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Abstract- A new VLSI architecture for real- 
time pipeline FFT processor is proposed. A 
hardware oriented radix-2’ algorithm is derived 
by integrating a twiddle factor decomposition 
technique in the divide and conquer approach. 
R a d i ~ - 2 ~  algorithm has the same multiplicative 
complexity as radix-4 algorithm, but retains the 
butterfly structure of radix-2 algorithm. The 
single-path delay-feedback architecture is used 
to exploit the spatial regularity in signal flow 
graph of the algorithm. For length-N DFT com- 
putation, the hardware requirement of the pro- 
posed architecture is minimal on both dominant 
components: log, N - 1 complex multipliers and 
N - 1 complex data memory. The validity and 
efficiency of the architecture have been verified 
by simulation in hardware description language 
VHDL. 

I .  INTRODUCTION 

Pipeline FFT processor is a specified class of proces- 
sors for DFT computation utilizing fast algorithms. It 
is characterized with real-time, non-stopping processing 
as the data sequence passing the processor. It is an AT2 
non-optimal approach with AT2 = O ( N 3 ) ,  since the 
area lower bound is O ( N ) .  However, as it has been spec- 
ulated [l] that for real-time processing whether a new 
metric should be introduced since it is necessarily non- 
optimal given the time complexity of O ( N ) .  Although 
asymptotically almost all the feasible architectures have 
reached the area lower bound [2], the class of pipeline 
FFT processors has probably the smallest “constant fac- 
tor” among the approaches that meet the time require- 
ment, due to its least number, O(logN), of Arithmetic 
Elements (AE). The difference comes from the fact that 
an AE, especially the multiplier, takes much larger area 
than a register in digital VLSI implementation. 

It is also interesting to note the at  least R(1ogN) 
AEs are necessary to meet the real-time processing 
requirement due to the computational complexity of 
R(N1ogN) for FFT algorithm. Thus it has the na- 
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ture of “lower bound” €or AE requirement. Any “op- 
timal” architecture for real-time processing will likely 
have R(1og N )  AEs. 

Another major area/energy consumption of the FFT 
processor comes from the memory requirement to buffer 
the input data and the intermediate result for the com- 
putation. For large size transform, this turns out to be 
dominating [3,4]. Although there is no formal proof, the 
area lower bound indicates that the the “lower bound” 
for the number of registers is likely to be Q ( N ) .  This is 
obviously true for any architecture implementing FFT 
based algorithm, since the butterfly at first stage has to 
take data elements separated N / r  distance away from 
the input sequence, where r is a small constant integer, 
or the “radix”. 

Putting above arguments together, a pipeline FFT 
processor has necessarily R(log, N )  AEs and R(N) com- 
plex word registers. The optimal architecture has to 
be the one that reduces the “constant factor”, or the 
absolute number of AEs (multipliers and adders) and 
memory size, to the minimum. 

In this paper a new approach for real-time pipeline 
FFT processor, the R a d i ~ - 2 ~  Single-path Delay Feed- 
back, or R2’SDF architecture will be presented. We 
will begin with a brief review of previous approaches. A 
hardware oriented radix-2’ algorithm is then developed 
by integrating a twiddle factor decomposition technique 
in divide and conquer approach to form a spatially reg- 
ular signal flow graph (SFG). Mapping the algorithm to 
the cascading delay feedback structure leads to the the 
proposed architecture. Finally we conclude with a com- 
parison of hardware requirement of R2’SDF and several 
other popular pipeline architectures. 

11. PIPELINE FFT PROCESSOR ARCHITECTURES 

Before going into details of the new approach, it is ben- 
eficial to have a brief review of the various architectures 
for pipeline FFT processors. To avoid being influenced 
by the sequence order, we assume that the real-time pro- 
cessing task only requires the input sequence to be in 
normal order, and the output is allowed to be in digit- 
reversed (radix-2 or radix-4) order, which is permissi- 
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ble in such applications such as IDFT based communi- 
cation system [5]. We also stick to the Decimation-In- 
Frequency (DIF) type of decomposition throughout the 
discussion. 

