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Abstract

Purpose: We established a CT-derived approach to achieve

accurate progression-free survival (PFS) prediction to EGFR

tyrosine kinase inhibitors (TKI) therapy in multicenter, stage

IV EGFR-mutated non–small cell lung cancer (NSCLC) patients.

Experimental Design: A total of 1,032 CT-based phenotypic

characteristics were extracted according to the intensity, shape,

and texture of NSCLC pretherapy images. On the basis of these

CT features extracted from 117 stage IV EGFR-mutant NSCLC

patients, a CT-based phenotypic signature was proposed using a

Cox regression model with LASSO penalty for the survival risk

stratification of EGFR-TKI therapy. The signature was validated

using two independent cohorts (101 and 96 patients, respec-

tively). The benefit of EGFR-TKIs in stratified patients was then

compared with another stage-IV EGFR-mutant NSCLC cohort

only treatedwith standard chemotherapy (56 patients). Further-

more, an individualized prediction model incorporating the

phenotypic signature and clinicopathologic risk characteristics

was proposed for PFS prediction, and also validated by multi-

center cohorts.

Results: The signature consisted of 12 CT features demon-

strated good accuracy for discriminating patients with rapid

and slow progression to EGFR-TKI therapy in three cohorts

(HR: 3.61, 3.77, and 3.67, respectively). Rapid progression

patients received EGFR TKIs did not show significant differ-

ence with patients underwent chemotherapy for progression-

free survival benefit (P ¼ 0.682). Decision curve analysis

revealed that the proposed model significantly improved the

clinical benefit compared with the clinicopathologic-based

characteristics model (P < 0.0001).

Conclusions: The proposed CT-based predictive strategy

can achieve individualized prediction of PFS probability to

EGFR-TKI therapy in NSCLCs, which holds promise of

improving the pretherapy personalized management of TKIs.

Clin Cancer Res; 24(15); 3583–92. �2018 AACR.

Introduction

Non–small cell lung cancer (NSCLC) is the leading cause of

cancer-related deaths, and its prevalence continues to increase

worldwide (1). AdvancedNSCLCwith activating EGFRmutations

accounts for a clinically significant proportion (2, 3). Randomized

trials have consistently demonstrated that EGFR tyrosine kinase

inhibitors (TKI), such as erlotinib, gefitinib, and afatinib can

promote longer progression-free survival (PFS) compared with

conventional chemotherapy in this distinct subgroup of NSCLC

patients (4–8). According to the National Comprehensive Cancer

Network (NCCN), those drugs are recommended as first-line

therapy, but most patients eventually become resistant to them

within one year after EGFR-TKI therapy (9). Emerging osimertinib

has been recommended as second-line therapy for patients with

EGFR T790M who have progressed on EGFR-TKI therapy such as

erlotinib, gefitinib, or afatinib (10). Recently intercalated regi-

mens combining chemotherapy with TKIs were also found to

extend survival (11, 12). However, how to assess the individual

patient's potential progression probability to EGFR-TKI therapy

remains very challenging, and the early identification of patients

with high probability of rapid encountering progression to EGFR-

TKI therapy is crucial for devising appropriate treatment strategies

for optimized clinical outcome (13, 14).

One common hypothesis in predicting the benefit of TKIs is

that the disease progression is affected by mutation types, such as

1CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese

Academy of Sciences, Beijing, China. 2School of Medical Informatics, China

Medical University, Shenyang, Liaoning, China. 3Sino-Dutch Biomedical and

Information Engineering School, Northeastern University, Shenyang, Liaoning,

China. 4Department of Radiology, Shanghai Pulmonary Hospital, Tongji Univer-

sity School of Medicine, Shanghai, China 5University of Chinese Academy of

Sciences, Beijing, China. 6Guangdong Lung Cancer Institute, Guangdong Gen-

eral Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
7PET-CT center, National Cancer Center/Cancer Hospital, Chinese Academy of

Medical Sciences andPeking UnionMedical College, Beijing, China. 8Department

of Radiology, Guangdong General Hospital, Guangdong Academy of Medical

Sciences, Guangzhou, China. 9Department of Respiratory and Critical Care

Medicine, West China Hospital, Chengdu, China 10Beijing Key Laboratory of

Molecular Imaging, Beijing, China.

