-
vised timing. The latency of the output is then increased
to N - l+3(log4 N - 1) without affecting the throughput
rate.

V. CONCLUSION
In this paper, a hardware-oriented radix-2’ algorithm
is derived which has the radix-4 multiplicative com-
plexity but retains radix-2 butterfly structure in the
SFG. Based on this algorithm, a new, efficient pipeline

Figure 4: R2’SDF pipeline FFT architecture for N = 256

I I

(i). BF2I

1 s

(ii). BF2II

Figure 5: Butterfly structure for R2’SDF FFT processor

FFT architecture, the R2’SDF architecture, is put for-
ward. The hardware requirement of proposed architec-
ture as compared with various approaches is shown in
Table 1, where not only the number of complex mul-
tipliers, adders and memory size but also the control
complexity are listed for comparison. For easy reading,
base-4 logarithm is used whenever applicable. It shows
R2’SDF has reached the minimum requirement for both
multiplier and the storage, and only second to R4SDC
for adder. This makes it an ideal architecture for VLSI
implementation of pipeline FFT processors.

Table 1: Hardware requirement comparison

transform size and word-length, using fixed point arith-
metic and a complex array multiplier implemented with
distributed arithmetic. The validity and efficiency of
the proposed architecture has been verified by extensive
simulation.

REFERENCES
[I] C. D. Thompson. Fourier transform in VLSI. IEEE

Trans. Comput., C-32(11):1047-1057, Nov. 1983.

[a] S. He and M. Torkelson. A new expandable 2D systolic
array for DFT computation based on symbiosis of 1D
arrays. In Proc. ICA3 PP’95, pages 12-19, Brisbane,
Australia, Apr. 1995.

[3] E. E. Swartzlander, W. K. W. Young, and S. J. Joseph.
A radix 4 delay commutator for fast Fourier transform
processor implementation. IEEE J. Solid-State Circuits,
SC-19(5):702-709, Oct. 1984.

[4] E. Bidet, D. Castelain, C. Joanblanq, and P. Stenn. A
fast single-chip implementation of 8192 complex point
FFT. IEEE J. Solid-State Circuits, 30(3):300-305, Mar.
1995.

[5] M. Alard and R. Lassalle. Principles of modulation and
channel coding for digital broadcasting for mobile re-
ceivers. EBU Review, (224):47-69, Aug. 1987.

[6] L.R. Rabiner and B. Gold. Theory and Application of
Digital Signal Processing. Prentice-Hall, Inc., 1975.

[7] E.H. Wold and A.M. Despain. Pipeline and parallel-
pipeline FFT processors for VLSI implementation.
IEEE Trans. Comput., C-33(5):414-426, May 1984.

[8] A.M. Despain. Fourier transform computer us-
ing CORDIC iterations. IEEE Trans. Comput., C-

[9] E . E. Swartzlander, V. K. Jain, and H. Hikawa. A radix
8 wafer scale FFT processor. J. VLSI Signal Processing,

23(10):993-1001, Oct. 1974.

-..... 4(2,3):165-176, May 1992.
#/ adder # memory size [lo] G . Bi and E. V. Jones. A pipelined FFT processor

for word-sequential data. IEEE Trans. Acoust., Speech,
Signal Processing, 37(12):1982-1985, Dec. 1989.

R4MDC 3(10& N - 1) 810& N 5N/2 - 4 simple [ll] A.M. Despain. Very fast Fourier transform algorithms
R4SDC log, N - 1 310g4 N 2N - 2 complex hardware for implementation. IEEE Trans. Comput.,
R22SDF log4 N - 1 410& N N - 1

Radix-2 FFT-pipeline architecture with ra-

RZMDC ’(log4 N - 1) 410g4 N 3N/2 - 2 simple
simple

medium

simple C-28(5):333-341, May 1979.

[12] R. Storn.
duced noise-to-signal ratio. IEE Proc.- Vis. Image Sig-
nul Process., 141(2):81-86, Apr. 1994.

The architecture has been modeled with hardware de-
scription language VHDL with generic parameters for

770