The architecture design for pipeline FFT processor 
had been the subject of intensive research as early as in 
70’s when real-time processing was demanded in such 
application as radar signal processing [SI, well before 
the VLSI technology had advanced to the level of sys- 
tem integration. Several architectures have been pro- 
posed over the last 2 decades since then, along with the 
increasing interest and the leap forward of the technol- 
ogy. Here different approaches will be put into func- 
tional blocks with unified terminology, where the addi- 
tive butterfly has been separated from multiplier to show 
the hardware requirernent distinctively, as in Fig. 1.  The 
control and twiddle factor reading mechanism have been 
also omitted for clarity. All data and arithmetic opera- 
tions are complex, and a constraiint that N is a power 
of 4 applies. 

Figure 1: Various schemes for pipeline FFT processor 

R2MDC: Radix-2 Multi-path Delay Commutator [6] 
was probably the most straightforward approach for 
pipeline implementation of radix-2 FFT algorithm. 
The input sequence has been broken into two par- 
allel data stream flowing forwatrd, with correct “dis- 
tance” between data elements entering the butterfly 

scheduled by proper delays. Both butterflies and mul- 
tipliers are in 50% utilization. log, N - 2 multipliers, 
log, N radix-2 butterflies and 3 / 2 N  - 2 registers (de- 
lay elements) are required. 

R2SDF: Radix-2 Single-path Delay Feedback 1171 uses 
the registers more efficiently by storing the butter- 
fly output in feedback shift registers. A single data 
stream goes through the multiplier at  every stage. It 
has same number of butterfly units and multipliers as 
in R2MDC approach, but with much reduced memory 
requirement: N - 1 registers. Its memory requirement 
is minimal. 

R4SDF: Radix-4 Single-path Delay Feedback [8] was 
proposed as a radix-4 version of R2SDF, employing 
CORDIC1 iterations. The utilization of multipliers 
has been increased to 75% due to the storage of 3 out 
of radix-4 butterfly outputs. However, the utilization 
of the radix-4 butterfly, which is fairly complicated 
and contains at least 8 complex adders, is dropped to 
only 25%. It requires log, N - 1 multipliers, log, N 
full radix-4 butterflies and storage of size N - 1. 

R4LMDC: Radix-4 Multi-path Delay Commutator IS] 
is a radix-4 version of R2MDC. It has been used as 
the architecture for the initial VLSI implementation 
of pipeline FFT processor [3] and massive wafer scale 
integrattion [9]. However, it suffers from low, 25%, 
utilization of all components, which can be compen- 
sated only in some special applications where four 
FFTs are being processed simultaneously. It requires 
3 log, N multipliers, log4 N full radix-4 butterflies and 
5/2N -- 4 registers. 

R4SDC: Radix-4 Single-path Delay Commutator [IO] 
uses a modified radix-4 algorithm with programable 
1/4 radix-4 butterflies to achieve higher, 75% utiliza- 
tion of multipliers. A combined Delay-Commutator 
also reduces the memory requirement to 2N - 2 
from 5 / 2 N  - 1, that of R4MDC. The butterfly and 
delay-commutator become relatively complicated due 
to programmability requirement. R4SDC has been 
used recently in building the largest ever single chip 
pipeline FFT processor for HDTV application [4]. 

A swift skimming through of the architectures listed 
above reveals the distinctive merits of the differ- 
ent approaches: First, the delay-feedback approaches 
are always more efficient than corresponding delay- 
commutator approaches in terms of memory utilization 
since the stored butterfly output can be directly used 
by the multipliers. Second, radix-4 algorithm based 
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single-path architectures have higher multiplier utiliza- 
tion, however, radix-2 algorithm based ar zhitectures 
have simpler butterflies which are better utilized. The 
new approach developed in following sections is highly 
motivated by these observations. 