Note: Supplementary data for this article are available at Clinical Cancer

Research Online (http://clincancerres.aacrjournals.org/).

J. Song, J. Shi, and D. Dong contributed equally to this article.

Corresponding Authors: Zaiyi Liu, Department of Radiology, Guangdong Gen-

eral Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

Phone: 8610-8261-8465; Fax: 8610-6252-7995; E-mail: zyliu@163.com; and

Weimin Li, Department of Respiratory and Critical Care Medicine, West China

Hospital, Chengdu, China. Phone: 8602-8854-23998; Fax: 8602-8853-13149;

E-mail: weimin003@163.com; and Jie Tian, Key Laboratory of Molecular Imag-

ing, Institute of Automation, Chinese Academy of Sciences, Beijing 100190,

China. Phone: 8610-8261-8465; Fax: 8610-6252-7995; E-mail: jie.tian@ia.ac.cn

doi: 10.1158/1078-0432.CCR-17-2507

�2018 American Association for Cancer Research.

Clinical
Cancer
Research

www.aacrjournals.org 3583

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

4
/1

5
/3

5
8
3
/2

0
4
6
1
5
6
/3

5
8
3
.p

d
f b

y
 g

u
e

s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2

http://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-17-2507&domain=pdf&date_stamp=2018-7-13


exon 19 deletion and exon 21 substitution of leucine for arginine

in the EGFR gene (15, 16), and clinicopathologic characteristics,

such as smoking status and tumor histology (17, 18). But recent

studies proved that appropriate and sufficient utilization of

noninvasive diagnostic images for model-based prognostic pre-

diction providing a new approach for survival stratification of

EGFR TKIs to identify patients with different therapeutic out-

comes. Imaging biomarkers based on CT images, positron emis-

sion tomography (PET) images, and molecular images have been

used to evaluate clinical efficacy of EGFR TKIs in NSCLC patients

with EGFR mutation (19–22). O'Connor and colleagues

appraised various strategies to generate quantitative imaging

biomarkers in the clinical development of targeted therapeutics,

and revealed the effectiveness and necessity of developing such

strategies for early prediction of clinical outcome (22, 23). How-

ever, multicenter trials have not been adequately conducted to

investigate the value of this technique in individualized prognos-

tic prediction of EGFR-TKI treatment for stage IV EGFR-mutant

NSCLC. Developing such quantitative imaging technique and

testifying its validity may offer a new noninvasive and convenient

approach for better understanding of the drug effect in the future

development of updated EGFR TKIs, as well as for better man-

agement of therapeutic strategies for optimized patients' benefits,

both clinically and economically.

In this study, we proposed a new approach to assess the

progression probability to the recommended EGFR-TKI therapy

for individual patient. Thousands of pretherapy CT features

were deeply interpreted from the patients in training cohort to

select critical EGFR mutation–associated phenotypic features.

Then the critical features were used to develop a CT feature–

based phenotypic signature for risk stratification of PFS in

multicenter stage IV EGFR-mutant NSCLCs. The stratified sub-

groups with rapid and slow progression to EGFR-TKI therapy

were then compared with an independent cohort received only

chemotherapy (No-TKI group) regarding PFS. Finally, we estab-

lished a new prediction model by incorporating the phenotypic

signature with clinicopathologic characteristics to provide cred-

ible PFS probability recommendations of 10-month and one-

year to EGFR-TKI therapy for individual patient. The prognostic

accuracy of the proposed model was also validated in multi-

center patient cohorts.