111. RADIX-2' DIF FFT ALGORITHM 

By the observations made in last section the most de- 
sirable hardware oriented algorithm will be that it has 
the same number of non-trivial multiplications at the 
same positions in the SFG as of radix-4 algorithms, but 
has the same butterfly structure as that of radix-2 al- 
gorithms. Strictly speaking, algorithms with this fea- 
ture i s  not completely new. An SFG with a complex 
"bias" factor had been obtained implicitly as the result 
of constant-rotation/compensation procedure using re- 
stricted CORDIC operations [ll]. Another algorithm 
combining radix-4 and radix-'4 + 2' in DIT form has 
been used to  decrease the scaling error in R2MDC ar- 
chitecture, without altering the multiplier requirement 
[12]. The clear derivation of the algorithm in DIF form 
with perception of reducing the hardware requirement 
in the context pipeline FFT processor is, however, yet 
to be developed. 

To avoid confusing with the well known radix-2/4 split 
radix algorithm and the mixed radix-'4 + 2' algorithm, 
the notion of 1-adix-2~ algorithm is used to clearly reflect 
the structural relation with radix-2 algorithm and the 
identical computational requirement with radix-4 algo- 
rithm. 

The DFT of size N is defined by 

N-1 

n=O 

where WN denotes the Nth  primitive root of unity, with 
its exponent evaluated modulo N. To make the deriva- 
tion of the new algorithm clearer, consider the first 2 
steps of decomposition in the radix-2 DIF FFT together. 
Applying a 3-dimensional linear index map, 

the Common Factor Algorithm (CFA) has the form of 

X(t1 + 2kz + 4k3) 

where the butterfly structure 

N N N N 
B$(T"Z +n3)  = z(-nz 4 +n3) + (-l)%(-n2 4 +n3 + -) 2 

If the expression within the braces of eqn. (3) is to 
be computed before further decomposition, an ordinary 
radix-2 DIF FFT results. The key idea of the new algo- 
rithm is to proceed the second step decomposition to the 
remaining DFT coefficients, including the "twiddle fac- 
tor" Wh*n2+n3)k1, to exploit the exceptional values in 
multiplication before the next butterfly is constructed. 
Decomposing the composite twiddle factor and observe 
that 

( + a + n 3 ) ( k 1 + 2 k a + 4 k s )  

- - w ; ( k i + 2 k a ) w F s k s  
W N  

(4) 

- - ( _ j ) n a ( k l + ~ k a ) ~ n 3 ( L 1 + 2 k a )  N wF3k3 
Substituting eqn. (4) in eqn. (3) and expand the sum- 
mation with index n2. After simplification we have a 
set of 4 DFTs of length N/4, 

E-1 

( 5 )  
where H(k1, k 2 ,  723) is expressed in eqn. (6). 

Figure 2: Butterfly with decomposed twiddle factors. 

eqn. (6) represents the first two stages of butterflies 
'with only trivial multiplications in the SFG, as BF I and 
BF I1 in Fig. 2. After these two stages, full multipli- 
ers are required to compute the product of the decom- 
posed twiddle factor W2(k1t2ka)  in ' eqn. (5), as shown 
in Fig. 2. Note the order of the twiddle factors is differ- 
ent from that of radix-4 algorithm. 
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Applying this CFA procedure recursively to the re- 
maining DFTs of leng,h N/4 in eqn. (5), the complete 
radix-2’ DIF FFT algorithm is obtained. An N = 16 
example is shown in Fig. 3 where small diamonds rep- 
resent trivial multiplication by W;l4 = - j ,  which in- 
volves only real-imaginary swapping and sign inversion. 

BF I BF U BF Ill BF I V  

Figure 3: Radix-2’ DlIF FFT flow graph for N = 16 

Radix-2’ algorithm has the feature that it has the 
same multiplicative ccimplexity as radix-4 algorithms, 
but still retains the radix-2 butterfly structures. The 
multiplicative operations are in a such an arrangement 
that only every other stage has non-trivial multiplica- 
tions. This is a great structural advantage over other 
algorithms when pipeline/cascade FFT architecture is 
under consideration. 

I v .  R2’SDF ARCHITIECTURE 

Mapping radix-2’ DIF FFT algorithm derived in last 
section to the R2SDF architecture discussed in section 11, 
a new architecture of Radix-2’ Single-path Delay Feed- 
back (R2’SDF) approach is obtained. 

Fig. 4 outlines an implementation of the R2’SDF ar- 
chitecture for N = 256, note the similarity of the data- 
path to R2SDF and the reduced number of multipliers. 
The implementation uses two types of butterflies, one 
identical to that in RSSDF, the other contains also the 
logic to implement the trivial twiddle factor multipli- 
cation, as shown in Fig. 5-(i)(ii) respectively. Due to 
the spatial regularity of Radix-2’ algorithm, the syn- 
chronization control of‘ the processor is very simple. A 

BF I1 

(log, N)-bit binary counter serves two purposes: syn- 
chronization controller and address counter for twiddle 
factor reading in each stages. 

With the help of the butterfly structures shown in 
Fig. 5, the scheduled operation of the R2’SDF processor 
in Fig. 4 is as follows. On first N/2 cycles, the 2-to- 
1 multiplexors in the first butterfly module switch to 
position “O”, and the butterfly is idle. The input data 
from left is directed to the shift registers until they are 
filled. On next N/2 cycles, the multiplexors turn to 
position “1” the butterfly computes a 2-point DFT with 
incoming data and the data stored in the shift registers. 

The butterfly output Zl(n)  is sent to apply the twiddle 
factor, andl Z l ( n  + N/2) is sent back to the shift regis- 
ters to be “multiplied” in still next N/2 cycles when the 
first half of the next frame of time sequence is loaded 
in. The operation of the second butterfly is similar to 
that of the first one, except the “distance” of butter- 
fly input sequence are just N/4 and the trivial twid- 
dle factor imultiplication has been implemented by real- 
imaginary swapping with a commutator and controlled 
add/subtract operations, as in Fig. 5-(ii), which requires 
two bit control signal from the synchronizing counter. 
The data then goes through a full complex multiplier, 
working at 75% utility, accomplishes the result of first 
level of radix-4 DFT word by word. Further processing 
repeats this pattern with the distance of the input data 
decreases lby half at  each consecutive butterfly stages. 
After N - 1 clock cycles, The complete DFT transform 
result streams out to the right, in bit-reversed order. 
The next frame of transform can be computed without 
pausing due to the pipelined processing of each stages. 

In practical implementation, pipeline register should 
be inserted between each multiplier and butterfly stage 
to improve the performance. Shimming registers are 
also needeid for control signals to comply with thus re- 
vised timing. The latency of the output is then increased 
to N -  l+3(log4 N -  1) without affecting the throughput 
rate. 

V. CONCLUSION 
In this paper, a hardware-oriented radix-2’ algorithm 
is derived which has the radix-4 multiplicative com- 
plexity but retains radix-2 butterfly structure in the 
SFG. Based on this algorithm, a new, efficient pipeline 



Figure 4: R2’SDF pipeline FFT architecture for N = 256 

I I 

(i). BF2I 

1 s  

(ii). BF2II 

Figure 5: Butterfly structure for R2’SDF FFT processor 

FFT architecture, the R2’SDF architecture, is put for- 
ward. The hardware requirement of proposed architec- 
ture as compared with various approaches is shown in 
Table 1, where not only the number of complex mul- 
tipliers, adders and memory size but also the control 
complexity are listed for comparison. For easy reading, 
base-4 logarithm is used whenever applicable. It shows 
R2’SDF has reached the minimum requirement for both 
multiplier and the storage, and only second to R4SDC 
for adder. This makes it an ideal architecture for VLSI 
implementation of pipeline FFT processors. 

Table 1: Hardware requirement comparison 

transform size and word-length, using fixed point arith- 
metic and a complex array multiplier implemented with 
distributed arithmetic. The validity and efficiency of 
the proposed architecture has been verified by extensive 
simulation. 
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