Materials and Methods

Study design

This study was conducted in accordance with the Declaration

of Helsinki. Our Institutional Review Board approved this retro-

spective study and waived the need for informed consent from

the patients.

The entire design of this study is illustrated in Fig. 1, which

included the patient registration, the establishment of CT

phenotypic signature by using the training cohort from one

hospital for risk stratification to EGFR-TKI therapy, the valida-

tion of the signature in two independent cohorts (from other

two hospitals, respectively), the comparison in PFS between the

stratified patient groups received TKI and the patient group

received chemotherapy, as well as the development and mul-

ticenter validation of the model for individualized survival

prognosis prediction.

Patients. This multicenter retrospective study was conducted

jointly by four independent departments covered the eastern,

western, northern, and southern of China (ClinicalTrials.gov

identifier: NCT02851329). All TKI cases were treated according

to the criteria established by NCCN (24). Inclusion criteria were

age 20 and older, stage IV NSCLC according to the TNM

classification system of the American Joint Committee on

Cancer (25), clinically diagnosed with distant metastasis

(brain, liver, or bone), activating EGFR mutations, no history

of systemic anticancer therapy for advanced disease, and under-

went first-line or second-line EGFR-TKI therapy were eligible for

inclusion. Patients with history of surgery resection were

excluded from the study. Drugs were orally administered daily

to all patients until disease progressed or metastasized, with

doses appropriately reduced if severe adverse events developed.

All eligible patients performed contrast-enhanced CT scan two

weeks before EGFR-TKI treatment. Clinicopathologic character-

istics, such as sex, age, tumor lesion location, stage at diagnosis,

smoking history, performance status (PS) score, intrapulmon-

ary and distant metastases, EGFR mutation subtype, and the

administered therapeutic regimen, were complete recorded for

all eligible patients.

All the stage IV EGFR-mutant NSCLC patients in control group

only received chemotherapy as the first-line treatment. Treating

with standard platinum-based chemotherapy (pemetrexed

500 mg/m2 plus cisplatin 75 mg/m2 in 21-day cycles till disease

progression, unacceptable toxicity, or patient's refusal). All

enrolled cases performed contrast-enhancedCT scan in twoweeks

before chemotherapy. The choice of treatment (TKI or chemo-

therapy) was made by patients voluntarily.

The follow-up interval was 4–6 weeks and included routine

laboratory tests and chest CT. Additional CT or MRI was

routinely performed if extrapulmonary metastasis was sus-

pected. PFS was considered the time from the initiation of

EGFR-TKI therapy to the date of confirmed disease progression

or death. PFS was censored at the date of death from other

causes or the date of the last follow-up visit for progression-

free patients.

Translational Relevance

Our study indicated that progression-free survival (PFS) of

EGFR-TKI therapy in stage IV EGFR-mutant non–small cell

lung cancer (NSCLC) could be individualized predicted by

deep interpretation of pretherapy CT phenotype. Clinical

efficacy of EGFR-TKIs could be stratified by the proposed 12

CT phenotypic feature–based signature, as patients in slow

progression subgroup have a better likelihood of longer PFS

than rapid progression subgroup. This finding can provide

support for different progression subgroup patients' treatment

decision. Besides, our study revealed that PFS of the patients of

poor signature score was not significantly longer than chemo-

therapy-only cases. This finding provides evidence of alterna-

tive treatment options for these patients to achieve better

economic cost-to-benefit ratio. Furthermore, we proposed an

individualized prognostic model to provide PFS probability

recommendations for stage IV EGFR-mutant NSCLCs. With

further sufficient verification, our study might provide strong

support for clinical trials and drug development of EGFR-TKIs

to gradually prolong the survival opportunity in these patients.

Song et al.
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CT Image acquisition, interpretation, and feature extraction. CT

scans were interpreted qualitatively and quantitatively by radi-

ologists at each institution. Standardized reporting forms were

used to record lymph node status and common sites of distant

metastasis (i.e., bones, liver, and brain). Then, all multicenter CT

images were gathered for tumor segmentation and feature extrac-

tion. Primary tumors of all eligible patients were manually seg-

mented by our radiologist with more than 10 years of experience

in chest CT interpretation. To ensure the reproducibility and

accuracy, 50 patients were randomly selected for manual segmen-

tation by two radiologists (reader 1 and reader 2) and the

phenotypic features automatically extracted from the 50 manual

segmentation results were evaluated for reproducibility analysis.

These two radiologists were double-blinded for the segmentation.

The interclass correlation coefficient (ICC) was used to determine

the interobserver agreement of these features, and an ICC greater

than 0.75 was considered as a mark of excellent reliability (26).

The two radiologists were mainly responsible for delineating the

boundary of each primary tumor, and all the tumors were seg-

mented manually layer-by-layer. Then, reader 1 finished all the

tumor segmentation. To ensure the accuracy, the segmentation

results of each cohort were then evaluated by other radiologists or

physicians in each center, respectively, following a guideline on

image interpretation that specifically described how to define the

boundary of fuzzy tumors. Appendix Part I describes the details of

CT image acquisition, CT image interpretation, phenotypic fea-

ture extraction, and evaluation of consistency between different

radiologists.

For each individual CT scan, we programmed algorithms to

automatically extract phenotypic features from the manually

segmented tumor region. These algorithms were partially defined

by Aerts and colleagues' study (27) and partially defined by Song

and colleagues' study (28).

Phenotypic feature selection and signature building. The key fea-

tures and their corresponding weights for prognostic prediction

were screened out and calculated from the automatically extracted

CT features in the training cohort by using the least absolute

shrinkage and selection operator (LASSO) penalized Cox propor-

tional hazards regression (29). Then, the signaturewas built by the

weighted linear combination of all key features, and the person-

alized signature score can also be calculated for each patient

(Appendix Part II).

The selected key features and the established signature were

applied to stratify the training cohort into slow and rapid pro-

gression subgroups of EGFR inhibitor. This was achieved by using

the X-tile plot based on Kaplan–Meier survival analyses and log-

rank test (30). The X-tile provided the optimal binary threshold of

each key feature, as well as the signature, for risk stratification, so

that different PFS behaviors in stratified subgroups can be plotted

on the Kaplan–Meier survival curves. Appendix Part II describes

the detailed procedures.

Figure 1.

The flowchart of this study. Including the patient registration, the establishment of CT phenotypic signature by using training cohort for risk stratification, the

validation of the signature in two independent cohorts, the comparison in PFS between stratified patient groupswith TKIs and the patient groupwith chemotherapy,

as well as the development and multicenter validation of the nomogram model for individualized prognosis prediction.

Prediction of EGFR-TKI Treatment Outcome in Stage IV NSCLC

www.aacrjournals.org Clin Cancer Res; 24(15) August 1, 2018 3585
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Signature verification and stratified EGFR-TKIs in comparison to

chemotherapy. The prognostic accuracy of the signature for patient

stratification was assessed in the training cohort and another two

independent validation cohorts through the time-dependent

receiver operating characteristic (ROC) analyses. Both 10-month

and one-year ROC curves were plotted for three cohorts, respec-

tively, and the area under curve (AUC) was quantified.

All patients in four cohorts were stratified into rapid and slow

progression subgroups by the proposed signature. The progres-

sion probability of the two subgroups was compared with the

third group received only chemotherapy (No-TKI group). The

statistical difference in PFS was analyzed to investigate the clinical

benefits cross different therapies by Kaplan–Meier survival anal-

ysis and Cox regression model (31, 32).

Development and validation of an individualized prediction model.

Clinicopathologic characteristics (Supplementary Table S1) and

the signature were assessed for their impacts on PFS by multivar-

iable Cox regression analysis (33) to provide an easy-to-use

clinical prognosis model. Reduced model selection was per-

formed using backward stepdown analysis (34), and the Akaike

information criterion was applied as the stopping rule (35). The

selected variables with significant prognostic values (P < 0.05)

were used to develop a model for the individualized probability

prediction of NSCLC progression and presented as a nomogram

for probability scoring of 10-month and one-year PFS.

The individualized prediction model was firstly developed in

the training cohort, and then validated in two validation cohorts,

separately. To evaluate its accuracy, the calibration curves of all

three cohorts were plotted by comparing the predicted and

observed progressions after bias correction in one-year PFS

(Appendix Part II; ref. 36). Moreover, Harrell's concordance index

(C-index; ref. 37) of the model was measured to quantify its

discrimination performance.

Clinical use. To demonstrate the clinical benefits of the signature,

we established another prediction nomogram model with only

clinicopathologic characteristics. Then, the decision curve analysis

(38) was performed for comparing the net benefits at different

threshold probabilities given by nomograms with and without

the signature. Furthermore, the net reclassification improvement

(NRI) and integrated discrimination improvement (IDI) were

also quantified (39) for evaluating the extra benefits of the

signature.

Statistical analysis

Statistical analysis was conducted using R software (version

3.2.3, http://www.Rproject.org). Parameters of the packages in R

used in this study were described in Appendix Part III. The

reported statistical significance levels were all two-sided, and P

values <0.05 were considered to indicate significance.

Results

Patients

Treatment. A total of 370 patients with stage IV EGFR-mutant

NSCLC from four independent departments were enrolled

according to our criteria. Among these, 314 cases received TKIs

(117 cases, 101 cases, and 96 cases in three cohorts, respectively),

and 56 cases from two independent departments received stan-

dard chemotherapy and were eligible for the comparison group.

Supplementary Table S2 describes the detail of drugs, patients,

and enrollment time. Notably, the administration time of TKI

drugs and the discontinuation cases in the cohorts were not

significantly different (P > 0.5).

Clinicopathologic characteristics. Clinicopathologic characteristics

of the EGFR-TKI treatment cohorts and chemotherapy cohort are

presented in Table 1. In the three TKI treatment cohorts, 300 of

314 (96%) patients suffered NSCLC progression during the

follow-up period, median follow-up period is 12.2 months,

13.5 months and 11.8 months, respectively. There was no signif-

icant difference in PFS among them (median PFS: training cohort,

8.1months; validation cohort 1, 9.2months; validation cohort 2,

8.2months; Kruskal–WallisH test,P¼0.205). Furthermore, there

were no significant differences (P > 0.2 in following categories) in

PFS regarding to age, smoking status, pulmonary metastases,

brain metastases, bone metastases, and liver metastases among

all three cohorts neither.

Fifty-six eligible patients were included in the comparison

group from two different hospitals (37 cases and 19 cases,

respectively). Mean time of treatment was not significantly dif-

ferent between them (P¼ 0.562), and only one case of treatment

discontinuation occurred. Median PFS of the chemotherapy

group was 4.5 months.

CT image and phenotypic feature

Phenotype feature extraction was performed on the CT images

which acquired within two weeks before treatment for each

patient. The inter-observer reproducibility of CT features extrac-

tion was satisfactory. ICC reached 0.872 to 0.935 for the two

radiologists. For each individual CT scan, we managed to extract

1,032 phenotypic features from the manually segmented tumor

region, inwhich 440 features from the study of Aerts and the other

592 features proposed by the study of Song. Then, more than 120

thousand features were obtained from the segmented CT data in

the training cohort. After that, 12 key features were screened out

using the LASSO Cox regression model. They and their cutoff for

patients' risk stratification are listed in Supplementary Table S3.

Feature selection and signature building

The weights of 12 selected key features for signature building

were calculated by the LASSO Cox regression model on the basis

of the training cohort, and the signature calculation equation is

given in theAppendix Part II. Cut-off value of the signature is -1.15

by X-tile. The X-tile plots of the 12 key features are shown in the

Supplementary Fig. S1, which revealed their impact on the prog-

nostic stratification in the training cohort.

Signature verification and stratified EGFR-TKIs comparison to

chemotherapy

The signature score of each individual patient is plotted in left

panels of Fig. 2A (training cohort), B (validation cohort 1), and C

(validation cohort 2), and all three cohorts consistently indicated

that there were more slow-progression patients (red bars) than

rapid progression patients (blue bars) in the expectation of EGFR

inhibitor. The ratio of rapid progression patients in each cohort

was 36%, 35%, and 33%, respectively. The Kaplan–Meier survival

curves confirmed the significant difference in PFS between the

stratified rapid and slowprogression subgroups in all cohorts (Fig.

2A–C, middle, P < 0.0001 in all cohorts). HR reached over 3.6 in

Song et al.
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all cohorts, which suggested the dramatic difference of the two

subgroup's PFS in EGFR-TKI therapies. AUC of the time-depen-

dent ROC curves (Fig. 2A–C, right) ranged from0.711 to 0.738 for

10-month PFS, and 0.701 to 0.822 for one-year PFS in three

cohorts. This proved the discrimination accuracy of PFS was

consistently high for using the signature.

In the comparison between stratified subgroups with TKIs and

the independent group with chemotherapy (No-TKI group), the

Kaplan–Meier survival curves (Fig. 3) demonstrated that the rapid

progression subgroup [110 patients, median PFS: 5.6 months,

interquartile range (IQR): 2.9–7.8months] is overlappedwith no-

TKI group (median PFS: 4.5 months, IQR: 2.3–7.2 months). No

significant PFS difference was found between them [P ¼ 0.682;

HR: 1.02; 95% confidence interval (CI): 0.743–1.425], but they

were both significantly different from the slow progression sub-

group (204 patients, median PFS: 10.7 months, IQR: 7.7–17.9

months, P < 0.0001, HR: 3.52, 95%CI: 2.50–4.65). An extra

experiment was done to apply the signature to the chemotherapy

cases for risk stratification, andno significant difference in PFSwas

found between the two chemotherapy groups (P > 0.05, Supple-

mentary Fig. S5). This revealed that the signature can effectively

identify the patient with high risk of rapid progression, and for

these patients, EGFR TKI showed no better clinical benefits than

conventional chemotherapy did.

Development and validation of an individualized model

Themultivariable Cox analysis in the training cohort identified

two clinicopathologic characteristics (N category and smoking

status, both P < 0.05) and the signature (P < 0.0001) as inde-

pendent variables with significant prognostic value (Table 2).

Figure 2.

Risk score according to the twelve feature–based signature (left), Kaplan–Meier survival (middle), and time-dependent ROC curves (right) in the training and

independent validation sets. Data are based on the AUC (95% CI) or HR (95% CI). A–C, The training cohort and two independent validation cohorts, respectively. All

scores have subtracted the cutoff. AUCs at 10-month and one-year progression-free survival were determined to assess prognostic accuracy, and P values were

calculated using the log-rank test. AUC, area under the curve; ROC, receiver operator characteristic.
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Then, an individualized progression probability prediction mod-

el incorporating all these variables was established and presented

as a nomogram (Fig. 4A).

The calibration curves obtained from the individualized nomo-

gram showed good agreements between prediction and observa-

tion of the one-year NSCLC progression probability in the train-

ing and two independent validation cohorts (Fig. 4B). TheHarrell

C-index of the nomogram was 0.743 (95% CI: 0.700–0.786) for

the training cohort, as well as 0.718 (95% CI: 0.669–0.767) and

0.720 (95% CI: 0.676–0.764) for the validation cohorts,

respectively.

If we removed the signature from the nomogram and kept

only significant clinicopathologic variables, the C-index dropped

to 0.633 (95% CI: 0.584–0.682), 0.622 (95% CI: 0.570–0.674),

and 0.630 (95% CI: 0.578–0.682) in three cohorts.

The integration of the CT-based signature into the nomogram

improved the prediction accuracy significantly regarding to

NRI (0.503; 95% CI: 0.260–0.604, P < 0.0001) and IDI (0.161;

95% CI: 0.080–0.248, P < 0.0001).

Clinical use

The decision curve analysis for the individualized nomogram

with and without integrating the signature is shown in Fig. 4C. It

demonstrated that the nomogram with signature provided the

largest overall net benefit in predicting PFS with EGFR TKIs

comparing with the nomogram without it, the treat-all-patients

scheme, and the treat-none scheme, if the threshold probability of

a patient is > 7%.

Discussion

Although there are new treatment strategies for patients who

have progressed on sensitizing EGFR-TKI therapy, erlotinib, gefi-

tinib, and afatinib are still recommended first-line treatments for

NSCLC patients (10, 40). Disease progression is the common

reason to stop EGFR-TKI therapy according to NCCN, but how to

assess when the progression happens for individual patient is

great challenging (41, 42). Our study proposed a noninvasive

approach to this clinical problem. We established a CT feature–

based signature for survival risk stratification to EGFR-TKI therapy

in stage IV EGFR-mutant NSCLC patients. Then, we integrated the

signature with clinical characteristics (N category and smoking

status) to develop a pretherapy model for individualized prob-

ability prediction of TKI progression in these patients. Both

signature and nomogram were validated through multicenter

patient cohorts resulting in adequate accuracy in EGFR TKI

progression, discrimination, and prediction. To the best of our

knowledge, this is the first multicenter retrospective study that

comprehensively proved the significant prognostic value of theCT

signature in stage IVEGFR-mutantNSCLCpatientswith EGFR-TKI

therapy.

The signature demonstrated that about 35% patients were

predicted with rapid progression of EGFR inhibitor by the signa-

ture, and indeed showed 48% less PFS benefit than slow progres-

sion subgroups through multicenter cohorts. HR over 3.6 in all

cohorts also indicated the dramatic difference on PFS between the

rapid- and slow-progression subgroups stratified by quantitative-

ly interpreting pretherapy CT images. Consistent with previous

randomized trails (4, 6, 7) and meta-analysis (8), EGFR-TKI

therapy showed an overall longer PFS compared with chemo-

therapy in our multicenter study. Surprisingly, our study revealed

that the EGFR-mutant NSCLCs with poor signature score (rapid

progression subgroup) did not have significantly longer PFS after

EGFR TKIs than the chemotherapy (P ¼ 0.682). Therefore, for

these rapid progression patients, their treatment programs and

follow-up should be developed more rigorously.

The multivariable Cox analysis identified two clinicopatholog-

ic characteristics (N category, and smoking status), as well as the

signature as independent risk factors for the prediction of PFS to

EGFR-TKI therapy. Lymph node metastases and smoking are

widely recognized prognostic characteristics for NSCLC (16,

43–46), whereas EGFR mutation (exon 19 deletion or exon 21

L858R substitution) subtype is still a controversial prognostic

factor in different trials (15, 44, 45, 47). Here, we found no

difference between the two common mutations for the benefit

of EGFR TKIs (P > 0.05). Besides, the analysis did not show

significant prognostic impact regarding to gender, and this factor

needs to be further validated (16). The possible reasons of the

inconsistency might be that the eligible patients were enrolled

from different ethnicities and/or different countries. In addition,

T3 is the only significant category compared with T1; therefore,

T stage is not suitable to be included as an independent factor

into the model in this study. Furthermore, studies from the

Figure 3.

Progression probability of three different patient cohorts. The red line

represents slow progression subgroup patients, the blue line represents rapid

progression subgroup patients, and the green line represents the patients

treated with chemotherapy. The slow progression patients with longer survival

compared with the rapid progression patients (P < 0.0001), and the patients

treated with chemotherapy (no-TKI, P < 0.0001). We find that, for these rapid

progression patients, EGFR TKIs showed no better clinical benefits than

conventional chemotherapy did (P ¼ 0.682).

Table 2. The signature and two clinicopathologic characteristics which

incorporated into the individualized prognostic model

Model

Variables b HR (95%CI) P

Pathological N category N0 as reference

Pathologic N1 category 0.14 1.16 (1.10–2.89) 0.028

Pathologic N2 category 0.78 2.20 (1.28–3.78) 0.016

Pathologic N3 category 1.06 2.90 (1.60–5.25) 0.005

Smoke 1.00 2.73 (1.38–4.42) 0.002

Twelve feature–based signature 1.65 5.18 (3.24–8.26) <0.0001
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perspective of biological mechanism to explain why pheno-

typic characteristics reveal treatment outcomes are rare. Larger

scale of patient populations is still needed for identifying

potential clinical risk factors, and physiologic explanations of

the prognostic tumor phenotype. However, this did not com-

promise the effectiveness and robustness of our proposed

signature for prognostic prediction.

To further investigate that how much extra benefit we can

obtain for individualized prediction on PFS by incorporating the

signature, we developed and compared new prediction nomo-

grams incorporating clinicopathologic risk factors with and with-

out the signature. Then, the discrimination of the no-signature

nomogram yielded significant reduction in all cohorts (C-index,

no-signature vs. signature nomogram, training cohort: 0.743 vs.

0.633; validation cohort 1: 0.718 vs. 0.622; validation cohort 2:

0.720 vs. 0.630; all comparisons P < 0.001).

There is a general concern of utilizing aCT feature–basedmodel

for multicenter applications because of the high heterogeneity in

Figure 4.

Nomogram to predict risk of disease progression of stage IV EGFR-mutant NSCLC patients received EGFR TKIs. A, The nomogram for predicting the

probability of patients with 10-month and one-year PFS after EGFR TKI treatment. B, Plots depict the calibration of the nomogram in terms of agreement between

predicted and observed one-year PFS. Performances of the training set and validation sets are shown on the plot relative to the 45-degree line, which represents

perfect prediction. C, Decision curve analysis for the comparison of prognostic model with (red line) and without (blue line) integrating the signature. The y-axis

measures the net benefit. The net benefit was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true

positive, weighting by the relative harm of forgoing treatment compared with the negative consequences of an unnecessary treatment. PS, performance status.
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CT image acquisition in different institutions (different system

manufacturers, acquisition settings, and tomographic reconstruc-

tionmethods; refs. 28, 48–50). However, our study demonstrated

that the signature and signature-based model established from

one institutional data were remarkably robust for progression

stratification and prediction in other institutions. Themulticenter

application was very direct, without any adjustment of key fea-

tures and their corresponding weights for signature building, yet

all quantitative evaluations yielded high consistency cross all

multicenter cohorts. Once we mixed all patient data for NRI and

IDI calculation, as well as decision curve analysis, they all proved

that the nomogram with signature offered significant improve-

ment (NRI, 0.503, P < 0.0001; IDI, 0.161, P < 0.0001) for

individualized PFS prediction comparing with the nomogram

without it.

Our study has several important clinical and research implica-

tions. The signature and the integrated nomogram showed valu-

able prognostic and predictive potential to EGFR-TKI therapy.

Therefore, it will be useful for counseling patients, directing

personalized therapeutic regimenmanagement, as well as achiev-

ing better economic cost-to-benefit ratio for different stratified

subgroups. With further sufficient validation, they might be

important as independent predictors for future clinical trials and

drug development of EGFR TKIs to gradually prolong the survival

opportunity in these patients.

In conclusion, the proposed prognostic strategy can achieve

effective and robust prognostic stratification and individualized

prediction of PFS to EGFR TKIs in NSCLCs, which holds promise

of improving the pretherapy personalized management of EGFR

TKIs for stage IV EGFR-mutant NSCLCs.
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